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Abstract.: In this paper the author has considered two-step methods pro-
posed by Ford and Moghrabi with new values of delta. As, it is evident
in literature that quasi-Newton methods (single/multi-step) for solution of
nonlinear unconstrained problems outperforms all other methods avail-
able. In case of multi-step methods it can be noted that different choice
of τ values effects the performance of algorithm. Furthermore, it can be
noted that variables in scalar and gradient space depends upon delta (δ )
value. Therefore, in this paper we have considered different choices ofδ
values to check the performance of algorithm on 15 test problems. Numer-
ical experiments reveals that performance of algorithm improves whenδ
is taken as 0.85 and 0.95.
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1. INTRODUCTION

Major development have been made in the area of numerical methods of unconstrained
optimization in 1960 in United Kingdom. Various methods such as steepest descent, New-
ton method, quasi-Newton method etc for unconstrained nonlinear optimization problems
have been developed to find the solution of different optimization problems [11]. Every
method has some limitations as well as some strengths. Some methods have linear con-
vergence such as steepest descent, conjugate gradient method and some have quadratic
convergence such as Newton method. It’s convergence depend on good initial guess. It

65



66 Farah Jaffar and Nudrat Aamir

also requires the information of first and second derivative at each iteration to find the solu-
tion of linear system but, for large dimension it can be very expensive. To overcome these
limitations, in 1959 Davidon introduced quasi-Newton methods which have fast conver-
gence rate than Newton method and do not require to compute derivatives at each iteration.
It was further developed by Ford and Moghrabi [2, 7] as multi-step quasi-Newton methods
and achieved good results as compare to quasi-Newton methods.
We consider unconstrained optimization problems define as

minf(x), where f : Rn → R

There is no requirement of Hessian(Mi+1) matrix computation in quasi-Newton method
but it focuses on the approximation of Hessian or its inverse Hessian by using updating
formulas such as Symmetric Rank-1 (SR1), David-Fletcher-Powell (DFP) and Broyden-
Fletcher-Goldfarb-Shanno formula (BFGS) etc. The updated Hessian approximation i.e
(Bi+1) is required to satisfy the secant condition, given as

Bi+1si = yi. (1. 1)

Wheresi be the step size in the variable spacexi

si = xi+1 − xi, (1. 2)

andyi is the step size in gradient spaceg(xi) , such as

yi = g(xi+1)− g(xi). (1. 3)

Yang et.al [1] investigated the performance of four quasi-Newton methods for nonlinear un-
constrained optimization problems and found that an updating formula BFGS is superior
than the other methods. Ford and Moghrabi [2] introduced a new method known as multi-
step method which is the generalization of quasi-Newton method by using interpolating
curve. Moghrabi and Kassar [10] investigated new parameterization techniques for multi-
step methods for the approximation of Hessian. Ford and Moghrabi [4] also introduced
an alternating multi-step methods for unconstrained nonlinear optimization problems and
achieved better results. To improve the performance of multi-step quasi-Newton methods
Ford [6] introduced implicit updates. These updates are further developed by Ford and
Tharmlikit [3] in 2003.

In multi-step quasi-Newton methods, the pathX is define as a polynomialx(τ) of degree
mand it interpolated the following points

x(τk) = xi−m+k+1, for k = 0, 1, 2, ...., m.

The polynomialx(τ) will depend on{τk}m
k=0 values which corresponds to iterates{xi−m+k+1}m

k=0.
The Lagrangian polynomialLk is used for interpolating the pathX as

x(τ) =
m∑

k=0

Lk(τ)xi−m+k+1, (1. 4)

and define as

Lk(τ) ≡
m∏

j=0,j 6=k

τ − τj

τk − τj
.
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Let g(x(τ)) is a function which is approximated by interpolating polynomialx(τ) based on
gradient values from iterates{xi−m+k+1}m

k=0 and obviously on{τk}m
k=0 which are used

for the construction of pathX. Therefore, we have

g(x(τ)) =
m∑

k=0

Lk(τ)g(xi−m+k+1). (1. 5)

In order to apply the Newton’s equation we use ( 1. 4 ) to estimatedx(τ)
dτ and ( 1. 5 ) to find

dgx(τ)
dτ , we obtain the condition which is satisfied by updated Hessian approximationBi+1

dx(τm)
dτ

=
m∑

k=0

L′k(τm)xi−m+k+1.

= ri, (1. 6)

g(x(τk))
dτ

≈
m∑

k=0

L′k(τm)g(xi−m+k+1).

= wi, (1. 7)

where

L′k(τm) = (τk − τm)−1
m∏

j=0,j 6=k

τ − τj

τk − τj
, (k 6= m)

L′k(τm) =
m−1∑

j=0

(τk − τm)−1.

ri andwi can be represented in terms of most recent vectors{si−j}m−1
i=0 and{yi−j}m−1

i=0 ,
such as

ri =
m−1∑

i=0

si−j




m∑

k=m−j

L′k(τm)


 ,

wi =
m−1∑

i=0

yi−j




m∑

k=m−j

L′k(τm)


 .

In case of multi-step methods, the secant equation ( 1. 1 ) will be of the form as

Bi+1ri = wi. (1. 8)

In BFGS formulaesi andyi are replaced byri andwi to get the updated Hessian approxi-
mationBi+1 in multi-step methods as

Bi+1 = Bi +
Birir

T
i Bi

rT
i Biri

+
wiw

T
i

wT
i ri

.

Similarly, updated inverse Hessian approximation is define as

Hi+1 =
(

I − riw
T
i

wT
i ri

)
Hi

(
I − wir

T
i

wT
i ri

)
+

rir
T
i

wT
i ri

.

Hence the updated inverse Hessian approximation is required to satisfy

Hi+1wi = ri.
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the updating conditions for two-step method are

ri = si − δ2

(2δ + 1)
si−1, (1. 9)

wi = yi − δ2

(2δ + 1)
yi−1, (1. 10)

where

δ =
(τ2 − τ1)
(τ1 − τ0)

.

Farzin et.al [9] applied the Symmetric Rank-one (SR1) method by using interpolatory
polynomials in multi-step methods and obtained significant results while comparing with
single-step method. Ford and Maghrabi [2] also presented fixed-point and accumulative
approaches under metric based method, used to determine the parametric valuesτ ′s by
measuring the distance between different iterates in the current interpolation by norm de-
fine by positive-definite matrix N.

φN = ((z1 − z2)T N(z1 − z2))
1
2 . (1. 11)

The matrix N is taken as I,Bi, Bi+1 wherez1, z2 ε Rn.
Multi-step skipping method is investigated by Ford and Nudrat [5] in which skipping tech-
nique was implemented and achieved good results. In the [5] the authors also introduced
modified search direction with skipping technique and achieved good results. Waziri et.al
[13] presented a new approach of an improved diagonal secant-type method for the solu-
tion of large scale nonlinear system. Ford and Maghrabi [2] gave the idea of unit-spacing
for two-step and three-step methods to parameterize the interpolating curve. In single-step
methods wherem=1, we can choose the values of{τk}m

k=0 i.e τ0 = 0 andτ1 = 1. In
unit-spacing the values ofτ can be defined as

τk = k −m + 1, for k = 0, 1, 2, ....,m.

For unit-spaced method Eq.( 1. 1 ) can be written as

Bi+1ri = wi,

as the vectorsri andwi are given by

ri = si,

wi = yi.

In second section different values of delta are proposed. The numerical results of all
comparable methods with different delta values of all dimension is shown in section 3 and
section 4 included the concluding remarks of proposed research.
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Table 1:Computation of different delta values

δ rj wj

0.15 si − (0.01730)si−1 yj − (0.01730)yi−1

0.25 si − (0.04166)si−1 yi − (0.04166)yi−1

0.5 si − (0.125)si−1 yi − (0.125)yi−1

0.75 si − (0.225)si−1 yi − (0.225)yi−1

0.85 si − (0.26759)si−1 yi − (0.26759)yi−1

0.95 si − (0.31120)si−1 yi − (0.31120)yi−1

2.0 si − (0.8)si−1 yi − (0.8)yi−1

2. PROPOSEDDELTA VALUES

It is evident from equation ( 1. 9 ) and ( 1. 10 ) that values ofri andwi depends
upon delta value. Hence, instead of delta value considered in literature, we propose to
investigate the effect of different values of delta on algorithm. These delta values generates
different values ofri andwi ( by using Eq.( 1. 9 ) and Eq.( 1. 10 )), as presented in Table
1. The algorithms produced by different values of delta are then compared with standard
single-step method (where delta is 0) and unit-spaced method (where delta is 1) to check
the performance of new algorithms.

3. NUMERICAL RESULTS

The performance of different algorithms is analyzed by first considering total number
of function evaluations, lesser the number of total evaluation better the performance of al-
gorithm. However, in case if function evaluations in two different methods are same we
will check the number of iterations and then the time spent on experiments per second.
All the methods are investigated 20 times and results are obtained on the basis of their
averages. In order to compare the performance of algorithms, produced by new delta val-
ues, 15 test functions (already present in literature [8]) with four different starting points
are considered. There is a possibility of algorithm failure which is controlled by epsilon
value. Hence, four different starting points and epsilon values for each test function are
reported in table 4-7. In table 4-7 square brackets [ ,] represents the repetition of starting
point for the dimension considered. These test problems are further subdivided into three
categories, soft, medium and hard. Soft problems have dimension ranging from 2 to 20,
medium dimension ranging from 21 to 60 and dimension of hard problems ranges 61 to
200, as presented in table 3. Analysis of differentδ values on the problems of different
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dimensions has been displayed in table 2 and figure 1.

• It is evident from table 2 and figure 1(a) that in soft dimension theδ value 0.5 is
out performing all other delta values in case of function evaluations and number of
iterations. On the other handδ = 0.15 is wining over all reported delta values in
case of time spent in seconds for experimentation.

• Furthermore, it can be noticed in table 2 and in figure 1(b) that in medium dimen-
sion the performance of methodδ = 0.95 is better in case of function evaluations
and number of iterations than the other methods. While the methodδ = 0.85
shows less computational time over all other delta values.

• The results reported in table 2 and figure 1(c) proved that in hard dimensionδ value
0.85 is out performing in case of function evaluation than other considered delta
values. On the other hand unit-spaced method shows less number of iteration in
less computational time over all other methods.

• From table 2 and figure 1(d), the results of combined dimension exhibited same
performance as executed by the results of hard dimension problems that is the
performance of method whereδ = 0.85 is outperforming in function evaluation as
compared to standard BFGS and unit-spaced method.

It is evident from the results that the method at theδ value 2.0, failed to perform well in
terms of function evaluations, number of iterations as well as in computational time in all
categories of problems.δ = 0.85 exhibits reduction in computational time in soft and
medium dimension while unit-spaced method also showed less computational time in hard
and combined dimension.

4. CONCLUSION

Different values ofδ are assessed with standard BFGS (single-step method), unit-spaced
method and multi-step quasi-Newton methods of different techniques. The experimental
results of all methods are obtained at the computational cost of 20 times. The analysis was
done on the basis of average results. The problems of different dimensions are analyzed
by function evaluations and number of iterations per time. The results revealed that the
method atδ = 0.5 outperformed in case of function evaluation and iterations in soft prob-
lems. In medium dimension the method atδ value 0.95 exhibited better performance in
function evaluation and number of iteration from all other considered delta values. It is
evident from experimental results thatδ value at 0.85 outperformed the time taken by ex-
periments in the problems of soft and medium dimension and in case of function evaluation
in the hard dimension.

The results also revealed that unit-spaced method is winning from all the reported delta
values in computational time and number of iteration in hard and combined dimension. The
methodδ = 2.0 failed to outperform in all dimension problems in case of function eval-
uation, iteration and in computational time. The analysis revealed that theδ values 0.85
and 0.95 outperformed from other proposed values ofδ in all the problems of different
dimension. It can also be easily concluded that all delta values which are less than one are
out performed the BFGS method and unit-spaced method in function evaluation, number
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(a) (b)

(c) (d)

Figure 1: Results of all dimension problems on different delta value
(a) Soft problems (b) Medium problems
(c) Hard problems (d) Combined problems

of iteration and also in case of time spent in experimentation.
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Table 2:Comparison in All Dimension

Dimension Method F.Evaluation Iteration Time(sec) Failure
BFGS 13112 10693 2.58 0

Unit-spaced 13332 10561 2.51 0
δ=0.15 12703 10416 2.29* 0
δ=0.25 12629 10377 2.59 0

Soft δ=0.5 12412* 10168* 2.60 0
δ=0.75 12924 10460 2.45 0
δ=0.85 13022 10442 2.42 0
δ=0.95 13318 10509 2.68 0
δ=2.0 16766 12706 3.13 0
BFGS 16365 15196 4.67 0

Unit-spaced 15660 13584 4.58 0
δ=0.15 16293 15091 4.61 0
δ=0.25 16183 14969 4.74 0

Medium δ=0.5 15576 14266 4.60 0
δ=0.75 15660 13974 4.35 0
δ=0.85 15781 13909 4.21* 0
δ=0.95 15482* 13534* 4.30 0
δ=2.0 21645 16884 5.24 0
BFGS 44650 42748 44.93 0

Unit-spaced 40933 36411* 38.03* 0
δ=0.15 44133 42219 44.23 0
δ=0.25 43313 41357 43.56 0

Hard δ=0.5 41991 39787 41.32 0
δ=0.75 41456 38094 40.40 0
δ=0.85 40794* 36878 38.22 0
δ=0.95 40903 36658 38.75 0
δ=2.0 54205 43727 46.02 0
BFGS 74127 68637 52.18 0

Unit-spaced 69925 60556* 44.75* 0
δ=0.15 73129 67726 51.26 0
δ=0.25 72125 66703 50.89 0

Combined δ=0.5 69979 64221 48.53 0
δ=0.75 70040 62528 47.20 0
δ=0.85 69597* 61229 44.86 0
δ=0.95 69703 60701 45.74 0
δ=2.0 92616 73317 54.39 0
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Table 3:Test Problems and Dimensions[12]

Function Name Dimensions

Extended Rosenbrock 2, 20, 26, 40, 60, 80, 100, 120
Extended Wood 4, 12, 24, 48, 68, 92, 112, 140
Extended Powell singular 4, 8, 60, 80, 100, 140
Penalty 1 10, 14, 20, 30
Penalty 2 10, 16, 24, 30
Modified Trigonometric Function 16, 32, 64, 95, 128, 150
Broyden Tridiagonal 18, 36, 72, 90, 108, 144, 186
Discrete Boundary Value 20, 38, 60, 90, 120, 136, 188
Discrete Integral Equation 20, 84, 100, 150, 175, 200
Freudenstein and Roth 28, 52, 85, 118, 190
Variably Dimensioned 30, 55, 75, 100, 130, 150
Merged Quadratic 30, 50, 70, 110, 136, 180
Discrete ODE II 33, 44, 66, 88, 110, 176
Discrete ODE I 42, 58, 78, 96, 114, 160
Extended Engvall Function 64, 76, 88, 104, 155, 196

Table 4:Test problems and dimensions in soft test sets

Starting points
Function Name and dimension [a] [b] [c] [d]

Rosenbrock (2) e =10−7(-1.2, 1.0) (-120, 100) (20, -20) (6.39, -0.221)
Wood (4) e =10−7([-3, -1]) ([-300, -100]) ([-3, 1]) ([-300, 100])
Powell singular (4) e =10−7(3, -1, 0, 1) (300, -100, 0, 100) (2, 2, 3, -1) (20, 20, 30, -10)
Powell singular (8) e =10−7([3, -1, 0, 1]) ([300, -100, 0, 100])([2, 2, 3, -1]) ([20, 20, 30, -10])
Penalty 2 (10) e =10−7([F]) ([0.5]) ([-0.1, -0.2, 0.0, 0.1, 0.2])([-1.0])
Penalty 1 (10) e =10−7(1, 2, 3,...., 10) ([5, -5]) ([2, 1, 0, -1, -2]) (-10, -20,.., -100)
Wood (12) e =10−7([-3, -1]) ([-300, -100]) ([-30, -10, 0, 10]) ([100])
Penalty 1 (14) e =10−7(1, 2, 3,.., 14) ([10, 5, 0, -5, -10]) ([20, -10]) (-10, -20,....., -140)
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Table 5:Test problems and dimensions in medium set

Starting-points
Function Name and dimension [a] [b] [c] [d]

Penalty 2 (16) e =10−6([0.5]) ([-0.2, -0.1, 0.2, 0.1]) ([-1.0]) ([F])
Modified Trigonometric (16) e =10−7([-2, -1, 1, 2]) ([-2, 1.5,.., -1.5, 2]) ([0.1, 1, -0.1, -1]) ([2.5, 2, 1.5, 1, 0.5], 2.5)
Broyden tridiagonal (18) e =10−7([-1]) ([-100]) ([-2, -1, 0, 0, -1, -2]) ([-15, -10, -5])
Penalty 1 (20) e =10−7(1, 2, 3,..., 20) ([10, 5, 0, -5, -10]) ([20, -10]) (-10, -20,...., -200)
Discrete Boundary Value (20) e =10−7([F]) (1, 2, 3,....., 20) ([10, 5, 0, -5, -10 ]) ([25, -25])
Rosenbrock (20) e =10−7([-1.2, 1.0]) (1, 2,....,20) ([6.39, -0.221]) (-1, -1, -1, -1, -1, 1,....1)
Discrete integral equation (20) e =10−7([F]) ([-10, 5, 0, -5, 10]) ([5]) ([5, -4, 3,.., -3, 4, -5])
Wood (24) e =10−7([-3, -1]) ([-300]) ([10, 0, -10]) ([100])
Penalty 2 (24) e =10−7([F]) ([-0.2, -0.1, 0.1, 0.2]) ([-1.0]) ([0.5]
Rosenbrock (26) e =10−7([-1.2, 1.0]) ([F]) ([20]) ([6.39, -0.221])
Freudenstein and Roth (28) e =10−2([2]) ([0.5, -2]) ([-10]) ([1])
Penalty 1 (30) e =10−7(1, 2, 3,..., 30) ([-10, -5, 0, 5, 10]) ([10, 20, 30,..,100]) (300, 290, 280,..., 10)
Penalty 2 (30) e =10−6([0.5]) ([-0.2, -0.1, 0.0, 0.1, 0.2])([F]) ([0.5, 0.0, -0.25])
Variably Dimensioned (30) e =10−6([F]) ([-1, -2,..., -5]) ([-10, 5, 0, -5, 10]) ([F])
Merged Quadratic (30) e =10−3([5.0]) ([1, -2, 3, -4, 5]) ([-2,1]) ([-10, -9, -8,..., -2, -1])
Modified Trigonometric (32) e =10−7([-2, -1, 1, 2] ([-2, 1.5,.., -1.5, 2 ] ([0.1, 1, -0.1, 1] ([2.5, 2,..,0.5], 2.5, 2)
Discrete ODE II (33) e =10−7([F]) ([1]) ([3, -1]) ([-10])
Broyden Tridiagonal (36) e =10−6([-1]) ([-100]) ([-2, -1, 0, 0, -1, -2])([-10, 0, -10])
Discrete boundary value (38) e =10−7([F]) ([2, -2]) ([10, -5]) ([F])
Extended Rosenbrock (40) e =10−7([-1.2, 1]) ([-120, 100]) ([1, -2, 3, -4,...., -10])([20])
Extended Powell Singular (40) e =10−7([3, -1, 0, 1]) ([5]) ([3, -3]) ([1, 2,.., 5, -1,...,-5])
Discrete ODE I (42) e =10−7([1, -2, 3,.., -6])([0]) ([1, 2]) ([-5, -1])
Discrete ODE II (44) e =10−7([1]) ([3, -1]) ([-10]) ([-11, 10, -9,..., -1])
Wood (48) e =10−7([-3, -1]) ([-300, -100]) ([1, 0, -1]) ([100])
Merged Quadratic (50) e =10−3([5.0]) ([1, -2, 3, -4. 5]) ([-2, 1]) ([-10, 9, -8,..., 1])
Freudenstein and Roth (52) e =10−2([2]) ([0.5, -2]) ([-10]) ([1])
Variably Dimensioned (55) e =10−5([-1, -2, ..-5]) ([-10, 5, 0, -5, 10]) ([F]) ([F])
Discrete ODE I (58) e =10−7([0]) ([1, 2]) ([-5, -1]) ([1, -2, .., -6], 1, -2, 3, -4)
Powell singular (60) e =10−7([3, -1, 0, 1]) ([2, 2, 3, -1]) ([-3, 1]) ([10])
Discrete boundary value (60) e =10−7([F]) ([-2, -1, 0, 1, 2]) ([10, 0, -10]) ([10, -9,..., -1])
Rosenbrock (60) e =10−7([-1.2, 1]) ([F]) ([F]) ([6.39, -0.221])
Modified Trigonometric (64) e =10−6([-2, -1, 1, 2]) ([-2, 1.5,..., -1.5, 2]) ([0.1, 1, -0.1, 1]) ([2.5, 2,.. 0.5], 2.5,.., 1)
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Table 6:Test problems and dimensions in hard test set

Starting-points
Function Name and dimension [a] [b] [c] [d]

Extended Engvall Function (64) e=10−5 ([2]) [5, -1]) ([-1, 2, -3, 4])*([10])
Discrete ODE II (66) e=10−7 ([1]) ([3, -1]) ([-10]) ([F])
Wood (68) e=10−7 ([-3, -1]) ([-300, -100]) ([-3, 1]) ([100])
Merged Quadratic (70) e=10−7 ([5]) ([1, -2, 3, -4, 5]) ([-2, 1]) ([-10, -9, ...., -1])
Broyden Tridiagonal (72) e=10−7 ([-1]) ([-100]) ([-2.0, -1, 0, 0, -1, -2])([-10, 0, -5])
Variably Dimensioned (75) e=10−5 ([-1, -2, -3]) ([-10, 5, 0, -5, 10]) ([F]) F
Extended Engvall Function (76) e=10−5 ([2]) ([5, -1]) ([-1, 2, -3, 4]) ([10])
Discrete ODE I (78) e=10−7 ([0]) ([1, 2]) ([-5, -1]) ([1, -2,..., -6])
Rosenbrock (80) e=10−7 ([-1.2, -1.0]) ([F]) ([F]) ([F])
Extended Powell Singular (80) e=10−7 ([3, -1, 0, 1]) ([2, 2, 3, -1]) ([10])
Discrete integral equation (84) e=10−4 ([F]) ([-10, 5,.., -10],-10,.., -5)([5]) ([5, -4,...,-5], 5,.., 2)
Freudenstein and Roth (85) e=10−3 ([2]) ([0.5, -2]) ([-10]) ([1])
Discrete ODE II (88) e=10−7 ([1]) ([3, -1]) ([-10]) ([F])
Extended Engvall Function (88) e=10−5 ([2]) ([5, -1]) ([-1, 2, -3, 4]) ([10])
Discrete boundary value (90) e=10−7 ([10, 5, 0, -5, -10]) ([F]) ([1, 2,...., 15]) ([25, -25])
Broyden Tridiagonal (90) e=10−7 ([-1]) ([-100]) ([-2, -1, 0, -1, -2]) ([-10, 0, -5])
Wood (92) e=10−7 ([-3, -1]) ([-300, -100]) ([30, -10, 0, 10]) ([100])
Modified Trigonometric (95) e=10−5 ([-2, -1, 1, 2],-2, -1, 1)([-2, 1.5,.., 2]) ([0.1, 1.0, -0.1, 1.0]) ([2.5, 2.0, 1.5, 1.0, 0.5])
Discrete ODE I (96) e=10−7 ([0]) ([1, 2]) ([-5, -1]) ([1, -2,..., -6])
Rosenbrock (100) e=10−7 ([-1.2, -1]) ([F]) ([F])*([F])
Extended Powell Singular (100) e =10−7([3, -1, 0, 1]) ([5]) ([3, -3]) ([1, 2,.., 5, -1,..., -5])]]
Variably Dimensioned (100) e =104 ([-1, -2,..., -5]) ([-10, 5, 0, -5, 10]) ([F]) ([F])
Discrete integral equation (100) e =104 ([F]) ([10, 5, 0, -5, 10]) ([5.0]) ([5, -4, 3, -2, 1, -1, 2, -3, 4, -5 ])
Extended Engvall Function (104)e =105 ([2]) ([5, -1]) ([-1, 2, -3, 4]) ([10])
Broyden Tridiagonal (108) e =106 ([-1]) ([-100]) ([-2, -1, 0, 0, -1, -2]) ([-5, 0, -5])
Discrete ODE II (110) e =107 ([1]) ([3, -1]) ([10]) ([F])
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Table 7:Test problems and dimensions in hard test set

Starting points
Function Name and dimension [a] [b] [c] [d]

Merged Quadratic (110) e =103 ([5]) ([1, -2, 3, -4, 5]) ([-2, 1]) ([-10, -9,....., -1])
Wood (112) e =107 ([-3, -1]) ([-300, -100]) ([30, -10, 0, 10]) ([100])
Discrete ODE I (114) e =107 ([0]) ([1, 2]) ([-5, -1]) ([1, -2,..., -6])
Freudenstein and Roth (118) e =102 ([2]) ([0.5, -2]) ([-10]) ([1])
Discrete boundary value (120) e=10−7([10, 5, 0, -5, -10]) ([F]) ([1, 2, ...., 20]) ([25, -25])
Rosenbrock (120) e=10−7 ([-1.2, -1]) ([20]) [F] ([6.39, -0.221])
Modified Trigonometric function (128)e=10−6([-2, -1, 1, 2], -2, -1, 1) ([-2, 1.5,.., -1.5, 2]) ([0.1, 1, -0.1, 1]) ([2.5, 2, 1.5, 1, 0.5], 2.5, 2, 1.5)
Variably Dimensioned (130) e=10−4([-1, -1, -1, -1, -1]) ([-10, 5, 0, -5, 10]) ([F]) ([F])
Discrete ODE II (132) e=10−7 ([1]) ([3, -1]) ([10]) ([F])
Discrete boundary value (136) e=10−7 ([10, 5, 0, -5, -10]) ([F]) ([1, 2, ...., 17]) ([25, -25])
Merged Quadratic (136) e=10−3 ([5]) ([1, -2, 3, -4, 5], 1) ([-2, 1]) ([-10, -9,....., -1], -10,..., -5)
Wood (140) e=10−7 ([-3, -1]) ([-300, -100]) ([30, -10, 0, 10]) ([100])
Extended Powell Singular (140) e=10−7([3, -1, 0, 1]) ([2, 2, 3, -1]) ([10]) ([3, -1])
Broyden Tridiagonal (144) e=10−7 ([-1]) ([-100]) ([-2, -1, 0, 0, -1, -2]) ([-10, 0, -5])
Modified Trigonometric function (150)e=10−5([-2, -1, 1, 2], -2, -1) ([-2, 1.5, ..., 2], -2,..., -0.5, 1)([0.1, 1, -0.1, 1], 0.1, 1)([2.5, 2.0, 1.5, 1.0, 0.5])
Variably Dimensioned (150) e=10−4 ([0.5, 0.5, 0.5 ]) ([-10, 5, 0, -5, 10]) ([F]) ([F])
Discrete integral equation (150) e=10−4 ([F]) ([10, 5, 0, -5, 10]) ([5]) ([5, -4, 3,.., 2, -3, 4, -5 ])
Extended Engvall Function (155) e=10−5 ([2]) ([5, -1], 5) ([-1, 2, -3, 4], -1, 2, -3) ([10])
Discrete ODE I (160) e=10−7 ([0]) ([1, 2]) ([-5, -1]) ([1, -2,..., -6], 1, -2, 3, -4)
Discrete integral equation (175) e=10−4([F]) ([10, 5, 0, -5, 10]) ([5]) ([5, -4, 3, .., 2, -3, 4, -5 ], 5, -4, 3, -2, 1)
Discrete ODE II (176) e=10−7 ([1]) ([3, -1]) ([-10]) ([F])
Merged Quadratic (180) e=10−2 ([5]) ([1, -2, 3, -4, 5]) ([-2, 1]) ([-10, -9,....., -1])
Broyden Tridiagonal (186) e=10−6 ([-1]) ([-100]) ([-2, -1, 0, 0, -1, -2]) ([-5, 0, -5])
Discrete boundary value (188) e=10−7([10,.., -5, -10], 10, 5, 0)([F]) ([1, 2, ...., 47]) ([25, -25])
Freudenstein and Roth (190) e=10−2([2]) ([0.5, -2]) ([-10]) ([1])
Extended Engvall Function (196) e=10−5([2]) ([5, -1]) ([-1, 2, -3, 4]) ([10])
Discrete integral equation (200) e=10−4([F]) ([10, 5, 0, -5, 10]) ([5]) ([5, -4, 3, -2, 1, -1, 2, -3, 4, -5 ])


