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Abstract 

In this paper a technique for detecting multiple delamination in a weakly damaged composite beam is 

presented. The conventional techniques have been successfully used to detect single delamination in 

composite beams. However, these techniques were not as successful in detecting multiple delaminations 

particularly with measurement noise in the data. Moreover, the effectiveness of these techniques relies 

on the reference data with which the information is compared to discriminate the damage. The proposed 

technique uses the perturbation in the strain measurements along the beam axis to localize multiple 

delaminations. A Bayesian data fusion technique developed previously is used here with strain 

measurements to localize the delaminations by suppressing the noise. The smart statistical fusion of 

several likelihood functions screens out the false noisy peaks from the damage indices and accurately 

highlights the delamination locations.  The simulation results in this paper indicate that the proposed 

technique accurately detects both delaminations with severity as small as 4% even when the data are 

contaminated with noise level up to 20% of the measured time response signal. For further smaller 

delaminations, the proposed technique was able to detect one damage clearly with 5% noise level. 
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1. Introduction

The composite materials, due to their 

superior properties such as light weight, high 

stiffness, and strength, etc. are widely and popularly 

used in many engineering disciplines. The crucial 

problem with composite materials is the formation 

of delaminations and/or debonds which are not 

visible on the surface of the structure. These types 

of damage in composite structures may 

substantially reduce their stiffness or strength 

leading to tragic consequences. So, for useful 

service life of structure, efficient damage detection 

methods are required. In structural health 

monitoring (SHM) vibrational features-based 

techniques have been developed for damage 

detection. The commonly used techniques are 

frequency-based method, mode shape method, 

curvature-based method and strain energy method. 

The changes in natural frequencies caused by 

damage are usually very small, even for severe 

damage [1-4]. Thus, it is difficult to detect small 

damage based on change in natural frequencies. 

The method also loses its credibility in higher 

frequency modes. Mode shape-based methods 

alone are not very sensitive to damage, which 

makes them more useful for preliminary damage 

detection instead of accurate damage detection [5-

7]. Furthermore, optimization algorithm or pattern 

recognition techniques are needed for accurate 

damage detection [5-7].  

The curvature mode shapes can be used in 

lower modes for damage detection. At higher 

modes, the differences in curvature modes generate 

false indications of damage [6]. U. Baneen and J. E. 

Guivant [8] developed the technique for composites 

structures which did not require a baseline model 

for damage detection. Beams of different width of 

delamination were excited under impact loading 

and frequency response functions (FRFs) were 

determined at different locations of beam. Damage 

indices were obtained using the Gapped smoothing 

method (GSM) based on curvature mode shape 

along with Bayesian approach to reduce the effect 

of the noise. The technique was able to successfully 

detect the single delamination with minimum 

severity up to 8.3% of beam length. This technique 

was further extended for plate-type structures also 

[9]. Another study was carried out to detect and 

localize damage in aluminum plate-type structure 

[10]. The detection method was based on mode 

shape curvatures. The damage was indicated by 

measuring the difference between mode shape 

curvatures and their smoothed polynomial. The 

research revealed that with low degree of 

measurement noise, high-density transverse 

displacement measurements from scanning laser 

vibrometer were needed for successful damage 

detections. The technique was able to detect severe 

damage only. 
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Comparatively, curvature mode shapes are 

better damage indicator than mode shapes; 

however, their effectiveness cannot be fully 

exploited due to measurement noise [11]. The mode 

shapes from the experimental data always have 

noise, which is enhanced by taking second 

difference approximation to obtain curvature mode 

shapes. To avoid the errors associated with the 

second difference approximations, the strain energy 

method has been used by many researchers for 

damage detection. A novel strain energy-based 

method was developed and applied on Euler-

Bernoulli beam [7]. In this novel approach, strain 

modes were used to obtain elemental modal strain 

energy. The method was tested by using numerical 

simulation and then it was validated 

experimentally. It worked well for single damage; 

however, it was difficult to detect multiple small 

structural damage with same accuracy. Moreover, 

the technique requires the damaged element to 

contribute to the measured modes energy to work 

effectively. In another study, an improved modal 

strain energy method was used to detect and 

localize damage in beam structure without using 

baseline data. [12]. Various damage scenarios were 

considered with 25% and 50% severity for both 

single damage and multiple damage cases. It was 

found that the method could reduce the noise, but it 

was not able to detect single and multiple slots with 

good accuracy. Furthermore, it was observed that 

the effectiveness of the technique varies with the 

location of damage. 

In addition to the detection of damage using 

modal strain energy method, damage was also 

quantified by using an improved differential 

evolution (DE) algorithm [13]. This work was 

carried out on laminated composite plates. The 

damaged elements were initially identified using 

modal strain energy method. Then the damage was 

quantified using an improved DE algorithm by 

minimizing a mode shape error. Regardless of the 

effect of noise, the results showed that with less 

computational effort damage was located and 

quantified. In another work, a Cornwell Indicator 

based on strain energy fraction was developed [14]. 

The method was applied on composite beams with 

single and multiple damage considering different 

boundary conditions. It was tested numerically by 

introducing damage in the form of loss of rigidity. 

The method detected the single and multiple 

damage, but the accuracy was highly dependent on 

the selected threshold value for improved Cornwell 

indicator. The same study on composite beams was 

also investigated by using a residual force method 

(FRM) along with Genetic algorithm (GA) [15]. 

The beams were tested numerically, and it was 

found that the proposed method was able to detect 

damage with severity as low as 25% for single and 

multiple damage cases. However, the method still 

needs to be validated through experiment. 

As discussed above, most of the techniques 

can successfully detect single damage but failed to 

detect multiple damage with same accuracy 

particularly in composite beams. To exploit the 

benefits of strain energy, this paper presents a 

strain-based GSM with Bayesian data fusion 

technique to reduce the undesirable effects of noise. 

Composite beams with multiple delaminations at 

different locations and of varying width were 

considered. In ANSYS, harmonic analysis was 

carried out on the composite beam. The responses 

in terms of strain based FRFs were extracted at 

points along the beam length. The results were first 

generated by using direct GSM. Then to test the 

efficacy of the proposed technique, different levels 

of noise were added to the extracted responses. 

2. Damage index with GSM and 
Bayesian Fusion Approach 

The GSM assumes that the second difference 

of mode shape which is curvature (𝜅) of an 

undamaged beam can be characterized by a smooth 

surface which can be mathematically represented 

by a single variable gapped polynomial [12]. 

 
𝜅𝑖 = ∑ 𝐶𝑚𝑥𝑚

𝑛

𝑚=0

 (1) 

where 𝜅𝑖 of ith mode represents curvature of 

supposedly undamaged beam; 𝑛 refers to the degree 

of the gapped polynomial (here it is cubic 

polynomial) while 𝐶𝑚 denotes the coefficients 

acquired by curve-fitting. The smooth surface of the 

curvature exhibits distinct features at the damaged 

locations on the beam structure.  The GSM exploits 

these features of the curvature mode shapes to 

locate damages [12]. The curvatures in Eq. 1 are 

usually obtained by double differentiation of 

displacement mode shapes which not only enhances 

any distortion due to damage but also intensify the 

measurement noise. This problem can be avoided 

by directly measuring the curvatures instead of 

obtaining them from double differentiation. 

According to Euler-Bernoulli beam theory, there is 

a direct relationship between curvature and strain at 

beam’s surface when the beam is bending [1]. 

Hence strain measurements can be used as 

curvature data. The GSM computes the damage 

index by measuring the squared difference between 

the strain data from damaged beam and the curve-
fitted strain data. The damage location across the 

beam can be then ascertained by looking at the 

highest value of damage index peak. 
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These peaks of damage indices provide an 

estimate for the damaged locations on the beam 

structure.  However, measurements taken in the 

presence of noise, linear and nonlinear distortions 

due to random sources, can affect the damage 

indices which may lead to false indications. A 

Bayesian fusion (BF) process was proposed in a 

study to avoid these false indications [8]. In this BF 

method, the existence of damages is modeled 

through a probability density function defined as a 

product of independent likelihood terms, 

𝑝(𝑥) ∝ 𝑝0(𝑥). ∏ 𝐿𝑖(𝑥)

𝑛

𝑖=1

 (2) 

Each likelihood term 𝐿𝑖 is computed from 

individual damage index function. Since the 

probability density function includes a lot of 

likelihood terms, some are bound to be inconsistent 

due to the presence of outliers. For that reason, a 

pruning process is used that assisted in removing 

these inconsistent likelihoods. The pruning process 

ranks the K of the N likelihood terms with respect 

to their computed values at the locations of interest. 

The top K likelihood terms from the ranking list are 

then selected. The resulting likelihood expression is 

as follows [12]. 

𝑝(𝑥𝑚) = 𝑝0(𝑥𝑚). ∏ 𝐿𝑖(𝑘)(𝑥𝑚)

𝐾

𝑘=1

 

𝐿𝑖(𝑘)(𝑥𝑚) ≥ 𝐿𝑗(𝑥𝑚), ∀
𝑗

𝑗
≠

𝑖(𝑟), 1 ≤ 𝑟 ≤ 𝐾  

(3) 

The removal of inconsistent likelihoods 

imparts robustness to the model against noise as it 

makes the occurrence of false peaks as well as the 

skipping of damaged locations less likely. 

3. Noise Model 

Several sources and experimental factors 

including imperfections in excitation mechanism, 

sensors, strain measurement and environment 

induced external disturbances in the beam 

frequency response; contribute to the noise in the 

FRF signal. The noise is modeled after Gaussian 

random variable under the assumption that noise 

distributions of component sources add up to the 

Gaussian distribution. Noise is added to the strain 

time histories at each measurement point. 

Representing 𝑦𝑖(𝑡) as the noise-free strain-based 

time-domain response, the corresponding noisy 

signal �̂�𝑖(𝑡)is obtained [16,17] as follows: 

�̂�𝑖(𝑡) = 𝑦𝑖(𝑡) + (
𝑒

100
𝜎(𝑦𝑖(𝑡))𝑅(𝑡)) (4) 

Where 𝑒 represents the noise percentage with 

𝑒 =  5, 10 and 15 indicating 5, 10 and 15% noise 

levels, respectively. 𝜎(𝑦𝑖(𝑡)) refers to the standard 

deviation of the signal 𝑦𝑖(𝑡). The term 𝑅(𝑡) is the 

random value sampled (at time t) from zero mean 

and unit variance normal random variable. Hence 

the amount of noise can be conveniently controlled 

by varying single parameter e. Once noise is added, 

Fast Fourier Transform (FFT) can be used to 

transform the noisy time-domain signal to 

frequency-domain for further analysis detailed in 

the following section. 

4. Numerical Simulation 

According to Euler-Bernoulli beam theory, 

Eq. 5 can be used to find the natural frequencies 𝜔𝑛 

of the cantilever beam analytically [18]. 

𝜔𝑛 =
(𝛽𝑛𝐿)2

2𝜋
(√

𝐸𝐼

𝜌𝐴𝐿4
) (5) 

where, 𝛽𝑛 are mode shape coefficients 

dependent on n; EI is the flexural rigidity; A 

and  𝜌  are the cross-sectional area and density of 

the beam, respectively. 

Table.1: Comparison of natural frequencies of cantilever beam 

Frequencies (Hz) 
Healthy Beam Damaged Beam (Simulated) 

Analytical Simulation Case 1 Case 2 Case 3 

Mode 1 49.49 49.60 49.56 49.60 49.61 

Mode 2 310.13 307.41 305.45 307.12 307.39 

Mode 3 868.36 846.025 838.23 844.41 845.89 

Mode 4 1701.62 1618.82 1590.34 1614.67 1618.5 

Mode 5 2812.93 2600.01 2572.27 2599.02 2599.95 
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A comparison of natural frequencies 

acquired analytically and from simulation is given 

in Table 1 for both healthy and damaged beams. To 

evaluate the applicability of the technique, the beam 

was modelled and analyzed in ANSYS. A 

cantilever glass fiber reinforced plastic (GFRP) 

beam with dimensions and other physical properties 

described in Table 2, was modeled in ANSYS. 

Various damage scenarios based on damage 

locations and damage severity, as described in 

Table 3 for unit-normalized beam length, were 

considered. In this paper, structural damage in the 

form of two delaminations are symbolized as D1 

and D2 as shown in Fig.1. Here the damage severity 

is defined as delamination length per beam length, 

in percentage. 

 

Fig.1: Beam schematic illustrating both 

delaminations 

Table 2: Properties of composite beam 

Properties of GFRP Beam 

Length 600𝑚𝑚 
Width 35𝑚𝑚 
Height 30𝑚𝑚 
Young’s modulus 25 𝐺𝑃𝑎 
Poisson’s ratio 0.3 
Density 1850 𝑘𝑔/𝑚3 
Damping ratio 0.01031 

In ANSYS, initially seven blocks were 
modelled to create the two delaminations in beam. 

These blocks were then merged, except where the 

delamination was present. After that, the damaged 

beam was meshed with an appropriate element size 

of 5 mm that included 5040 elements in total. 

Harmonic analysis with frequency range 0 to 2.6 

kHz, was then performed that included first five 

bending modes. Finally, the response in terms of 

elastic strain was extracted at equidistant points 

along the beam length. 

 

Fig. 2: Beam with Delamination 

The first five strain modes in bending were 

extracted from the response and damage indices 

were generated by using GSM. These damage 

indices with noise-free response clearly indicated 

the two delaminations as shown in Fig.3(a). The 

noise generates many false peaks in damage indices 

and thus cover the useful information. Hence 

Bayesian data fusion technique is employed to 

reduce the noise by enhancing the peaks indicating 

the true damage locations. To examine the efficacy 

of the technique, the response is contaminated with 

random noise in time domain to make it closer to an 

experimental response. For each damage scenario, 

damage indices are generated by considering 

varying levels of noise as presented in sections 5, 6 

and 7. 

5. Case1: Damage width 8% of 
length 

Damage indices for Case1, as shown in 

Fig.3, were obtained from the first five extracted 

strain modes using GSM. In all figures, D1 and D2 

show the width of first and second delamination, 

respectively. The peaks for D1 are clearly visible in 

all modes as shown in Fig 3(a). In first and fourth 

modes, damage indices show noticeable peaks for 

D2 while these peaks have comparatively smaller 

magnitude in second, third and fifth mode. To 

examine the effectiveness of the technique, the 

measured response is contaminated with noise up to 

noise levels of 5, 10, and, 15%. For 5% noise, Fig. 

3(b) shows that only D1 is somewhat visible in all 

modes while except in the fourth mode, D2 is lost 

in noise. For other noise levels of 10% and 15%, 

several false positive peaks are present as shown in 

Figs.3(c) and 3(d). Although being noticeable, 

these peaks are not consistent for each strain mode. 

Table 3: Different damage scenarios 

Damage scenario Damage Severity (%) 
Location along unit normalized beam length 

D1 D2 

Case1 8 0.166-0.250 0.583-0.666 

Case2 4 0.166-0.208 0.583-0.625 

Case3 1.6 0.166-0.183 0.583-0.600 
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To suppress the noise while highlighting the useful 

information, Bayesian approach as described in 

section 2 is applied. The K of N likelihoods were 

varied to acquire the estimated damage indices in 

Figs.4-7. As can be seen in Figs.4 and 5, both 

delaminations D1 and D2 are accurately detected 

for 5 and 10% noise levels. Even for 15% noise, 

both delaminations can be detected for the first 

three cases of N and K as shown in Fig.6. To 

examine the method, noise was further increased to 

20% and estimated damage indices were generated. 

Fig.7 indicates a visible D1 in all cases. Although 

peak of D2 is shifted a bit but it is consistent 

throughout. For other noise levels too, although D2 

is localized but there is a very slight shift too. A 

possible explanation of this shift could be due to the 

severity of delamination. During bending the parts 

above and below the delamination move separately 

particularly for D2 which is towards the free end of 

cantilever beam, so that might cause a shift of peaks 

on one side. 

 

  
(a)   without noise (b)   5% noise 

  

(c)   10% noise (d)   15% noise 
 

Fig. 3: Case1 damage indices from strain modes using GSM

  

Fig. 4: Case1 estimated damage index - 5% noise 

 

Fig. 5: Case1 estimated damage index - 10% noise 
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Fig. 6: Case1 estimated damage index - 15% noise 

 

Fig. 7: Case1 estimated damage index - 20% noise 

6. Case2: Damage width 4% of 
length 

For case2, the damage indices were initially 

generated by applying GSM only. As the 

delamination is less severe, so the damage indices 

showed many false peaks. By applying Bayesian, 

the estimated damage indices were obtained for all 

four noise cases as shown in Figs.8-11. Both peaks 

for D1 and D2 can be clearly seen for  5, 10 and 

15% noise levels consistently. Even for 20% noise, 

D2 is clearly visible in all cases of N and K. 

Although the peak for D1 is comparatively smaller 

but that is also consistent through out as can be seen 

in Fig.11. Result of case2 for 20% noise is better 

than case1. As this is less severe so the parts of 

beam above and below the delamination do not 

move as much as the severe delamination. 

7. Case3: Damage width 1.6% of 
length 

For this case of multiple delaminations with 

very low severity, the damage indices from direct 

GSM with 5% and 10% noise levels show many 

false peaks. The estimated damage indices after the 

application of Bayesian approach provide clear 

detection of D1 for 5% noise. While the peak for 

D2 is shifted in all cases with some false peaks. For 

10% noise, D1 is detected only for 𝑁 = 2, 𝐾 = 2 

while for all other cases the damage is lost in noise 

as can be seen in Fig.13. 

 

Fig. 8: Case2 estimated damage index - 5% noise 

 

Fig. 9: Case2 estimated damage index -10% noise 
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Fig. 10:  Case2 estimated damage index -15% 

noise 

 

Fig. 11: Case2 estimated damage index -20% 

noise 

 

Fig. 12: Case3 estimated damage index - 5% noise 

 

Fig. 13: Case3 estimated damage index - 10% 

noise 

8. Conclusion 

Multiple delaminations comprise most 

common and critical forms of damage in composite 

structures. In this paper, a strain-based GSM with 

Bayesian data fusion technique is presented. The 

noise induced false damage index peaks were 

efficiently pruned by using the proposed technique.  

All the results were generated without using any 

reference data.  

Here, the results signify that the accuracy of 

proposed method was dictated both by the 

magnitude of noise as well as the severity of 

delamination. The proposed technique was able to 

reliably detect multiple delaminations with severity 

as low as 4% of beam length at noise level as high 

as 20% of the response signal. When the severity 

was further reduced to 1.6% of beam length, only 

one delamination was visible for 5% noise level. It 

was also noted that for severe delaminations, 

sometimes the peaks of damage indices shifted due 

to the significant movement of parts of beam above 

and below the delamination. This movement 

reduces slightly for less severe delaminations, 

hence providing accurate detection with the 

proposed technique. Another significant finding in 

this paper is that same results can be achieved by 

using only first two modes (𝐾 = 2 for 𝑁 = 2) for 

all cases. Further enhancements in this research can 

be made by obtaining measurements at large 

number of beam locations for an accurate 

illustration of strain mode shapes. Moreover, by 

including higher strain modes the detection of less 

severe delaminations can be improved. 
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