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Abstract. In this article, we study the vertical, horizontal and complete
lifts of Bishop formulas given by ( 1. 1), the first acceleration pool
centers and the Darboux vector defined on spatéo its tangent space
TR? = RS. In addition, we include all special cases of the first and sec-
ond curvatures; andx, of the Bishop formulas according to the vertical,
horizontal and complete lifts on spa& to tangent spac& R3. As a re-
sult of this transformation o3 to tangent spac&R? , it can be speak
about the properties of Bishop formulas on sp@de® by looking at the
lifting of characteristic$x 1, k2, T, N1, N2) of the first curve on spack?.
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1. INTRODUCTION

Lift method has an important role in differentiable gometry. Because, it can able to
generalize it from the differentiable structures from any space (for exafpldo the
extended spacgd’R?) using the lift function [3, 4, 12, 14, 15, 16, 19, 21]. So, it can be
extended the following theorem given &% to tangent spac&R>. Also the Riemannian
manifolds and the tangent bundles studyed a lot of authors [1, 2, 5, 6, 10, 11, 12, 13, 17, 18]
too.

Theorem 1.1. For a unit speed curveg(t) with curvaturess, )0 on R?, the derivatives
of Bishop framg T, Ny, N, } are given by[8, 9, 19]

T = kiNy + kaNa, Ni =—riT, N = —r,T, (1. 1)

whereT, Ny, N, are the unit vectors of Bishop frame on any pointgft) andx, ko are
the first and second curvatures of the cumgt).
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Definition 1.2. Letay(¢) be a unit speed curve with curvatures, x2)0 on spacek?, and
suppose thaf’, N1, N> be unit vectors of Bishop frame on any pointgf(t). Then, we
call that triple {T', N1, N, } is Bishop frame such th§®, 19]
T.N, = N;.Ny=N,.T =0, 1.2)
T.T = N;.N;=Ny.Ny=1.
where ".” is a dot (scalar) product.

The article is structured as follows: In second section, the vertical, horizontal and com-
plete lifts of a vector field defined on any manifald of dimensionm and their lift prop-
erties will be extended to spa@@?®. In the third section, the vertical lift of the Theorem
1.1 will be obtained. Then, smilar to the vertical lift, the horizontal and complete lifts ana-
logues of the related theorem are given. Later, we get the first acceleration pool centers
according to vertical and horizontal and complete lifts of the Bishop formula® &h
Finally, Darboux vector with recpect to vertical, complete and horizontal liftg" &1 is
defined.

In this study, all geometric objects will be assumed to be of af@$sand the sum is
taken over repeated indices. Alsa,c and H denote the vertical, horizontal and com-
plete lifts of any differentiable geometric structures definedRrto tangent spac& R>,
respectively.

2. LIFT OF THE VECTOR FIELD

The vertical lift of a vector field\ on spacek?® to extended spacER?(= RS) is vector
field XV € x(TR?) given as [12, 21]:

XU(f) = (Xf)", Vf € F(R?)
The vector fieldX© € (T R?) defined by
X(f) = (X, Vf € F(RY)

is called the complete lift of a vector field on R? to its tangent spacER3.
The vector fieldX € x(TR?) determined by

XH(fY) = (Xf)", Vf € F(R).

The general features of vertical, horizontal and complete lifts of a vector fiekfas
follows:

Proposition 2.1. [19, 20, 21] et be functions alf, g € F (R?) and vector fields alX, Y €
x(R3). Then it is satisfied the following equalities.

(X+Y)° = X4V (X+Y) ' =X"4+V" (X+V)H =XxH 4 yH,
(fX)(, — fCXU +f/UXC7 (fX)U — f'U _"_XU’ XU( ) ( ) — ()7
X)) = XU(f)= (XN X)) = (X )" X(f) = (Xf)°,

0 0 0
x(U) = Sp{axa}’ x(TU) _Sp{axa’aya}’

0N 0 (0y 0 (0N o o
Oz 9z’ \ 9z ) Oy’ \ 9z Oz B oy
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wherel'; are Christoper symbold/ andT'U are respectively topolgical opens &f and
TR3, f, fce F(TR?), X", Y, X, Ye, XH YH ¢ \(TR*),1 < a,3<3.

3. LIFTING BISHOP FORMULAS

In this section, we compute vertical, complete, horizontal lifts of Bishop formulas given
by T, Ny, Ny unit vectors of Bishop frame on any point of unit speed curyét) with
curvatures:y, k)0 on spacd%3.

3.1. The vertical lifting Bishop formulas. Let 7" be vertical lift of tangent vectdf’ on
a unit speed curve(t). Lenght of T is given as:
T =TT =(TT)" =1
according to product rule, it follows
0= (T"T") = (T%)T" +T°(T") = 2T"(T") .

Thus,T%(T”)" = 0 and(T")" is found orthonormal ta™. Therefore it can be said that

(T")" is normal to unit speed curve, (t) = (ag(t))?. Similarly, from (1. 2 ), we have
T?).(Nl)v — (N])U.(NQ)D — (NQ)U-TH — 0

In this caseT™, N and Ny are three orthonormal Bishop vectors@i(t) = (ao(t))?

in the6—dimensional spac&R>.

Theorem 3.2. For a unit speed curvey; (t) with curvatures(x)?, (k2)?)0 on TR3, the
derivative’s vertical lifts of the Bishop vectors are given as:

/

(T)" = (k)" (N1)” + (82)"(N2)",
(N2)" = —(r2)"(T)",
(N = —(k2)"(T)",

where(k1)” and(k2)" are the first and second curvatures of the cumyét).

Proof. Let(T")", (N])¥, (N4)* be vertical lifts ofT”, N/, N, which are derivative®’, Ny, Ny,
respectively. We already know
(T)" = (81)"(N1)" + (k2)" (N2)"
by definition of (N1)?, (N2)¥, where the curvatures:, )", (k2)® describes variation in
direction of 7. Also, we shall find(N7)” and(N4)". In particular, given
(N3)" = a1(T)" + b1 (N1)" + c1(N2)".

If it can be identifieda;, by, c1, T, (N1)? and (Ny)Y then it will be known(NJ)”.
Firstly, we have

TY(N})Y = a1T'T" + b T (N1)" + e, T (Ny)"
al(TT)” —+ b1 (TNl)U + 1 (TNQ)U
(11.1 + b10 + 61.0

= al
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Similarly, (N7)?.(N4)? = by and(N3)?.(NS)? = ¢;. So, it follows
(N2)" = (T"(N3)")(T)" + ((N1)"-(N3)") (N1)” + ((N2)".(N3)") (N2)".
Now, let’s identifyT”(V4)". we knowT™.(N3)? = (T.N2)” = 0, so that
0= (T".(N2)*) = (T')"(No)" + T"(N3)"

by vertical lift properties and the product rule.

T'(Ny)" = —(T')"(Na)®
= —(k1)"(NV1)"(N2)" — (K2)"(N2)"(N2)"
= —(k1)"(N1.N2)" — (k2)"(N2N2)"
ar = —(k2)".

From0 = ((N1)".(N2)?) = (N)".(N2)? + (N1)".(N,)?, we get

(N (Vo) = =(N))"(N2) = (k)" (T)" (Na)"
= —(k1)"(T'N2)"
bp = 0
From1l = (N2)¥(N3)? = (N2 N3)", we have
0 = ((Ny)".(N2)") + (N2)"(N,)"

= 2(N2)"(Ny)".
Thus, we get; = (N3)”(N,)" = 0. From above(N,)" is calculated as:
(N3)" = —(k2)"(T)"
Now, it will be obtained(7”)". Just as fof )", it follows
(T)" = (T°(T')")(T)" + ((N1)"-(T")*)(N1)" + ((N2)".(T")")(Na)"
From the same types of calculations, we get
T°(T")" =0, (N1)".(T")" = (k1)", (N2)".(T")" = (r2)".
Hence,(T")" is computed to be
(T)" = (k)" (N1)" + (12)" (N2)"
Therfore, the proof is completed. O

Corollary 3.3. The Bishop formulas ofiR? is similar structure and apperance ®° with
respect to vertical lifts.

Example 3.4. Let a curveaq(t) on R? has constant curvatures; and xo. Then such
curves are circles according to the bishop frame. Because of the fact that curvatures
andk, are constant, we havei; )” = 1 and(kz2)” = k2. S0, the curvey (t) = (ap(t))?

onT R3 has the same; andxs . Then,ag(t) on R? has similar appearance with the curve
ai(t) = (ag(t))? onTR3.
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3.5. The complete lifting Bishop formulas.

Theorem 3.6. For a unit speed curvew(t) = (ap(t))c with curvaturegx;)¢, (k2)¢)0 on
tangent spacd 3, complete lifts of the derivatives of the Bishop frame are given by the
following equalities:

(T')° = (r1)*(N1)° + (r2)*(N2)*, (N3)® = —(k2)*(T)", (N])° = =(m1)°(T)",
where(x)€ and(k2)¢ are the first and second curvatures of the cusigét), respectively.

Proof. Similarly to vertical lifts, the theorem easily proved with respect to complete lift.
O

Corollary 3.7. Let the curvatures:; and x» of the curvea,(t) on R? are non-constant
functions, then the Bishop formulas @hz? are similar structure toR? with respect to
complete lifts.

Corollary 3.8. Letthe curvatures; andx, of the curven(t) on R3 be constant functions.
Then the curvew (t) = (ap(t)) onT R? is line with respect to complete lifts.

Proof. From the formulations ofc = +/(k1)% + (k2)? andr = —(arctan(£2))’ [?], we
get the following resultsk is a constant and = 0. Then, the curveyy(t) on R? is circle.
Also, we get(T')¢ = (N])¢ = (N4)¢ = 0. Then we sayrs(t) = (ao(t))¢ on TR is
line. O

Theorem 3.9. All curvesay(t) on R? is line onT R? with respect to horizontal lifts

Proof. Let the curvatures; andx. of the curven,(t) be constant or non-constant func-
tions onR3. For all functions onk?3, we write f = 0 with respect to horizontal lifts
So, (k1) = 0 = (k)" and(T )7 = (N)) = (N))¥ = 0 on TR3.Consequently,
as(t) = (ap(t))? onTR3 is line. a

3.10. The first acceleration pool centers of the Bishop formulas o’ R3.

Definition 3.11. The first acceleration pool centers of the Bishop formulagdare given
by the following equalitiefo]:

"

T = —(k?+ k)T + Kk Ny + kyNo,
N{l = —K;T—I{%Nl —I€1.I{2]\]27
N; = —KZ,QT — K:gNQ — K1.KkoV1,

whereT', N1, N, are unit vectors of Bishop frame on any pointgf(t) and k1, ko are the
first and second curvatures of curug(t).

Itis possible to generalize the first acceleration pool centers with respect to vertical lifts
of the Bishop formulas on spade® to its tangent spac& R? using lift function [12, 14,
19, 21].

Theorem 3.12. For a unit speed curve; (t) with curvatures(x1)?, (k2)”)0 onTR3, the
first acceleration pool centers with respect to vertical lifts of the Bishop formul&&mh
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are given as:
Ty = ((ﬁ)” + (83)")TY + (k1) (N1)" + ()" (N2)",
(N])Y = —(ky)"T" — (K3)" (V1) — (k1) (2)" (N2)",
(N))" = —(kg)"T" — (K3)"(N2)" — (k1)"-(2)"(N1)",

where(x1)? and(k2)? are the first and second curvatures of the cumvét) on T R3.

Proof. From the derivatives of the Theorem 3.2, we get the following results:

(T)" = ((51)1))/(]\]1)@ + (lﬂ)v((f\ﬁ)v)/ + ((Kg)v)/(Ng)v + (HQ)U((NQ)U),
= (k) (N1)" + (k)" (N2)® + (k1) (= (k1) T") + (r2)" (—(r2)"T")
= —((K})" + (K3)")T" + (k1)" (N1)" + (53)" (Na)".

(N))" = =(k)"T" = (k)" (T")"
= —(R)"TY = (k)" (K1) (N1)" + (k2)" (N2)")
= —(m)"T" = (k] (V)" = (k1)"(k2)" (N2)"

(N2)* = —(ry)"T" = (k)" (T')"
—(2)"T" = (k2)" (k1) (N1)" + (52)" (N2)")
= —(k)"T" = (K3)"(N2)" = (K1)"-(2)" (N1)"
Therfore, the proof is finished. O

Similarly, we can easily prove the following theorem of the first acceleration pool cen-
ters with respect to complete lifts of the Bishop formulasiaR?®.

Theorem 3.13.Let(x;)¢ and(k2)¢ be the firstand second curvatures of the cuy@) =
(co(t))¢ on TR3. The first acceleration pool centers according to complete lifts of the
Bishop formulas o’ R? are given as:

(T)° = (D) + ()T + (1) (N)° + () (V)

(N)? = (k)T = (8])°(W1)° = (k)" (2)“(N2)",

(N2)° = =(k2)°T® = (K3)°(N2)° — (k1) .(R2) (V1)
whereas (t) = (ap(t))© a unit speed curve with curvaturés; )¢, (r2)¢)0 on T R3.

"

Corollary 3.14. Because of the Theorem 3.9, we g&t)" = (N, )# = (N, )" = 0.

3.15. The Darboux vector with recpect to vertical, horizontal and complete lifts on
TR3.

Definition 3.16. The Darboux vectaw on R? defined a$7, 9]:
w = (0, —k2, I{l) = 7/12N1 + HlNQ
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w is a vector in the planéN;, N») and perpendicular to the tangent vector of the curve.
w vector field has the following properties:

wT = 0, w‘Nl = —Ka2, w.NQ = K1
wAT = 0, wAN; = N;, wANy = N,

Theorem 3.17. Let a4 (t) be a unit speed curve with curvaturés; )?, (k2)?)0 on T R3,
Thewv Darboux vector with respect to vertical lifts dnR? defined as:

w’ = (0, =(k2)", (k1)") = —(k2)"(N1)" + (k1)"(N2)"
w? vector field has the following properties:
W' T = 0, w".(N1)" = —(k2)", w’.(N2)" = (K1)"
WATY = 0, w"A(N})" = (N})", w"A(N2)" = (N)"
Proof. From Proposition 1 and Definition 3, we get the following results:
W' T = (—(k2)"(N1)" + (k1) (N2)?). T
= —(k2)"(N1.T)" + (k1)"(N2.T)"
= —(KZQ)U.O + (m)“.O
0
w".(N1)" = (= (k2)"(N1)" + (51)"(N2)").(N1)"
—(K2)"(N1.N1)") + (k1) (N2.N1)*
= —(ra)"

W’ (N2)" = (—(k2)"(N1)" + (k1)"(N2)").(N2)"
= —(k2)"(N1.N2)" + (k1)"(N2.N2)"
= (k)"

O

Corollary 3.18. If we definedv® Darboux vector with respect to complete lifts BiR?,
then we geto® = (0, —(k2)¢, (k1)¢) = —(k2)°(IN1)¢ + (k1)°(N2)¢. From (1. 2) and
Proposition 1, we get

weTe = w.(N1)° = w’.(N2)° =0.

Corollary 3.19. Let the curvatures:; and -, be constant. Then, we gét,)¢ = 0 and
(k)¢ = 0. So,w*® = 0. Consequently, the Darboux vectof with respect to complete lifts
onT R3 is point.

Corollary 3.20. Let the curvatures:; and o of the curveay(t) on R? be non-constant
and constant functions, respectively. Then, weudet (k1)¢(N2)¢ (the Darboux vector
we linear dependencyN, )¢ on T R3).

Corollary 3.21. Let the curvatures:; and x» of the curveny(t) on R? be constant and
non-constant functions, respectively. Then, we.get —(k2)¢(N7)¢ (the Darboux vector
we linear dependencyN; )¢ on T R3).
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Theorem 3.22. Darboux vectorw® with respect to horizontal lifts o' R? is a point
everytime

Proof. From Theorem 3.9, we gék; ) = (k2)® = 0. So,w = 0 onT R? with respect
to horizontal lifts. The theorem is proved. O
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