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Abstract. This paper examines the fractionalized second grade fluid due
to oscillating plate under slip condition. The discrete Laplace transform
technique is employed to compute the analytical solutions for the equa-
tions of motion. The velocity field and shear stress are computed. In order
to write them in compact form, the Wright generalized hyper geometric
function is used and written as addition of slip and no slip contributions.
The closed-form solutions for ordinary second grade and Newtonian flu-
ids carrying out the similar motion are achieved. The computations for
fractional and ordinary second grade fluids without slip effect are also
achieved as a special case. Furthermore, the impact of various parameters
such as the slip, fractional and material parameters on the motion of frac-
tionalized second grade fluid will be explained through graphs. Finally,
a comparison among the Newtonian fluids, ordinary second grade fluids
and fractionalized second grade fluids is also carried out.
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1. INTRODUCTION

Blood, polymer solutions and certain oils represent many complex fluids, which are ex-
pressed via Newtonian constitutive equation that often do not exhibit any relaxation and
retardation phenomena. In order to express the dynamics in such fluids, many models
are introduced. Particularly, the differential type models have gained much important at-
tention ([1], [2], [3]). The model of second-grade fluid is one of the famous models for
non-Newtonian fluids ([4], [5], [6], [7], [8], [9]). The second-grade fluids are associated
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with the simplest subclass of non-Newtonian fluids whose closed-form solution can easily
be found. Recently, the subject of fractional calculus has attained much attention to solve
the complicated problems in complex dynamics. Specifically, it is proven to be an impor-
tant mechanism for tackling the viscoelastic properties. The fractional calculus approach is
widely studied (see for instance ([10], [11], [12], [13], [14], [15] [16], [17], [18], [19]). In
more recent years, the closed-form solutions describing the flow of various fractionalized
non-Newtonian fluids are achieved in ([20], [21], [22], [23], [24], [25], [26]). In most of
the applications, it is seen that the fluid renders a loss of adhesion at the wetted wall. The
idea of slip of a fluid at a solid wall demonstrates the macroscopic effects of specific molec-
ular phenomenon. The non-continuum effect of fluid such as slip-flow was experimentally
obtained by Derek et al. [27]. The boundary conditions which ponder the feasibility of
fluid slip at a solid boundary were introduced by Navier [28]. It is expressed in that condi-
tion that the fluid speed is directly proportional to the shear stress. An experimental study
was first carried out by Beavers and Joseph [29] to examine the fluid flow at the inter-
face between a porous medium and fluid layer. The authors also devised the slip boundary
conditions. Some recent studies discussing the closed-form solutions for non-Newtonian
fluids under slip effects are shown in Refs. ([30], [31], [32], [33], [34], [35], [36]). Jamil
and Najeeb A. Khan [36] examined an unsteady flow of an incompressible Maxwell fluid
under slip condition. However, the unsteady flow for second grade fluid under slip condi-
tion is not studied for second grade fluid. This paper provides the closed-form solutions for
second grade fluids through fractional derivative approach, which is suitable mechanism to
express the complex behavior of such fluids with slip effects. Specifically, this work aims
to compute the profiles for the shear stress and the velocity field associated to the motion
of a fractionalized second grade fluid owing to an oscillating plate. The discrete Laplace
transform technique is employed to attain the general solutions for the governed equations,
which are expressed in terms of the Wright generalized hyper geometric fupgtjcand

shown as addition of the slip contribution and the associated no-slip contributions. The
solutions for Newtonian and ordinary second grade fluids for similar motion are achieved.
Furthermore, the solutions for fractional fluids and ordinary second grade fluids are also
obtained without slip effect as a special case and they are equivalent with classical Stokes
second and first (if frequency of oscillating plane= 0 ) problems. Moreover, the motion

of fractionalized second grade fluids under various effects of the slip, fractional and mate-
rial parameters is also discussed graphically. In the end, the comparison among the fluid
models such as Newtonian, fractionalized second grade and ordinary second grade fluid
models is carried out with the help of graph.

2. MATHEMATICAL MODEL

The mathematical equations governing an incompressible fluid flow including the mo-
mentum and continuity equations are given by,

V.-V=0, V.T:p%+p(v.V)v 2. 1)
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where the parameterrepresents the fluid densityjs the time,V expresses the velocity
field, andV is the Nabla operator. The relationship between the Cauchy Strassl the
fluid motion is shown in [4-9],

T = —p[ + S,S = /,(,Al —|— OélAg + OégA% (2 2)

where—pl denotes the unspecified section of the stress owing to the incompressibility con-
straint, S represents the extra stress tensgrandas expresses the normal stress moduli,

1 expresses the dynamic viscosity. The functigns A, are the kinematic tensors, which

are defined as,

A= (VV)+(VV)T, Ay = %1 + A (VV)+(VV)T 44 (2. 3)

In this study, an extra-stress tensor and a velocity field are presumed in the form

V=u(yt)i,S=>S5(y,t) (2. 4)

where the vectoirepresents the unit vectorindirection. The incompressibility constraint
for these flows is satisfied automatically. The fluid is considered to be at rest when the time,
t = 0then

V=V(y0) =0 S=5(y,00=0 (2.5)
Egs. (2. 1)-( 2. 5) yield the following coupled system of equations,

du(y,t) 9\ 9%u(y.t)
6‘? - (U + O‘E) 6;2/ (2 6)
t) = 9\ 9u(y,t) '
7 (y,t) (,LLJFO‘lat) dy

wherer(y,t) = Sz, (y,t) the non-zero is shear stress and= £ denotes the kinematic
viscosity and the viscoelastic characteristic of the second grade fluid. The mathematical
equations for fractionalized second grade fluid are given by [18]

2
ouyt) _ (U +an) %ygvt)

= (u o)

where the fractional parameter< g < 1 While, the operator so called Caputo fractional
operatoer (see in [26, 27]) defined by

@2.7)

L tf/(T)dT, 0<p<1

DY f(t) = {Fg}a)ﬁ) 0 (t_T)Bﬁ . <p (2. 8)
dt ’

We observe an incompressible fractionalized second grade fluid over an infinitely extended

plate on(z, z)-plane and perpendicular along theaxis. At the beginning, the fluid is at

rest position; the plate starts to oscillate in its own plane. Furthermore, the slip boundary is

taken into consideration between the fluid velocity at the plgiiet) and the plate speed.
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The velocity is taken to be proportional to the shear rate at the plane betw@gn and
plate. The velocity field is given in Eq.(2 Ayhile the mathematical governed equations
of motion are indicated in Egs. (2.7). Following initial condition and boundary conditions
are taken into consideration:

Initial Condition:

u(y,0)=0 y>0, (2.9)

Boundary Conditions:
_ : Ou(y,t))
w(0,t) = UH (t)sin(wt) + 0H () =5~ |y=0 2. 10)
u(0,t) = UH(t)cos(wt) + 0H (t) 2L |, '
where the parametéiis the slip parameter and the functiéf{t) is known as the Heaviside
function. In addition, the natural or force boundary conditions take the form:

u(y,t) = 0 asy — oo, t>0, (2. 11)

are to be satisfied. This is because the fluid is taken to be at rest, when approaches infinity
and no shear in the free stream are required. Fig.1 depicts the geometry of the governed
equations of motion together with the boundary conditions

< >
< > k. r
—>

F4
FIGURE 1. geometry of the problem

2.1. Computation of Velocity Field.

In the subsequent section, the governing equation of motion Eq. (2.7) is examined
through the method of discrete Laplace transform. By taking the Laplace transform to Eq.
(2.7), together with initial condition (2.9) and boundary condition (2;1®e have

9? q -
92 vt adl u(y,q) =0, (2.12)
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with boundary conditions,

_ Uw du(y, q)
u(0,q) = R Dy

whereu(y, g) denotes the Laplace transformwfy, ¢) and the parameteris a kernel of
transformation. The solution of Egs.(2.12)-(2.13) gives,

us (y,q) = (@ + ) {IZ:—WQL)qugF} exp { {q} zy} : (2. 14)

Eq. (2.14) can be rewritten in series form as Eg. (2.16) by using the fact

ly=0 and u(y, q) — 0 asy — oo (2. 13)

p I'(a+1)  T(p—a)
e " T (2.15)

s (.0 = 575 +UWZ Ji((i)liwx
(_c)év>nq(6—1)éin@+2j+2 + Uwg (_w2>jg (\;g)l i (\;%)TX (2. 16)

L (n+5) (—o\" 1
r'z:: n'F Ly (a) =D (" ) +npt25+2

Taking inverse Laplace transform of Eq. (2.16) on both sides, we obtain

ug (y,t) = UH (¢) sin (wt) + UwH (t) —w?)’ — | X
S 2, Z <¢a>
0 T(n4 L) (2tf) - Dz +2 DuH o ¥ o0 I oo r
;”!F(%)F((ﬂ—l)éJrnﬁHjm)+ L ;( )Zl( )
- i L (n+57) (—2t7)" (B=1)(H7)+25+1
rl ol (55) D ((8 - 1) (441) +nb + 2 +2)

2. 17)

To obtain the velocity field for sine oscillation, we write Eq. (2.17) in terms of Wright
generalized hyper geometric function [37]:

e AN
us(y,t)=UH(t)sin(wt)+UH(t)wZ(_w2)JZ(9)
= = (2. 18)

. —ut?
t(ﬁfl)é+23+11\112 (

5:1)
£,0)((B-1)5+25j+2,8)
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where the function is defined as

i (=) - o)) = LT (0 + Ajn)

)=
(b1 Bl) (bq Bq) =0 n'nglr (b] + Bjn)
Furthermore, the velocity field for cosine oscillation can be obtained by using same proce-
dure as earlier and is given in Eq. (2.20). It can easily be seen that obtained solutions in
Egs. (2.18) and (2.20) satisfies both the initial and boundary conditions.

(2. 19)

) fe’e] _0 l )
wc (y,t) = UH (t) cos (wt) + UH (t ; ; (ﬁ) {81442

—ut” (3:1) = 2\J
1%( a  [(£:0)((B=1)§+2j+1,8) +UH(t>ZO(—w) x
]:
e | oo
Z Z P12y, —ot? | (1
=0 =i a (B0 (-1 +2i+1,)

(2. 20)

2.2. Computation of Shear Stress.
To calculate the shear stress, we employ the Laplace transform on both sides of Eq.(2.7)
we get

du (y, q)

7(y,q) = (u+ 01¢”) By

Using Eq. (2.14) in (2.21), we find that

(q2+w2)[1+9 i v+aq’

(2. 21)

We write the Eg. (2.22) in series form as under

75 (y,9) = —pUwv/a i ()Y (2)1 > (fli)x
=0 1=0 r=0 (2. 23)

()
r' Z r

n'F H'T 1) q(ﬁ—l)(l+ =L )+nB+25+1

Eq. (2.23) is solved by taking the inverse Laplace transform on both sides and then by
using the Eqg. (2.19), we shall find the shear-strgég, ¢) for sine oscillation:

7s (y,t) = —pUwv/aH (t i i(;;)li(%y;

=0 r=0 ' (2. 24)

o
pA-D (B0 425y, (”t

I+r—
(55=)
(B571,0) ((H5=2)(8-1)+2j+2,8)
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Shear stress for cosine oscillation can be obtained in same manner and is given below,

7e (y,t) = —pUv/aH (1) i (—w?)’ i (f;)l i <\_/(%)TT1'X

7=0 =0 r=0 (2 25)

B |(i4r—1
(B-1)(LE57L ) +2; _ vt (B
¢ ’ 192 a |(FFL0) (B (8-1)+25+2,8)

3. SPECIAL CASES

3.1. Ordinary Second Grade Fluid with Slip Effect when g — 1.
By putting 5 — 1 into Egs. (2.18), (2.20), (2.24) and (2.25), we shall acquire the
velocity field and associated shear stress for ordinary second grade fluid under slip effect.

3.2. Fractionalized Second Grade Fluid without Slip Effects. By letting — 0 in EQs.
(2.18), (2.20), (2.24) and (2.25), the shear stress and the velocity field without slip effect
are given as under,

us (y,t) = UH (t) sin (wt) + UwH (t) Z (—w?)’ > (\_/g) x

lt(ﬁ—l)(g)uﬁll% (_

r!

(5.1)
(5,0)(53(8-1)+2j+2,8)

ue (y,t) = UH (t)cos (wt) + UH (8) Y (—w?)’ Y (\;g) x

=0 r=1 (3. 27)
1 r\os —ut? |(z.1
2 B-1)(5)+2i+1 (5.1)
! 10 < (£.0)((B-1)5+2j+1,8)
7s (y,t) = —pUvaH (t)i(wQ)j 3 <y "1 ()2
o 4 a) 7!
=0 , =0 (3. 28)
_’Ut (Tgl,l)
x1Wq ( (7‘;170)((7‘51)(ﬁ71)+2j+1’ﬁ)
e} . oo _ T 1 o )
7. (y,t) = —pU+/aH (t) Z (—w2)] Z (\/%) ﬁt(ﬂ—l)(T)Hy
i=0 , r=0 ' (3. 29)
—ut” |(=71)
1l < (T;l,0)((T51)(ﬁ—1>+2j+1,ﬂ)>

Itis also worth to note that the substitution of frequency of oscillating plate0 , in Egs.
(3.28) and (3.29), yields the similar solutions as were obtained in [18] for fractionalized
second grade fluid.

3.3. Ordinary Second Grade Fluid without Slip Effects § — 1.
When lettings — 1 into Egs. (3.26)- (3.29), the solutions for second problem of Stokes
for ordinary second grade fluid without slip effect can be achieved.
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3.4. Newtonian Fluid under Slip Effectsa — 0.
By takinga — 0 into Egs. (2.14) and (2.22), under slip effect, the solutions for a
Newtonian fluid corresponding to sine oscillation is obtained as under,

us (y,t) = UH (t) sin (wt) + UH (t) wti <\;t%>11\111 ((wt)Ql(l’l) >

o NS N (Lf)ﬁm) (3. 30)

wrwad () S () e (e )
Ts (y,1) = \/EU\/ng (t)i (\;t%)l 2 <\;t%>r7~1!1\111 <(Wt)2‘((l,ll)+gl+1,2)>
(3. 31)

Similarly, the shear stress profiles and velocity field profiles for cosine oscillations are given
by,

e viv CE 5 e
0 s gl s \r 1,1
o $ () 55 () b ()
and
(3.33)

3.5. Newtonian Fluid without Slip Effects 8 — 0.
Finally, takingd — 0 into Egs. (3.30)-(3.33), the solutions for Newtonian fluid without
slip effect can be achieved.

4. RESULTS AND DISCUSSIONS

This section discusses the implementation and correlated physical aspect of our obtained
solutions. Much attention has been paid on analyzing the velocity digld, ¢) for sine
oscillations in the presence (i.¢. = 5.0 ) and absence (i.ef = 0.0) of slip effects.

Using the Mathcad software the graphs for the velocity field profilgg, ) have been
drawn againsyy under different material constants v, 6 the frequencyw and fractional
parametefs with fixed ¢ = 5.0 andd = 0.0 Fig. 2 depicts the effects of time on velocity
field us(y, t) againsty treating the slip parametér= 5.0 (Fig.2a) and¥ = 0.0 (Fig. 2b)

fixed with different material constants, v, 6 the frequency and fractional parametet.

It is clear in Fig.2a that the fluid motion increases in the beginning, then decreases and
remains constant asincreases with the presence of slip condition. While, in Fig. 2b, the
similar behavior is observed except= 6 and larger values of. The effects of material
parametery and kinematic viscosity on the velocity field are, respectively, sketched in
Fig. 3 and Fig. 4. Itis shown in Fig. 3 that the velocity increases and remains constant
for larger values ofv with and without slip effects. The similar behavior for velocity field
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against for various values of kinematic velociiy(y) is observed. Fig. 5 exhibits the
effects of fractional parametét on the velocity field with respect tg. It is shown that

the velocity grows initially and then remains constantydacreases for larger values of
fractional parametef. Fig. 6 exhibits the effects of different frequency-valuesn the

fluid motion in terms of velocity field. It can be seen that there is no effect of slip parameter
on the velocity field under various frequency-valuesThe effects of a parameter on the
velocity field with respect to timeis shown in Fig. 7. The decreasing oscillatory behavior
of velocity field is seen as the tinigrogresses. Finally, the effects of a fractional parameter
0 for fractionalized, ordinary and Newtonian fluid with respecy is depicted in Fig. 8. It

is shown that the velocity field behaves alike for both the fractionalized and ordinary fluids
except slightly different from Newtonian fluid.

5. CONCLUSION

The closed-form solutions for the governing equations motion describing the fractional-
ized second grade fluid under slip effect are achieved. By employing the method of discrete
Laplace transform, the solutions for velocity fieldy, t) and the shear stressy, t) cor-
responding to sine and cosine oscillations are gained. These solutions are shown in series
form in term of function,, and expressed as sum between no-slip and slip contribution,
satisfying all given constraints. The associated solutions for ordinary second grade fluid
with and without slip effects are also found from the general solutiongifer 1 and
60 — 0. Fora — 0, the Newtonian solutions are achieved as special cases from the gen-
eral solutions. Stokes second problem of fractionalized and ordinary second grade fluid is
obtained by setting — 0 as a special case. Furthermore, by making 0 andw = 0 in
Egs. (2.18) and (2.24), we recovered [18] the classical solutions for Stokes first problem
for fractionalized second grade fluid. The distinction among the various fluid models such
as Newtonian, fractionalized second and ordinary second grade fluid models has also been
pointed out. The important conclusions from present study are given below.

e The general solutions (2.18), (2.20), (2.24) and (2.25) are shown as a sum of the
slip and related no-slip contributions. The attained solutions can easily be specified
to display the same solutions for ordinary second grade fluid.

e Itis shown that the fluid motion slows down when the parameter grows.

e The amplitude of the velocity field is seen to be increasing with respect to time in
beginning then decreases slowly over the time.

e The amplitude of the velocity field is shown to be increasing with respect to the
material parameter and kinematic viscosity , whether slip effect is present or not.

e The fractional parameter and frequency of the oscillating plate have similar effects
on the motion of fluid.

e The highest amplitude of the Newtonian and fractionalized second grade fluids is
witnessed respectively with and without presence of the slip effect.



72 Sanaullah Dehraj, Rajab A. Malookani, Muzaffar B. Arain, Nasreen Nizamani

0.12 0.4

i (y) . ) A
& ’f_‘l- B = 5.0 s (1) If.,f [a=0.0]
—0.08} 4 = t=35 | o6l S —=—=t—3s
g Sesat / —t=is
—t=5% / e t=55
maat =6% = t=6s
0 11
0 15 3 45 6 0 1.5 3 4.5 6
¥ ¥
(a) (b)

FIGURE 2. Velocity field profilesus(y, t) versesy for various values of
twithU =1,v=0.295,4 =26, =0.5,6=02,w =1

0.1
0033} gy
[
g (V)
-0.033
-0.1 .
. ... . 3
¥ b
(a) (b)

FIGURE 3. Velocity field profilesu,(y, t) versegy for different parame-
tera,withU =1,8=0.2,p=88,6=02,w=1,t =4s

0.085 0.3

1 (¥)
— =07
-0.9 -
B (1] 1.5 3 4.5 1
¥ y
(er) (b)

FIGURE 4. Velocity field profilesus(y, t) versesy for different parame-
tera,withU =1,p =88, =02w=1,t =4s

0.08%5) 0.3

-0.025|

(a) )

FIGURE 5. Velocity field profilesus(y, t) versesy for different parame-
tera,withU =1,p=88,3=02w=1,t =4s



Oscillating Flows of Fractionalized Second Grade Fluid with Slip Effects

73

0.06 03
0.00667}, e _ape3s} g
(1) () ) =]

-o.04667 (7 - 0.667 =02

3 o i = 0.4

o = [ = 0.6

=s g k]
- 15 3 s 6 ™ 15 3 45 6

¥y ¥
(a) (5)

FIGURE 6. Velocity field profilesu(y, t) versesy for various values of
fractional parameters, with U = 1, v = 0.0295, 4 = 26, o = 0.5,

w=1,t=4s
0.07 r 0.: - -
r’i%bu..‘__ Pz i%._. aainiia
_0.00667 9}{}{5‘- % -0.2 c:'é.‘"
i P
.V d 7 U Y L
sOY | sO) 178 R
_u_masaf{ ¥ -D.(r.f"' e = 1.0
o 9= 11
f oo L= 1.3
=15
-89 15 3 a5 6 s 1.5 3 s 6
V ¥
(b)

FIGURE 7. Velocity field us(y, t) versesy for different values of fre-
quencyw, withU = 1,v = 0.0295, p = 26, = 0.5, 5 = 0.2,t = 4s

u (V) '
v % e ¥ = 0.1
¥ = P R
¥ = - ¥ =10
¥= =¥ = L5
-0,22 - - 1.2
0 B.7 175  26.2 35 0 87 175 262 35

I f
(a) (b)

FIGURE 8. Velocity field us(y,t) versest for different values of fre-
quencyy, withU = 1,v =0.295, u =26, = 0.5, =02, w =1

0.0# 0.3
i
- \.T-‘t"-%\_ ‘, _,‘ . x
‘:;;' Lahes g, 3 a:f-%m”
0.02] l,-f* i o.0667} § &
s ! TETET ]
ug(y) /s " g () ;
b ! i
1 = | ; =
-0.03f | B =50 -DA4333 a8 =00
./ [ - 50] “ [ ]
! Trarmemalaed second grade [§ = (1,2
s Fracsonalived second grade [y — (' ?
* &m:;m-u;uu. p=10
-0.0
To LS 3 4.5 [ [
-rr
(a)

FIGURE 9. Comparison among different models with = 1, v =
0.295, p =26, =0.5,3=0.2,0.5,1,w = 1 andt = 4s



74 Sanaullah Dehraj, Rajab A. Malookani, Muzaffar B. Arain, Nasreen Nizamani

6. ACKNOWLEDGMENTS

The authors acknowledge the Quaid-e-Awam University of Engineering, Science and
Technology, Nawabshah, Pakistan for providing financial support and the unknown referees
for reviewing and giving important suggestions to improve our paper.

REFERENCES

[1] R. L. Bagley,A theoretical basis for the application of fractional calculus to viscoelasticlpurnal of
Rheology,27 (1983) 201-210.

[2] G. S. Beavers and D. D. Josefopundary conditions at a naturally permeable wall Fluid Mech,30
(1967) 197-207.

[3] C.Derek, D.C. Tretheway and C.D. Meinhakigenerating mechanism for apparent fluid slip in hydrophobic
micro channelsPhys. Fluidsl4 (2002) L9.

[4] A. Ebaid,Effects of magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid
in an asymmetric channdPhysics Letters A372(2008) 4493-4499.

[5] R. Ellahi, T. Hayat and F.M. Mahome@eneralized Couette flow of a third-grade fluid with slip: The exact
solutions Z. Naturforsch65a(2010) 1071-1076.

[6] M. E. Erdogan,Plane surface suddenly set in motion in a non-Newtonian,fldda Mech.,108 (1995)
179-187.

[7] C. Fetecau and Corina Fetec&tarting solutions for some unsteady unidirectional flows of a second grade
fluid, Int. J. Eng. Sci43(2005) 781-789.

[8] C. Fetecau and Corina Fetec&iarting solutions for the motion of second grade fluid due to longitudinal
and torsional oscillations of a circular cylindemt. J. Eng. Sci44 (2006) 788-796.

[9] C. Fetecau, Corina Fetecau and J. Zief@pcay of potential vortex and propagation of a heat wave in a
second grade fluidnt. J. Non-linear Mech37 (2002) 1051-1056.

[10] C. Fetecau, A. Mahmood and M. Jamiixact solutions for the flow of a viscoelastic fluid induced by
a circular cylinder subject to a time dependent shear str€&smmun Nonlinear Sci Numer Simulat5
(2010) 3931-3938.

[11] C. H. R. Friedrich,Relaxation and retardation function of the Maxwell model with fractional derivatives
Rheological Acta30(1991) 151-158.

[12] N. C. Ghosh, B. C. Ghosh and L. Debnatte hydromagnetic flow of a dusty viscoelastic fluid between two
infinite parallel plates Comput. Math. Appl39 (2000) 103-116.

[13] H. Guangyu, H. Junki and L Ciqugeneral second order fluid flow in a pipe, Appl. Malthech. (English
Ed.) 14 (1995) 825-831.

[14] T. Hayat, R. Ellahi, S. Asghar and A.M.Siddig#low induced by a non-coaxial rotation of a porous disk
executing non-torsional oscillations and a second grade fluid at infiippl. Math. Model,28 (2004)
591-605.

[15] T. Hayat, M. Khan and M. AyubSome analytical solutions for second grade fluid flows for cylindrical
geometriesMath. and Comput. Modellingt3 (2006) 16-29.

[16] T. Hayat, S. Najam, M. Sajid, M. Ayub and S. Meslo@n exact solutions for oscillatory flows in a gener-
alized burgers fluid with slip conditioz. Naturforsch65a(2010) 381-391.

[17] M. Jamil, A. Rauf, A.A. Zafar and N.A Kharlew exact analytical solutions for Stokes first problem of
Maxwell fluid with fractional derivative approaciComput. Math. App62 (2011) 1013-1023.

[18] M. Jamil, N.A. Khan and A.A. ZafafTranslational flows of an Oldroyd-B fluid with fractional derivatives
Comput. Math. Appl62(2011) 1013-1023.

[19] M. Jamil and N. A. Khan§lip effects on fractional viscoelastic flujdaternational Journal of Differential
Equations, (2011) Article ID 193813.

[20] H. Junki, H. Guangyu and L. CiquAnalysis of general second order fluid flow in double cylinder rheome-
ter, Science in China Series AQ (1997) 183-190.

[21] M. Khan, Partial slip effects on the oscillatory flows of a fractional Jeffrey fluid in a porus mediuforus
Media, 10 (2007) 473-488.



Oscillating Flows of Fractionalized Second Grade Fluid with Slip Effects 75

[22] Y. Liu, L. Zheng and X. ZhandJnsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional
derivative Comput. Math. Appl61(2011) 443-450.

[23] A. M. Mathai, R. K. Saxena and H. J. Haubolthe H-Functions: Theory and ApplicatigriSpringer, New
York, (2010).

[24] A. Mahmood, C. Fetecau, N.A Khan and M. Jan8lpme exact solutions of the oscillatory motion of a
generalized second grade fluid in an annular region of two cylindecta Mech Sin26 (2010) 541-550.

[25] C. L. M. H Navier and MemMemoire surles du movement des Acadi. Inst. Francé& (1823) 414.

[26] K. R. Rajagopal,ongitudinal and torsional oscillations of a rod in a non-Newtonian fluid, Acta Mdéh
(1983) 281-285.

[27] K. R. RajagopoalOn the creeping flow of the second order fluid of Non-Newtonian Fluid Mechl5
(1984) 239-246.

[28] W. C. Tan, W. X. Pan and M. Y XUA note on unsteady flows of a viscoelastic fluid with fractional Maxwell
model between two parallel platdsit. J. Non-linear Mech38 (2003) 645-650.

[29] W. C Tan, F. Xian and L. WeiAn exact solution of unsteady Couette flow of generalized second grade fluid
Chinese Science Bulletid,7 (2002) 1783-1785.

[30] W. C Tan and Xu M.Y,The impulsive motion of flat plate in a generalized second grade filé¢h. Res.
Comm,29 (2002) 3-9.

[31] W. C Tan and Xu M. Y,Unsteady flows of a generalized second grade fluid with the fractional derivative
model between two parallel plate&cta Mech Sin20(2004) 471-476.

[32] D. Tripathi, S.K. Pandey and S. D&gristaltic transport of a generalized Burgers fluid, Application to the
movement of chime in small intestjrfecta Astronauticag9 (2011) 30-38.

[33] D. Tripathi, P. K. Gupta and S. Dasfluence of slip condition on peristaltic transport of a viscoelastic fluid
with fractional burgers modellhermal Science (2010) DOI: 10.2298/TSCI090801037G.

[34] D. Tripathi, Peristaltic transport of a viscoelastic fluid in a chanpélcta Astronauticap8 (2011) 1379-
1385.

[35] M. Y. Xu and W Tan,Theoretical analysis of the velocity field, stress field and vortex sheet of generalized
second order fluid with fractional anomalous diffusi@ti. China Ser. A44(2001) 1387-1399.

[36] M. Y. Xu and W. C. TanRepresentation of the constitutive equation of viscoelastic materials by the gener-
alized fractional element networks and its generalized solusan China Ser. G. textbf46 (2003) 145-157.

[37] L. Zheng, Y. Liu and X. ZhangSlip effects on MHD flow of a generalized Oldroyd-B fluid with fractional
derivative Nonlinear Anal.: Real World Appl13(2012) 513-523.



