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Abstract. We consider a class of autonomous planar polynomial differ-
ential systems on the plane, we provide sufficient conditions for the exis-
tence of hyperbolic non algebraic limit cycle. Additionally, limit cycle is
explicitly given in polar coordinates.
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1. INTRODUCTION

An important problem in the qualitative theory of differential equations [5] is to deter-
mine the limit cycles and its number of a polynomial differential systems of the form:

o' = 9 = F(z,y)
S S

whereF andG are real polynomial in the variablesandy. We define the degree of system
(1.1) by p = max {deg(F), deg(G)}.

The idea of limit cycles appeared in the works of the mathematician Henri Péincar
([24],[15]), the statement of the Sixteen Hilbert's problem [9], and the discoveryéndlrd
[12]. A limit cycle of a planar vector field given by (1. 1) is an isolated periodic trajectory
(isolated compact leaf of the corresponding foliation). In other words, a periodic trajectory
of a vector field is a limit cycles, if it has annular neighbourhood free from other periodic
trajectories, what's more, it is said to be algebraic [11] if it is contained in the zero level set
of a polynomial function, see for example [4], [7], [10]. Generally, the orbits of a system (
1. 1) comprised in analytical curve which are non algebraic, see for example [3], [2], [6].
To recognize when a limit cycle is algebraic or not, usually, it is not always easy. Thus, the
well-known limit cycle of the van der Pol differential system displayed in1926 (see [16])
was not demonstrated until 1995 by Odani [13] that it was non-algebraic. The Van der Pol
differential system can be formulated as a systems (1. 1) as is a degree three, but its limit
cycle isn't known explicitly. The initial models were explicit non algebraic limit cycles
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appeared are those of A.Gasull, Giacomini and Torregrosa [6] andeJa@thM.Grau [8],
Al-Dossary [1] forp = 5.

In this work, we are concerned in studying the integrability and the limit cycles of a
multi-parameter polynomial differential system

' =z (—h+a*+y*) (aa? + ay® — dbzy) — (2% + ) (—z + 422y + 49°)
y =y (—h+z'+y*) (az® + ay? — dbay) + (2 + y?) (y + 4a3y® + 4aP)

1.2
wherea, b, h are real constants. We demonstrate the existence of a non-algebraic limit cy-
cle. Additionally this limit cycle is expressly given in polar coordinates. Concrete example
exhibiting the applicability of our result are introduced.

We define the trigonometric functions

3a + 4sin4€ 4 acos4€ — bbsin 26 — bsin 6
cos4é + 3 ’
(4 — 4ah + 8bh sin 2¢)

o8) = cos4& + 3 ’ (1. 4)

(1. 3)

2. MAIN RESULT
We prove the following result.

Theorem 1. Consider a multi-parameter polynomial differential system (1. 2)
Then the following statements hold
1) The system ( 1. 2) is Darboux integrable with the Liouvillan first integral

9 arctan £ arctan £ 3
L@.y) = (a*+ %) exp ( / ¢(€)d€> - ( JAGE ( / @(W)dw> df) .

2)If3a+4+|a| +6|b < 0and4 —4ah — 8|bh| > 0, then the system (1. 2) has limit
cycle which non algebraic explicitly presented in polar coordindte®) by:

) ) € 1
(0, 1) = (eXp (/O w(f)d€> (Ti“r/o $(&) exp (/0 @(W)dw> d§>> ;

(2. 5)
where

- ( 0" 6(&) exp (- [ plw)dw) df)‘i
) exp (= Jo" e(€)de ) — 1 '

Additionally, this limit cycle is unstable hyperbolic limit cycle.

Proof. Firstly we have

yr—2'y= ((23:)2 + (2y)2) (m2y2(:z:2 +42) + 2% + y6) )
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hence the poin® (0, 0) is the unique critical point of the differential system ( 1. 2) at finite
distance.

1) To demonstrate our results we write the differential system (1. 2) in polar coordinates
(7,0), defined byr = 7 cos 6, y = 7sin 4, then the differential system ( 1. 2 ) becomes

{ 7/ = 173 (4 — 4ha + 8bhsin 20 + (4sin 40 + 3a + acos 46 — 5bsin 20 — bsin 60) 71)
0’ =76 (cos40 + 3) .
(2. 6)
We take an independent variable the coordiatien the differential system (2. 6)
becomes

dr  (4sin40 + 3a + a cos 40 — 5bsin 20 — bsin 66) 4 — 4ha + 8bhsin26 1
g 4 (cos 460 + 3) T 4(cos40 +3) 13
2.7
that is a Bernoulli equation. By changing variabtes: 74 we get the linear equation
dp  4sin4f + 3a + acos 40 — 5bsin 20 — bsin 66 4 — 4ha + 8bh sin 20
a6 cos46 + 3 Pt cos46 + 3

the general solution of linear differential equation (2. 8) is

0 0 3
p(6) = exp ( /0 w(&)d8> <k+ /0 $(6) exp (— /0 w(w)dw) de>7 2.9)

whereyp, ¢ two trigonometric functions defined in (1. 3) and ( 1. 4 ) respectively.

Then
0 O () '
(exp (/0 go(f)df) (k +/O o (f(f gp(w)dw) )) , (2. 10)

wherek € R, from these solution we can obtain a first integral in the variakiles))
of the form

e e [ arctan ¥ [ et B(€)de
Liz,y) = (2 +°) p( / *"@df) (/ exp(fsww)dw))'

For the reason that this first integral is a function that can be expressed by quadratures
of elementary functions, it is a Liouvillian function, and accordingly system 1. 2)is
Darbouxt integrable.

The curvel = [ with [ € R, which are shaped by trajectories of the differential system
(1. 2), in Cartesian coordinates are formulated as

(o +97)" = exp ( I an%(f)d&) ( [ p(fﬁ%) y >>+1exp ( I an%(f)dé).
0 0 exp (J, p(w)dw 0

Hence, statement (1) is proved.

2- We note that the system (2. 6 ) has a periodic orbit if and only if equation (2. 7)) has
a strictly positive2w periodic solution. This, moreover, is equivalent to the existence of a
solution of (2. 7)) that satisfies(0, 7.) = 7(27, ) and7 (6, 7..) > 0 for anyé € [0, 27].

, (2.8)

7(6)
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It is anything but difficult to watch that the solutietf0, 7o) = 79 is

0 9 ¢ 1
(6, m) = (exp ( /0 so(&)d§> <Té+ /0 $(6) exp ( /0 w(w)dw> d&)) ,

(2.11)
wherer(0) = 79 > 0. A periodic solution of system ( 2. 6 ) must satisfy the condition
T(2m,79) = 7(0, 70), Which leads to a single valug = 7. given by

2. 12)

53T o€y exp (= Ji elw)dw) de )

Ty = Py > 0,
exp (— o w(f)dﬁ) -1

becaus&a + 4+ |a| + 6 |b| < 0, 4 — 4ah — 8 |bh| > 0 we have

~ 3a+4sin4€ + acos 4§ — Sbsin 26 — bsin 6§ <0
n cos4é + 3

v(§)

)

and
(4 — 4ah + 8bh sin 2¢)
cos4¢ + 3

(&) = >0,

forall ¢ € R, hencel — exp (7 fo% gp(f)df) < 0andg(¢) exp (f fOE ga(w)dw) > 0.
After the substitution of the value, in (2. 11 ), we obtain

_ fﬁ%(ﬁ)exp(ffsa<w>dw)dg) s s )i

x (exp (/0 eso(f)dg))i.

We haver (0, 7.) > 0, for all € [0, 2x], becaus8a + 4 + |a| + 6 |b| < 0,4 — 4ah —
8 |bh| > 0 hence

T —o(€) exp (— I so(w)dw) de
1—exp (=[5 pl€)de)

> 0 and¢(&) > 0forall £ € R.

More precisely, in Cartesian coordinate§6, 7.) = (2 + y?)? andf = arctan (%)
the curve equation determined by this limit cycle it is as follows

arctan f arctan i 13
u(,y) = (& +y? —exp ( / w(f)d€> <r1*+ | eoes (— / w(w)dw) d€> 0.
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But there is no integen for which both aa(z)nf (z,y) and a{;;lf (z,) vanish identically.

To be convinced by this fact, one has to compute for exargp[e:, y), thatis

yp(arctan Z) exp ( [, aretan o(€&)de arctan £ ¢
@(x,w = - ( ° ) (Ter/O o(&) exp (/0 ga(w)dw) dg)

Ox 2 + 32

arctan f ¢ 1 z arctan i
+ exp (A <p(§)d§> (W exp <_/0 <p(w)dw>> +da(2? + y?).

The expression

exp ( / <P(£)d€> (73 - " ) exp (— / 5 @(w)dw> df) |

already exists ini(z,y) and still reappears when partial derivatives of arbitrary order
are performed, which means thatz, y) is not a polynomial and that this limit cycle are
non algebraic.

So as to demonstrate the hyperbolicity of the limit cycle notice that the Péimearn
mapgy — 1127, m0) = (27, 79), for more details see ([5] ). We compute

menm)| e (i e(d) <1,
becausng% @(&)d¢ < 0forall¢in[0,27].

Accordingly the limit cycle of the Bernoulli equation ( 2. 7) is stable and hyperbolic, for
more details see ([5]). This finishes the confirmation of articulation (2) of theorem [(1).

3. EXAMPLES
Example 1. If we takea = —6 andh = b = 1, then system ( 1. 2 ) reads
=z (—1 +at 4+ y4) (—6x2 — 6y — 4xy) — (x2 + y2) (—a: + 422y + 4y5) ,
Y =y (—1+at+y?) (=62 — 6y% — dwy) + (2% + y*) (y + 423y? + 42°) .
(3.13)

The system ( 3. 13 ) possess a limit cycle which non algebraic whose articulation in
polar coordinates ig, 0)

0 . s . . .
28 4+ 8sin 2 —18 + 4sin4w — 6 cos 4w — 5sin 2w — sin 6w
r0,7) = [rt4 [ BEBsA S + dw ) de
o cosd&+3 0 cosdw + 3
—18 + 4 sin — b cos — 2 sln — sin
1 (% —18 4 4sin4¢ — 6cos4¢ — 5sin2¢ — sin 6
xexp | — d€ |,
4 /o cos4¢ + 3

wheref € R, what’s more the intersection of the limit cycle with the horizontal axis is

1
27w 2848sin2¢ € —18+4 sin 4w—6 cos 4w—>5 sin 2w—sin 6w 1
0 ~ cos 4643 exXp { — fO cos 4w+3 dw dé‘

2T —18+4 sin 4€—6 cos 4 —5 sin 2£ —sin 6£
1 —exp (7 .fO cos 4643 df)

~ 2.14484.

ISE
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FIGURE 1. The phase portrait in the Poincar disc of the system (3. 13)

Example 2. If we takea = —4,b = 0 andh = 1, then system (1. 2 ) reads

[zt e ) () (e ) o e )

Y =y (—1+2*+y*) (—42? — 4y?) + (2 + ) (y + 423y? + 425) .

FIGURE 2. The phase portrait in the Poincar disc of the system (3. 14)

The system ( 3. 14 ) possess a limit cycle which non algebraic whose articulation in polar
coordinates i, 9)

) . . 3
2 —12 + 4sin 4w — 4 cos 4
r(0,7) = r;*+/ _ 0w —/ AsmAw = A0SR L) ag
o cosdé+3 0 cosdw + 3
1 (% —12 4 4sin4¢ — 4cos 4¢
- d
Sk (4/0 cos4& + 3 K

wheref € R, what’s more the intersection of the limit cycle with the horizontal axis is

1
2 4

_ 20 _ § —1244sin 4w—4 cos 4w
0 cos 4£+3 exp ( fO cos 4w—+3 d’LU) df

1—exp (7 f027r —1244sin 46 —4 cos 4s d§)

~ 1.99214.

cos 4£+43
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