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Abstract. This paper presents a numerical integration method recently
proposed by means of an interpolating function involving a transcenden-
tal function of exponential type for the solution of continuous dynamical
systems, that is, the initial value problems (IVPs) in ordinary differential

equations (ODEs). The analysis of the local truncation error
(
Tn (h)

)
, or-

der of convergence, consistency and the stability of the proposed method
have been investigated in the present study. The principal term ofTn (h)
for the method has been derived via Taylor’s series expansion. The stan-
dard test problem is taken into account to investigate the linear stability
region and the corresponding stability interval of the method. It is ob-
served that the newly proposed numerical integration method is second
order convergent, consistent and conditionally stable. In order to test the
performance measure of the proposed method, five IVPs of varying nature
have been illustrated in the context of the maximum absolute global rela-
tive errors, the absolute relative errors computed at the final mesh point of
the integration interval under consideration and the`2− error norm. Fur-
thermore, the results are compared with two existing second order explicit
numerical methods taken from the relevant literature. The so far obtained
results have demonstrated that the proposed numerical integration method
agrees with the second order convergence based upon the analysis con-
ducted. Hence the proposed method is considered to be a good approach
for finding the solution of different types of IVPs in ODEs.
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1. INTRODUCTION

There are various natural and physical phenomena in which differential equations play
a vital role. In as many as possible engineering and scientific fields, it is a known fact
that several mathematical models emanating from the real and physical life situations can-
not be solved explicitly in most of the cases such as nonlinear lotka volterra competition
model and logistic equation in population dynamics, Lorenz system in meteorology, pen-
dulum and duffing equations in mechanical engineering, Van der Pol equation in electrical
engineering, Newton’s law of cooling in thermodynamics, geodesic equation in geology,
radioactive decay in nuclear physics, motion of a charged particle, Fermi–Ulam–Pasta Os-
cillator and many more. In such situations, numerical approximate methods of different
characteristics and orders are needed mainly due to nonlinear terms involved in the practi-
cal problems.

Development of new numerical integration methods with varying characteristics for the
solution of IVPs in ODEs has attracted the attention of many researchers in past and recent
years. There are numerous numerical integration methods that produce approximations
to the solution of IVPs such as the very fundamental Euler’s method which is the oldest
and simplest method proposed by Leonhard Euler in 1768 but later modified in the form
of Improved Euler method, and then arrived the Runge Kutta (RK) methods which were
described by Carl Runge and Martin Kutta in 1895 and 1905 respectively [5–7, 32]. In
continuation of this effort, many researchers have derived new numerical integration meth-
ods of explicit and implicit nature in an attempt to obtain better approximate results than
various of the available ones in the present literature such as [8,9,15,18,19,29,30,34], just
to mention a few.

In order to tackle the computational complexity involved in numerical methods, the au-
thors in [2, 11, 26–28] have attempted to reduce the number of slope evaluations in the
incremental function of the methods. In addition to this, for dealing with the IVPs having
singular solutions, the nonlinear numerical methods have been devised to handle the situ-
ation and the papers in [12, 13, 20] are the good start to get into such nonlinear numerical
methods.

Besides many existing numerical methods, there are few more including variational iter-
ation, optimal perturbation and collocation methods as described in [16,17,31] which play
vital role in approximating practical IVPs in the field of ODEs. The methods are useful to
solve various practical problems ubiquitous almost in all branches of sciences. Moreover,
classical numerical methods are now being generalized to allow the underlying differential
equations to take any order of differentiation. This is what we call fractional order systems
whose numerous applications can be found in many recently published research works such
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as [1,3,4,21–25,35].

The fundamental aim of the present study is to analysis of the Local Truncation Error
(LTE), order of convergence, consistency and stability of the numerical integration method
derived in [10] for the solution of the IVPs in ODEs. In addition to this, the proposed
numerical integration method is found to be a better performer in comparison to the non-
linear numerical methods called the Wambecq’s and the Ramos’ method. However, these
methods

Wambecq [33]: yn+1 = yn + h

(
k2
1

k2

)
, (1)

where

k1 = f (xn, yn) , k2 = f

(
xn − h

2
, yn − h

2
k1

)
, (2)

Ramos [14]: yn+1 = yn +
2hf2(xn, yn)

2f(xn, yn)− hf ′(xn, yn)
, (3)

being nonlinear in nature are well suited for the IVPs having singularly perturbed solutions
in ODEs.

The rest of the paper is organized as follows: the Section 2 consists of the methodology
required to carry out the present study. Section 3 presents the analysis of the LTE and the
order of convergence of the proposed integration method. In the Section 4, the consistency
and the stability properties of the method are discussed whereas the Section 5 presents five
IVPs for the testing and comparison of the proposed numerical method with two nonlin-
ear numerical methods of explicit nature called the Wambecq’s and the Ramos’ methods
followed by the Section 6 having some concluding remarks.

2. METHODOLOGY

Consider the IVP of the form

y′(x) = f(x, y(x)), y(a) = y0, x0 = a ≤ x ≤ b = xn, −∞ < y < ∞. (4)

The existence and uniqueness for the solution of (4) has been guaranteed by means of the
Lipschitz condition on the intervalI = [a, b]. The uniform step size used for the proposed
numerical integration method is given byh = b−a

N whereN is the number of integration
steps. The mesh point is defined asxn+1 = x0 + (n + 1)h, n = 0(1)N.
At x = xn, y (xn) ∈ C3 [a, b] is called the exact/theoretical solution of (4) whereasyn has
been reserved for denoting the numerical approximate solution of (4) forx ∈ [a, b] ⊂ I.
In [10], a new numerical integration method of explicit nature was proposed by means of
the interpolating function of exponential type which can be written in a simplified form as

yn+1 = yn + h
(
fn + f (1)

n

)
+

(
e−h − 1

)
f (1)

n ; n = 0, 1, · · · , N − 1. (5)

This method is a good candidate to be included in the family of linear explicit numerical
integration methods of RK type as its analysis carried out in the following sections agrees
with those most of the standard numerical methods used for the purpose of solving IVPs in
ODEs.
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3. LOCAL TRUNCATION ERROR AND ORDER OFCONVERGENCE

The analysis of the LTE denoted byTn (h) indeed determines the order of convergence
for any numerical integration method designed to solve the IVPs in ODEs. In order to
check the order of the method, the formula of the numerical method is subtracted from the
Taylor’s series expansion fory(x) in powers ofh under the localizing assumptions.
The Taylor’s series expansion fory(x) in powers ofh is given by

y(xn + h) = y(xn) + hy′(xn) + 1
2h2y′′(xn) + 1

6h3y′′′(xn) + O(h4)
= y(xn) + hf(xn, y(xn)) + 1

2h2f (1)(xn, y(xn))
+ 1

6h3f (2)(xn, y(xn)) + O(h4).
(6)

The local truncation error is given by

Tn (h) = y(xn + h)− yn+1. (7)

Using the Equations (5) and (6), the Equation (7) becomes

Tn (h) = y (xn) + hf (xn, y(xn)) + h2

2! f
(1) (xn, y(xn)) + h3

3! f
(2) (xn, y(xn)) + O

(
h4

)

− [
yn + h

(
f (xn, yn) + f (1) (xn, yn)

)
+

(
e−h − 1

)
f (1) (xn, yn)

] .

Using the Maclaurin’s series expansion ofe−h and simplifying the above equation under
the localization assumption, one obtains

Tn (h) = 1
3!h

3
[
f (2) (xn, yn) + f (1) (xn, yn)

]
+ O

(
h4

)
.

(8)

It is clearly seen from the Equation (8) that the principal term ofTn (h) involvesh3 which
confirms the second order accuracy of the method. Hence, the proposed numerical integra-
tion method given by (5) has the convergence of second order accuracy.

4. CONSISTENCY ANDSTABILITY

This section presents the consistency and stability properties of the proposed numerical
integration method (5) as follows.

4.1. Consistency Property. A numerical integration method is said to be consistent if it
has at least orderp = 1. Additionally, for a numerical integration method to be consistent
it is important for the truncation errors to be zero when the step size gets smaller and
ultimately vanishes. Among many, one of the ways of analyzing the consistency of a
numerical method is to check whether

lim
h→0

(
Tn (h)

h

)
= lim

h→0

[
y (xn + h)− yn+1

h

]
= 0.

Using the Equations (7) and (8) and the above criterion, it is easy to deduce that the pro-
posed numerical integration method has consistency characteristics. It is a known fact that
any numerical method having order of accuracy greater than or equal to 1 is considered
to be consistent. On the basis of this fact, It can be deduced that the proposed numerical
integration method (5) is consistent since it has second order accuracy.
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4.2. Numerical Stability. A one step explicit numerical integration method is reserved to
be stable if a small perturbation in the initial conditions of the IVP leads to a small pertur-
bation in the following numerical approximation. To discuss the stability analysis of the
proposed numerical integration method, consider the following Dahlquist’s test equation:

y′ (x) = ωy (x) , y(0) = 1 with ω = constant <0.

In this test equation, the rate of change is proportional to the current value with the negative
proportionality constant. This means that per time step, we are losing a specific percentage
of the current value. Its exact solution is given byy(x) = eωx, ω < 0 which means that
it would decay to 0 regardless of the value ofω < 0. If ω is larger, this decay is faster
and slower ifω is smaller. Indeed, it is required that the numerical solution should exhibit
the same behavior. Technical term used for this discussion is the notion of stability which
means how small the step size has to be for the numerical integration method to stay stable.
For an integration interval[xn, xn+1] whereh = xn+1−xn; the exact solution at the point
x = xn+1 is obtained as

y (xn+1) = eωxn+1 = eω(xn+h) = eωxneωh = y (xn) eωh, ω < 0. (9)

When applied the proposed numerical integration method on this test problem; it yields

yn+1 = Φyn where Φ = 1 + ωh +
(ωh)2

2!
. (10)

Comparing the Equations (9) and (10), it is clearly seen that the Equation (10) is a three-
term approximation for the functioneωh in the exact solution. The error growth factor
given by (10) can be controlled by|Φ| < 1 so that the errors may not amplify. Thus, the
stability function of the proposed numerical integration method (5) requires that

∣∣∣∣∣1 + ωh +
(ωh)2

2!

∣∣∣∣∣ < 1.

Settingz = ωh, then (10) yields
∣∣∣1 + z + z2

2!

∣∣∣ < 1.

The region of absolute stability for the proposed numerical integration method (5) is defined

by the region in the complex plane such that
∣∣∣1 + z + z2

2!

∣∣∣ < 1. The stability region is

plotted in the Figure 1.
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FIGURE 1. The stability region (black shaded) of the second order pro-
posed numerical integration method with the stability interval of
(−2.01, 0.01).

5. NUMERICAL EXAMPLES

As many as five initial value problems of different types have been selected in the Table
1 to illustrate the performance of the second order proposed numerical integration method
(5) in comparison to the two second order explicit nonlinear numerical methods called the
Wambecq’s and the Ramos’ methods as found in [14,33].

All of these three methods have been used to determine the maximum absolute relative
global errors

(
Emax = maxa≤n≤b|y(xn+1) − yn+1|

)
, the absolute relative errors com-

puted at the final mesh point of the given integration interval
(
E(x = b) = |y(b) − yN |

)

and thè 2− error norm
(
`2 =

√∑n
k=0 |y(xn+1)− yn+1|2

)
as shown in the Tables 2–6.

Over and above, the proposed numerical method follows the exact solution curve more
elegantly as shown by the error curves in the Figures 2–4 for the IVP–1. In these Figures,
one can see that the absolute relative errors are smaller than the errors produced by the
Wambecq’s and the Ramos’ methods while taking varying values of the step size ofh. In
addition to this, the Table 3 represents the comparison of the proposed numerical integra-
tion method (5) with the Wambecq’s and the Ramos’ methods on the basis of maximum
absolute global relative errors, absolute relative error at the final mesh point and the`2−
error norm wherein it can easily be observed that performance of the method (5) is better
than rest of the two methods since for every decreasing step sizeh the proposed method
yields smaller errors in each case.

Similar sort of behavior was observed for rest of the test problems and hence the graph-
ical illustrations have been omitted for the sake of brevity. Moreover, the second order
accuracy of the proposed method has been confirmed from the experimental point of view,
that is; how does it behave when it is applied on the selected test problems (IVPs) taking the
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step sizeh having a first order decrease in its magnitude. In connection to this, the absolute
relative errors at the final mesh point of the associated integration interval are computed
in the Table 7 to demonstrate that for every one-order decrease inh, there are two-order
decrease in the magnitude of the computed errors.

IVP y′(x) Exact Solution y(0) = y0 [a, b]
1 y(x)2

(1+x)3
2(1+x)2

x2+2x+2 1 [0, 10]

2 x sin(x)
y(x)

√
−2x cos (x) + 2 sin (x) + 1 1 [0, 1]

3 − xy(x)
(1+x2)

1√
x2+1

1 [0, 1]
4 xy (x)2 − 2

x2−1 2 [0, 0.5]

5 x2 cos(x)

y(x)2

(
3x2 sin x + 6x cosx− 6 sin x + 1

) 1
3 1 [0, 1]

TABLE 1. Test Problems 1–5.

Method\NI
80 160 320 640 1280

Proposed
3.7547e-04
3.1397e-04
2.7003e-03

9.0379e-05
7.1236e-05
8.6808e-04

2.2002e-05
1.6705e-05
2.8840e-04

5.4170e-06
4.0250e-06
9.8394e-05

1.3434e-06
9.8648e-07
3.4129e-05

Wambecq
1.8000e-03
1.8000e-03
1.4721e-02

4.6611e-04
4.6611e-04
5.3859e-03

1.1872e-04
1.1872e-04
1.9392e-03

2.9965e-05
2.9965e-05
6.9206e-04

7.5276e-06
7.5276e-06
2.4584e-04

Ramos
1.7520e-03
1.7520e-03
1.4625e-02

4.6058e-04
4.6058e-04
5.4291e-03

1.1807e-04
1.1807e-04
1.9667e-03

2.9889e-05
2.9889e-05
7.0383e-04

7.5192e-06
7.5192e-06
2.5035e-04

TABLE 2. Maximum absolute global relative errors on [0, 10] (first row),
absolute relative errors att = 10 (second row), and̀2− error norm (third
row) for the IVP–1.

Method\NI
80 160 320 640 1280

Proposed
2.8962e-05
2.3550e-05
2.0039e-04

7.2392e-06
5.8783e-06
7.0733e-05

1.8097e-06
1.4684e-06
2.4988e-05

4.5240e-07
3.6696e-07
8.8310e-06

1.1310e-07
9.1722e-08
3.1216e-06

Wambecq
5.0829e-05
5.0829e-05
3.2374e-04

1.2340e-05
1.2340e-05
1.0933e-04

3.0325e-06
3.0325e-06
3.7605e-05

7.5073e-07
7.5073e-07
1.3085e-05

1.8665e-07
1.8665e-07
4.5849e-06

Ramos
0.0000e+00

infinity
infinity

0.0000e+00
infinity
infinity

0.0000e+00
infinity
infinity

0.0000e+00
infinity
infinity

0.0000e+00
infinity
infinity

TABLE 3. Maximum absolute global relative errors on [0, 1] (first row),
absolute relative errors att = 1 (second row), and̀2− error norm (third
row) for the IVP–2.
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Method\NI
80 160 320 640 1280

Proposed
2.4762e-05
2.4762e-05
1.2342e-04

6.2046e-06
6.2046e-06
4.3608e-05

1.5529e-06
1.5529e-06
1.5413e-05

3.8845e-07
3.8845e-07
5.4484e-06

9.7140e-08
9.7140e-08
1.9261e-06

Wambecq
1.7770e-04
1.7770e-04
1.2816e-03

5.1255e-05
5.1255e-05
5.3612e-04

1.4513e-05
1.4513e-05
2.1913e-04

4.0524e-06
4.0524e-06
8.7983e-05

1.1190e-06
1.1190e-06
3.4835e-05

Ramos
1.5250e-04
1.5250e-04
1.1503e-03

4.5057e-05
4.5057e-05
4.9130e-04

1.2976e-05
1.2976e-05
2.0362e-04

3.6695e-06
3.6695e-06
8.2575e-05

1.0234e-06
1.0234e-06
3.2942e-05

TABLE 4. Maximum absolute global relative errors on [0, 1] (first row),
absolute relative errors att = 1 (second row), and̀2− error norm (third
row) for the IVP–3.

Method\NI
80 160 320 640 1280

Proposed
5.0710e-05
5.0710e-05
1.7987e-04

1.2786e-05
1.2786e-05
6.3441e-05

3.2102e-06
3.2102e-06
2.2402e-05

8.0426e-07
8.0426e-07
7.9151e-06

2.0128e-07
2.0128e-07
2.7975e-06

Wambecq
9.5379e-05
9.5379e-05
6.4106e-04

2.8411e-05
2.8411e-05
2.7309e-04

8.2376e-06
8.2376e-06
1.1302e-04

2.3423e-06
2.3423e-06
4.5796e-05

6.5618e-07
6.5618e-07
1.8259e-05

Ramos
1.1285e-04
1.1285e-04
6.9265e-04

3.2764e-05
3.2764e-05
2.9076e-04

9.3241e-06
9.3241e-06
1.1915e-04

2.6137e-06
2.6137e-06
4.7933e-05

7.2401e-07
7.2401e-07
1.9007e-05

TABLE 5. Maximum absolute global relative errors on [0, 0.5] (first
row), absolute relative errors att = 0.5 (second row), and̀2− error
norm (third row) for the IVP–4.

Method\NI
80 160 320 640 1280

Proposed
1.9648e-05
2.5928e-06
1.2318e-04

4.9034e-06
6.2637e-07
4.3441e-05

1.2248e-06
1.5386e-07
1.5340e-05

3.0605e-07
3.8125e-08
5.4199e-06

7.6496e-08
9.4885e-09
1.9156e-06

Wambecq
5.3949e-05
5.3949e-05
3.3100e-04

1.3165e-05
1.3165e-05
1.1218e-04

3.2446e-06
3.2446e-06
3.8670e-05

8.0455e-07
8.0455e-07
1.3473e-05

2.0022e-07
2.0022e-07
4.7243e-06

Ramos
0.0000e+00

infinity
infinity

0.0000e+00
infinity
infinity

0.0000e+00
infinity
infinity

0.0000e+00
infinity
infinity

0.0000e+00
infinity
infinity

TABLE 6. Maximum absolute global relative errors on [0, 1] (first row),
absolute relative errors att = 1 (second row), and̀2− error norm (third
row) for the IVP–5.
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IVP/h 10−1 10−2 10−3 10−4

1 1.9412e-04 1.6254e-06 1.5872e-08 1.5837e-10
2 1.5403e-03 1.5063e-05 1.5029e-07 1.5025e-09
3 1.5344e-03 1.5862e-05 1.5914e-07 1.5919e-09
4 9.9329e-03 1.2849e-04 1.3169e-06 1.3201e-08
5 2.4399e-04 1.6370e-06 1.5565e-08 1.5488e-10

TABLE 7. Behavior of the Absolute Relative Errors computed att = b
for decreasing step sizeh values for the IVPs 1–5 using the proposed
numerical integration method (5).
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Proposed Wambecq Ramos

FIGURE 2. Comparison of the absolute relative errors for the IVP–1 tak-
ing h = 0.05.
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FIGURE 3. Comparison of the absolute relative errors for the IVP–1 tak-
ing h = 0.04.
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FIGURE 4. Comparison of the absolute relative errors for the IVP–1 tak-
ing h = 0.02.

6. CONCLUDING REMARKS

In this paper, we have investigated the truncation error analysis, convergence, consis-
tency and the stability of the proposed numerical integration method obtained via a tran-
scendental interpolating function of exponential type.

Five numerical examples have been solved to test the performance of the proposed
method in terms of the maximum absolute global relative errors, the absolute relative errors
computed at the final mesh point of the integration interval under consideration and the`2−
error norms as demonstrated in the Tables 2–6.

When compared with the second order explicit nonlinear numerical integration methods
(Wambecq and Ramos), the proposed method yielded smaller amount of errors in all cases
as evident from the above tabular data; however, these two nonlinear methods perform well
enough on stiff and singularly perturbed IVPs.

In addition to this, comparison of all these methods is shown graphically in the Figures
2–4 via absolute relative errors with the error curves produced by the proposed method ly-
ing always beneath errors curves of the later methods. It is also observed that the proposed
numerical method is of second order convergence and consistent with conditional stability.

From the Figure 1, it can be seen that the proposed numerical method is conditionally
stable with the region of linear stability and stability interval found to be(−2.01, 0.01).
Further, it may be noted that the second order convergence is clearly depicted in the Table
7 by every IVP considered in the numerical examples’ section above. Hence, the proposed
numerical integration method is a good approach for solving the IVPs of various nature and
characteristics in diverse areas of ODEs.
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It is believed that more sophisticated numerical methods can be proposed using transcen-
dental function of exponential type in order to solve continuous dynamical systems which
will certainly improve the stability characteristics and convergence order of the existing
numerical methods. In this connection, the authors of the present paper will demonstrate
such methods in near future.
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