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Abstract. In this paper, a hybrid approach consisting of the third order
Chebyshev polynomials and block-pulse functions is used for solving sys-
tems of Volterra integral differential equations. Applying this approach
transforms the system of integral differential equations into a system of
algebraic equations. Existence and uniqueness of the solution, for such a
system are addressed. Two examples are provided to shows the efficiency
and reliability of the utilized approach.
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1. INTRODUCTION

Mathematical models in some phenomena in engineering, physics, biology, chemistry, 
and other disciplines, lead to systems of integral differential equations (SIDE) [7][5][6]. 
During the last years, different orthogonal polynomials are applied to get an approximate 
solution of such systems [1][2][3][4][12]. Morever, the hybrid methods combined of block-
pulse functions with many different polynomials such as Legendre, Bernstein, and Cheby-
shev polynomials are used to approximate solutions of (SIDE)[8][9][12][10]. One of 
the advantages of applying a polynomial basis is that our systems transform into a 
system of algebraic equationns, which its solution is straightforward. In this paper, a 
numerical ap-proach consists of the third order Chebyshev polynomials and the block-
pulse functions as a hybrid approach is used,
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y
(m)
i (ζ) = fi(ζ) + pi(ζ, y1(ζ), y

′

1(ζ), ..., y
(m)
1 (ζ), ..., y(m)

n (ζ))

+
m1∑
j=1

∫ ζ

0

Kij(ζ, η)qij(y1(η), ..., y
(m)
1 (η), ..., y(m)

n (η))dη

i = 0, 1, 2, ..., n.

(1. 1)

where m,m1are positive integers, fi(ζ), i = 0, 1, 2, · · · , n, are known function, pi(ζ), i =
0, 1, 2, · · · , n are linear or non-linear functions, kij(ζ, η) ∈ L2([0, 1] × [0, 1]) are the ker-
nels, and yi(ζ), i = 1, 2, · · ·n are unknown functions [13]. This method that is used for
solving initial value problems and Fredholm integral equations is also used to solve higher-
order initial value problems [12][9]. This paper is organized as follows, in section 2, a
hybrid method and its properties are explained. Section 3 is devoted to obtaining opera-
tional matrices. In section 4, the hybrid method is applied for approximating the solution
of a system of Volterra integral equation. In section 5, the existence and uniqueness of the
solutions of systems of Volterra integral differential equations are addressed. Two numeri-
cal examples are appeared in section 6. The last section is devoted to discussing the result
of this study.

2. THE HYBRID METHOD PROPERTIES

In this section, we review briefly the third order Chebyshev polynomials and the Block-
pulse functions, then describe a hybrid method consisting of Block-pulse functions and
third order Chebyshev polynomials, and expansions of functions [9].

2.1. The Block-pulse functions. A N -set of Block-pulse functions, bi(ζ), i = 1, 2, ..., N ,
where N is a positive integer are defined as follows,

bi(ζ) =

{
1,

(i− 1)T

N
≤ ζ ≤ iT

N
,

0, otherwise.
(2. 2)

These functions, are disjoint, orthogonal and complete. To get more familiar see a 4-set
block-pulse functions in Fiqure 1.

2.2. Third order Chebyshev polynomials. Third order Chebyshev polynomials, vi(ζ), i =
1, 2, · · · , n are defined as follows,

vi(ζ) =
cos(i+

1

2
(θ)

cos
θ

2

(2. 3)

where ζ = cosθ, these polynomials are orthogonal on the interval [−1, 1] with respect to

the weight function i.e. w(ζ) =
√

1 + ζ

1− ζ∫ 1

−1

w(ζ)vi(ζ)vj(ζ)d(ζ) =
√
πδij
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FIGURE 1. The block-pulse functions for N = 4.

These polynomials satisfy the following three-terms recurrence relation, that is arguably
the most important property of such orthogonal polynomials,

vi(ζ) = 2i−1(ζ)− vi−2(ζ), i = 2, 3, ... .

v0(ζ) = 1, v1(ζ) = 2ζ − 1.

The shifted third order Chebyshev polynomials, on the interval [a, b], are as following

v∗i (ζ) = vi(
2ζ − a− b

b− a
)

These polynomials are orthogonal on[a, b] with the weight function w(ζ) =

√
ζ − a

b− ζ
.

2.3. The HBV functions. The HBV functions on the interval [0, T ] are defined as follows,

Hij(ζ) =

{
2T

N
vi(

2Nζ

T
− 2i+ 1),

(i− 1)T

N
≤ ζ <

iT

N
,

0, otherwise.
(2. 4)

with the weight function, wi(ζ) = w(2Nζ − 2i + 1), i = 1, 2, ..., N, j = 1, 2, ..,M − 1,
where N and Mare the orders of the block-pulse function and the third order Chebyshev
polynomial, respectively. Hij(ζ)is a combination of the orthogonal third order Chebyshev
polynomial and the block-pulse functions, and generates a complete orthogonal system on
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L2,λ[0, 1), that is a suitable Morrey space. For example, see a plot of HBV functions in
Figure 2.

FIGURE 2. The HBV functions for N = 2, and M = 3.

2.4. Expansions of functions. A function y(ζ) ∈ L2[0, 1)may be expanded as,

y(ζ) =

∞∑
i=1

∞∑
j=0

cijHij(ζ), (2. 5)

where,

cij =
(y(ζ),Hij(ζ))

(Hij(ζ),Hij(ζ))
=

N2

π

∫ 1

0

w(ζ)Hij(ζ)y(ζ)dζ, (2. 6)
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in which (., .) denotes an inner product on L2 ∈ [0, 1] with the weight function wi(ζ). In
practice, infinite series (2.5) will be truncated into the following form

y(ζ) ∼=
N∑
i=1

M−1∑
j=0

cijHij(ζ) = CTHBV (ζ),

where the vectors C and HBV (ζ) are as the following,

C = [c1,0, ..., c1,M−1, c2,0, ..., c2,M−1, ..., cN,0, ..., cN,M−1]
T

HBV (ζ) = [H1,0, ...,H1,M−1,H2,0, ..., H2,M−1, ...,HN,0, ..., HN,M−1]
T .

(2. 7)

The kernel k(ζ, η) ∈ L2[0, 1]× [0, 1] can be separated,

k(ζ, η) ≈ HBV T (η)KHBV (ζ), (2. 8)
where K is a NM ×NM known matrix with the following entries

Kij =
(HBVi(ζ), (k(ζ, η), HBVj(η))

(HBVi(ζ),HBVi(ζ))(HBVj(η)HBVj(η))
, i, j = 1, 2, ..., NM. (2. 9)

Theorem 2.5. Let y(ζ) be a second-order derivative square-integrable function defined on
[0, 1] with bounded second-order derivative, say |y′′

(ζ) |≤ A, for some constant A, then

(i) y(ζ) can be expanded as an infinite sum of the HBV and the series converges to
y(ζ) uniformly, that is

y(ζ) =

∞∑
i=1

∞∑
j=0

cijHij(ζ),

where

Ci,j = ⟨y(ζ),Hi,j(ζ)⟩L2,λ
w [0,1).

(ii)

βy,i,M ≤ πA2

8

∞∑
i=N+1

∞∑
j=M

1

i5(j − 1)4
,

where

βy,i,M = [

∫ 1

0

|y(ζ)−
N∑
i=1

M−1∑
j=0

Ci,jHi,j(ζ)|2wn(ζ)dζ]
1
2 .

Proof: see[13].

3. OPERATIONAL MATRICES

In this section, the operational matrices of integration and differentiation will be com-
pute, also the product of two HBV functions, (2.7) will be determined.
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3.1. Operational Matrices. For the sake of simplicity, computations performed only for
N = 2,M = 3 . The components of HBV6(ζ) are as the following,


H10 = 1

H11 = 8ζ − 3 , 0 ≤ ζ <
1

2
,

H12 = 64ζ2 − 40ζ + 5


H20 = 1

H21 = 8ζ − 7 ,
1

2
≤ ζ < 1

H22 = 64ζ2 − 104x+ 41

(3. 10)

where HBV6(ζ) = [H10,H11,H12,H20,H21,H22]. Also, by integrating (3.10) and pre-
senting in matrix form, we obtain the following approximations, that are applied for the
third kind Chebyshev wavelets[15]. For the present method,

∫ ζ

0

H10(t)dt =


ζ, 0 ≤ ζ <

1

2
,

1

2
,
1

2
≤ ζ < 1,

=
3

8
H10 +

1

8
H11 +

1

2
H20

=

[
3

8

1

8
0
1

2
0 0

]
HBV6(ζ)

∫ ζ

0

H11(t)dt =


4ζ2 − 3ζ, 0 ≤ ζ <

1

2
,

−1

2
,
1

2
≤ ζ < 1,

=
−1

2
H10 +

−1

16
H11 +

1

16
H12 +

−1

2
H20

also, we have ∫ ζ

0

H20(t)dt =

[
0 0 0

3

8

1

8
0

]
HBV6(ζ)

∫ ζ

0

H21(t)dt =

[
0 0 0

−1

2

−1

16

1

16

]
HBV6(ζ)

∫ ζ

0

H22(t)dt =

[
0 0 0

5

24

−1

16

−1

48

]
HBV6(ζ) +

1

24
H23(ζ)

These approximations may be written in the matrix form as follows,∫ ζ

0

HBV6(t)dt = P6×6HBV6(ζ) +HB̃V6(ζ), (3. 11)

where,
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P6×6 =
1

4



3

2

1

2
0 2 0 0

−2
−1

4

1

4
−2 0 0

5

6

−1

4

−1

12

2

3
0 0

0 0 0
3

2

1

2
0

0 0 0 −2
−1

4

1

4

0 0 0
5

6

−1

4

−1

12


and HB̃V (ζ) =

1

24
(0 0 H13(ζ) 0 0 H23(ζ))

T . In fact, the matrix P6×6 can be written as,

P6×6 =
1

4

[
L3×3 J3×3

03×3 L3×3

]
where,

L3×3 =
1

4


3

2

1

2
0

−2
−1

4

1

4
5

6

−1

4

−1

12

 , J3×3 =
1

4

 2 0 0
−2 0 0
2

3
0 0


for M ≥ 4,

P =
1

N2


L J · · · J
0 L · · · J
...

...
. . .

...
0 0 · · · L

 , (3. 12)

where J and L are two M ×M matrices as the following,
if M is even,

J =



τ1 0 · · · 0
−τ1 0 · · · 0

...
...

. . .
...

τM

2

0 · · · 0

−τM

2

0 · · · 0


, (3. 13)

where τi =
2

2i− 1
, i = 1, 2, ...,

M

2
,

if M is odd,
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J =



τ1 0 · · · 0
−τ1 0 · · · 0

...
...

. . .
...

−τM + 1

2
−1

0 · · · 0

−τM + 1

2
−1

0 · · · 0

τM + 1

2

0 · · · 0


, (3. 14)

where τi =
2

2i− 1
, i = 1, 2, ...,

M + 1

2
, and

HB̃V (ζ) =
1

N2
(λ1 λ2 λ3 ... λN )T (3. 15)

where

λi =
1

2M
(0 0 0 ... 0 HiM ), i = 1, 2, ..., N. (3. 16)

L =



3

2

1

2
0 · · · 0 0

−2
−1

4

1

4
· · · 0 0

...
...

...
. . .

...
...

(−1)M−2 2M − 3

(M − 1)(M − 2)
0 0 · · · −1

2(M − 1)(M − 2)

1

2(M − 1)

(−1)M−1 2M − 1

M(M − 1)
0 0 · · · −1

2(M − 1)

1

−2M(M − 1)


.

(3. 17)
In general, the integration of the vector HBV (ζ), defined in (2.7), can be presented as
follows, ∫ ζ

0

HBV (t)dt = PHBV (ζ) +HB̃V (ζ) (3. 18)

3.2. Operational matrix of derivative. The derivative of the vector HBV (ζ), may be
expressed as the following

d

dx
(HBV (ζ)) = DHBV (ζ), (3. 19)

where D is the NM ×NM matix of the derivative as the following [13],

D =


d o . . . 0
0 d . . . 0
...

...
. . .

...
0 0 · · · d


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and d = [αij ]M×M , whose entries are as the following,

αij =

2(i+ j − 1), i > j, (i+ j) odd,
2(i− j), i > j, (i+ j) even,
0, otherwise.

(3. 20)

As an example, the matrix d for M = 5 is as follows,

d =


0 0 0 0 0
4 0 0 0 0
4 8 0 0 0
8 4 12 0 0
8 12 4 16 0


3.3. Product of HBV functions. Let us define the product of two vectors HBV (ζ) which
is useful in whatever coming up.∫ ζ

0

HBV T (t)HBV (t)Cdt = C̃HBV (ζ) +HB̃V (ζ), (3. 21)

where C̃ is the product operational matrix, and HB̃V (ζ)is introduced in (3.15). For N = 2
and M = 3, we have

C̃ =


γ10 γ11 γ12 0 0 0 0 0 0 0
γ11 γ10 − γ11 + γ12 γ11 − γ12 γ12 0 0 0 0 0 0
γ12 γ11 − γ12 γ10 − γ11 + γ12 γ11 − γ12 γ12 0 0 0 0 0
0 0 0 0 0 γ20 γ21 γ22 0 0
0 0 0 0 0 γ21 γ20 − γ21 + γ22 γ21 − γ22 γ22 0
0 0 0 0 0 γ22 γ21 − γ22 γ20 − γ21 + γ22 γ21 − γ22 γ22


So, the matrix C̃6×6can be written as,

C̃ =

[
β1 ϑ1 0
0 β2 ϑ2

]
,

where

βi =

γi0 γi1 γi2
γi1 γi0 − γi1 + γi2
γi2 γi1 − γi2 γi0 − γi1 + γi2

 , ϑi =

 0 0
γi2 0

γi1 − γi2 γi2

 .

4. THE SOLUTION OF THE SYSTEM (1.1)

Consider system (1.1), with the following initial conditions,

y
(s)
i (0) = ais, i = 1, 2, · · · , n, s = 0, 1, · · · ,m− 1. (4. 22)

Let us, approximate the functions in (1.1) as the following,

fi(ζ) ≈ FT
i HBV (ζ),

pi(ζ, y1(ζ), ..., y
(m)
1 (ζ), ..., y

(m)
n (ζ) ≈ PT

i HBV (ζ),
kij(ζ, η) ≈ HBV T (ζ)KijHBV (η),

y
(m)
i (ζ) ≈ CT

i D
mHBV (ζ), i = 1, 2, ..., n, j = 1, 2, ...,m1.

(4. 23)

By substitution of these approximations in (1.1), we have,
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CT
i D

mHBV (ζ) = FT
i HBV (ζ) + PT

i HBV (ζ) +

m1∑
j=1

∫ ζ

0

HBV T (ζ)KijHBV (η)HBV T (η)Qijdη

= FT
i HBV (ζ) + PT

i HBV (ζ) +HBV T (ζ)

m1∑
j=1

Kij [C̃ijHBV (ζ) +HB̃V (ζ)]

(4. 24)

Multiplying wn(ζ)HBV T (ζ) into both sides of system (4.24) and applying
∫ 1

0
(.)dζ, the

coefficients Ci, i = 1, 2, ..., n , will be obtained. Also, the error function e(yi(ζ)) is con-
structed as follows,

e(yi(ζ)) = |yi(ζ)−
N∑
i=1

M−1∑
j=0

cTijHij(ζ)|. (4. 25)

we set ζ = ζj , where ζj are eleven equally spaced collocation points in the interval[0, 1].
The error values at this point will be obtained.

5. EXISTENCE AND UNIQUENESS OF SOLUTION OF THE SYSTEMS OF NON-LINEAR
VOLTERRA INTEGRAL DIFFERENTIAL EQUATIONS

In this section, we are going to show the existence and uniqueness solution of a system
of Volterra integral differential equations. To proceed, let us state the following theorem,

Theorem 5.1. Consider yi(ζ) as a continuous and differentiable function on the closed
interval [0, T ]. Also, fi(ζ) is continuous on C[0, T ], and

i. kij(ζ, η, y(η)) is a continuous function on Ω = {y ∈ Ck[0, T ]; ∥y∥ck[0,T ] ≤ L}
where L, is a positive real number.

ii. kij(ζ, η, y(η))) satisfies the Lipschitz condition, with respect to the third component

| K(ζ, η, Y )−K(ζ, η, Z) |< P | Y − Z |
where P is a positive real number which doesn’t dependent on ζ, η, Y,and Z.

Then the contraction map W : Ω −→ Ω, has a fixed point on the sub-space Ck[0, T ]
and system (1.1) has a unique continuous solution on Ω.

Proof. To make the analysis as simple as possible we assume that

Ý (ζ) = F (ζ) +

∫ ζ

0

K(ζ, η, y(η))dη, (5. 26)

where,
Ý (ζ) = [ý1(ζ), ý2(ζ), ..., ýn(ζ)]

T ,

F (ζ) = [f1(ζ), f2(ζ), ..., fn(ζ)]
T ,

K(ζ, η, Y (η)) = [kij(ζ, η, yj(η)], i, j = 1, 2, ..., n.

with initial conditions yi(0) = 0, i = 1, 2, ..., n.
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By integrating of both sides of system (5.26), we get

Y (ζ) =

∫ ζ

0

F (η)dη +

∫ ζ

0

∫ ζ

0

K(ζ, η, Y (η))dη dη. (5. 27)

According to the continuity of the given functions, on a closed interval, they are bounded,
i.e.

∥F (ζ)∥ = max|fi(ζ)| < F,

∥K(ζ, η)∥ = max1≤i≤n

n∑
j=1

|kij(ζ, η)| < K,

where K and F are positive real constants. So,∫ ζ

0

∫ ζ

0
K(ζ, η, y(η))dηdη <

∫ ζ

0

∫ ζ

0
Kdη <

KT 2

2
,

∫ ζ

0
F (η)dη <

∫ ζ

0
Fdη < FT.

(5. 28)

From the definition of Yk(ζ) and inequalities (5.28), we can state the following iteration
method

Yk(ζ) =

∫ ζ

0

F (η)dη +

∫ ζ

0

∫ ζ

0

K(ζ, η, Yk−1(η))dη dη, (5. 29)

Therefore,

∥Yk(ζ)∥ = ∥
∫ ζ

0

F (η)dη +

∫ ζ

0

∫ ζ

0

K(ζ, η, Yk−1(η))dη dη∥,

≤ ∥
∫ ζ

0

Fdη∥+ ∥
∫ ζ

0

Kdηdη∥ ≤ KT 2

2
+ FT ≤ β,

where 0 < β < T . These bounds state that

∥Yk(ζ)∥ =

n∑
i=1

∥Yi(ζ)− Yi−1(ζ)∥

is convergent. Now, we consider the series
∑∞

i=0(Yk(ζ)− Yk−1(ζ)), given that ∥Y ∥ ≤ L
where L is a positive constant. Now, we can prove the following inequality

∥Yk(ζ)− Yk−1(ζ)∥ ≤ LP k−1(ζ)k

k!
. (5. 30)

To proceed, by induction inequality (5.30) holds for the first two values of k,

∥Y1(ζ)− Y0(ζ)∥ ≤ L

∥Y2(ζ)− Y1(ζ)∥ ≤
∫ ζ

0

∫ ζ

0
∥K(ζ, η, Y1(η)−K(ζ, η, Y0(η))dηdη∥

≤ P
∫ ζ

0

∫ ζ

0
∥Y1(η)− Y0(η)∥dηdη ≤ LP

ζ2

2!
.
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Suppose inequality (5.30) holds for k. i.e.

∥Yk(ζ)− Yk−1(ζ)∥ ≤ LP k−1 ζ
k

k!
,

One can easily show that

∥Yk+1(ζ)− Yk(ζ)∥ ≤ LP k ζk+1

k + 1!
.

Moreover, regarding (5.30), we can conclude that

∥
∑∞

k=0 Yk+1(ζ)− Yk(ζ)∥ ≤ L
∑∞

k=0 P
k ζk+1

k + 1!
≤ L

1− P
eζ

Therefore, Yk(ζ) converges uniformly to the following function,

Y (ζ) =
∞∑
k=0

(Yk+1(ζ)− Yk(ζ)), (5. 31)

on the interval [0, T ].

Now, we can show that the function Y (ζ) satisfies (5.26). To go forward, for any ε there
exists a k, such that

∥Yk(ζ)− Y (ζ)∥ < ε

therefore,∫ ζ

0

∫ ζ

0

∥K(ζ, η, Yk(η)−K(ζ, η, Y (η)∥dηdη ≤ P

∫ ζ

0

∫ ζ

0

∥Yk(η)−Y (η)∥dηdη ≤ P

∫ ζ

0

∫ ζ

0

εdηdη ≤ Pε
ζ2

2
.

So, Y (ζ) is a solution of system (5.26) asε −→ 0.
Let us prove the uniqueness of the solution Y (ζ) on the interval [0, T ]. We as-

sume that there is another continuous solution, say Z(ζ), such that Z(0) = 0. Set
C = max∥Y (ζ)− Z(ζ)∥.
Therefore

∥Y (ζ)− Z(ζ)∥ ≤
∫ ζ

0

∫ ζ

0

K(ζ, η, Y (η)−K(ζ, η, Z(η))dηdη ≤ P

∫ ζ

0

∫ ζ

0

Y (η)− Z(η)dηdη

≤ P

∫ ζ

0

∫ ζ

0

Cdηdη ≤ CP
ζ2

2!
,

It will be obtaining for any k,

∥Y (ζ)− Z(ζ)∥ ≤ CP k−1 ζ
k

k!
,

obviously Y (ζ) = Z(ζ), 0 ≤ ζ ≤ T as k −→ ∞.�
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6. NUMERICAL EXAMPLE

For showing the efficiency and reliability of the utilized numerical method, parameters
N and M are considered to be 1 and 4, respectively. Let us provide the following examples:

Example 6.1. In this example we study solution of the following system oF linear Volter
integral equations [14]:

y
′′

1 (ζ) = −ζ3 − ζ4 +
∫ ζ

0
(3y2(η) + 4y2(η))dη, y1(0) = 0, y

′

1(0) = 1,

y
′′

2 (ζ) = 2 + ζ2 − ζ4 +
∫ ζ

0
(4y3(η)− 2y1(η))dη, y2(0) = 0, y

′

2(0) = 0,

y
′′

3 (ζ) = 6ζ − ζ2 + ζ3 +
∫ ζ

0
(2y1(η)− 3y2(η))dη, y3(0) = 0, y

′

3(0) = 0.

The exact solutions are y1(ζ) = ζ, y2(ζ) = ζ2, and y3(ζ) = ζ3. In this example, lets take
the following approximations,

−ζ3 − ζ4 = FT
1 HBV (ζ),

2 + ζ2 − ζ4 = FT
2 HBV (ζ),

6ζ − ζ2 + ζ3 = FT
3 HBV (ζ)

yi(ζ) = CT
i HBV T (x), y

′′

i (ζ) = CT
i D

2HBV T (x), i = 1, 2, 3

Results are shown in Table1 and the exact and approximate solutions are present in Fig-
ure3

TABLE 1. The exact, approximate, and absolute errors of the solutions, Example1.

x y1 − exact y1 − estimated Error-y1 y2 − exact y2 − estimated
0.1 0.1 0.099827 0.00017268 0.01 0.0098361
0.2 0.2 0.1994 0.0006028 0.04 0.03943
0.3 0.3 0.29884 0.0011588 0.09 0.088909
0.4 0.4 0.39829 0.0017086 0.16 0.1584
0.5 0.5 0.49788 0.0021204 0.25 0.24803
0.6 0.6 0.59774 0.0022626 0.36 0.35794
0.7 0.7 0.698 0.0020033 0.49 0.48824
0.8 0.8 0.79879 0.0012107 0.64 0.63906
0.9 0.9 0.90025 0.00024701 0.81 0.81054
1 1 1.0025 0.0025016 1 1.0028

Example 6.2. In this example, we solve following non-linear system of Volterra integral
differential equations [11]:

y
′

1(ζ) = −ζ3 − 6ζ − 1 + y1(ζ) + (7− 2ζ)y2(ζ) +
∫ ζ

0
((ζ + η)y1(η) + (η − ζ)3y2(η)dη, y1(0) = 1,

y
′

2(ζ) = −3ζ2 + ζ − 6 + (7− 2ζ)y1(ζ) + y2(ζ) +
∫ ζ

0
((ζ + η)3y1(η) + (η + ζ)3y2(η)dη, y2(0) = 0,

With the exact solutions y1(ζ) = cosh(ζ), y2(ζ) = sinh(ζ). The numerical results and
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Error − Y2 y3 − exact y3 − estimated Error-y3
0.00016386 0.001 0.0010282 2.8211e− 05
0.00057019 0.008 0.0082636 0.00026361
0.0010911 0.027 0.027932 0.00093235
0.0015988 0.064 0.066261 0.0022606
0.0019653 0.125 0.12947 0.0044745
0.0020628 0.216 0.2238 0.0078001
0.0017634 0.343 0.35546 0.012464
0.00093923 0.512 0.53069 0.018691
0.00053755 0.729 0.75571 0.026709
0.0027948 1 1.0367 0.036744

absolute errors are appeared in Table2 and the exact and approximate solutions are de-
picted in Figure4

TABLE 2. The exact, approximate, and absolute errors of the solutions, Example2.

x y1 − exact y1 − estimated Error-y1 y2 − exact y2 − estimated Error-y2
0.1 1.005 1.005 4.689e− 05 0.10017 0.10012 4.738e− 05
0.2 1.0201 1.02 9.5129e− 05 0.20134 0.20127 6.7719e− 05
0.3 1.0453 1.0453 8.1691e− 05 0.30452 0.30463 0.00011266
0.4 1.0811 1.081 4.5731e− 05 0.41075 0.4114 0.00064725
0.5 1.1276 1.1275 0.00013111 0.5211 0.52275 0.0016591
0.6 1.1855 1.1849 0.00058998 0.63665 0.63988 0.00323
0.7 1.2552 1.2534 0.0017874 0.75858 0.76397 0.0053896
0.8 1.3374 1.3332 0.0042073 0.88811 0.89621 0.0081038
0.9 1.4331 1.4246 0.0084592 1.0265 1.0378 0.011263
1 1.5431 1.5278 0.015287 1.1752 1.1899 0.014667

7. CONCLUSION

In this paper, the existence and uniqueness of the solutions to a system of Volterra in-
tegral differential equation are addressed and a hybrid method employed to solve such
systems. The operational matrices of the integration and product were determined based,
on the hybrid basis black-pulse functions and third order Chebyshev polynomials which
utilized to solve two examples to show the efficiency used method. As one can learn from
the Tables, as much as the values of the variable increase, the accuracy decreases. This
method is more accurate for linear systems than non-linear ones.
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FIGURE 3. Plots of exact and HBV solutions (a):y1(ζ), (b) :
y2(ζ), and(c) : y3(ζ)ofExample1.
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FIGURE 4. Plots of exact and HBV solutions: (a): y1(x); (b) : y2(x)ofExample2.




