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Abstract. In this paper, we present new classesajeometrically logh-
convex mappings in the first sense and in the second sense. We establish
Hermite-Hadamard(H-H) type inequalities for these classes. It is proved
that the class of generalized geometrically legonvex mappings in both
senses includes several new and known classes ¢f lognvex mappings.
Results obtained in this article can be viewed as a new contributions in this
area of research.
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1. INTRODUCTION

Different new and innovative techniques brought the revolutionary results in the theory
of convex analysis. Hence variant new classes of convex mappings has been introduced
and investigated for the desirable results. Many researchers have been attracted to study
different aspects of convex mappings, see [1, 3, 5, 7, 13, 14, 15, 20, 22, 25].

The theory of inequalities plays a vital role in the formation of many new inequalities
in convex analysis and it has been remained a constant inspiration for many researchers.
This is one of the reason which makes theory of convex analysis more attractive. The (H-H)
inequality plays very important role in developing many new and important inequalities and
it has triggered huge amount of attention and interest in recent years. Equally important is
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the field of variational inequalities associated with convex analysis, which is major source
of applications, numerical analysis, dynamical systems and fixed points. For some recent
developments, see [11, 12, 17, 18, 19, 24, 30, 31] and the references therein.

An important generalization of convex mappings was the introductidpanvex fun-
cions by Varosanec [33], which includeconvex [2],p convex [6] and Godunova-Levine
[10] mappings as its special cases. For different properties and other aspgateraiex
mappings, see [22, 28, 29, 32]. Recently Gordji et al. [8] has introduced the notion of
p-convex. This class generalizes the class of convex mappings. For recent developments
of these nonconvex mappings , see [4, 9, 21, 23, 26, 27].

Motivated by this ongoing research, we introduce a new clags@invex mappings,
known asp-geometrically lod)-convex mappings in the first sense and in the second sense,
respectively. We derive some new (H-H) integral inequalities for these nonconvex map-
pings. Some cases are discussed, which can be obtained as special cases from these new
results.

2. NOTATIONS AND PRELIMINARIES

Let o = [g,n] andJ be the intervals in real lin&, [0,1] C J. Lets : ¢ — % and
h : J — MR be two non negative and continuous mappings@fd) : & x 8 — R be a
continuous bifunction.

Throughout this paper, we will use the following notations.
R = (—o0, +00), Ry = (0,00), R = (—00,0) and L = L(g,n) = [¢(s(n),(2)) =

s(n) —(0)].

Let us recall some basic and new definitions as follows.
Definition 2.1. A seto C R is said to be geometrically convex set, if
oS eo, Voneo ke [0, 1].
Definition 2.2. [16] A mappings : o C R, — PR is said to be geometrically convex en
if
(6" n°) < (1= €)s(0) + &), Va,nea (o1l
Definition 2.3. [20] A mappings : ¢ C R — R is said to be ap-geometrically convex
mapping with respect tew.r.to)a (-, -), if
S(0'%n*) < (1= €)s(0) +£[s(0) + w(s(n),s(2))], Vo, 1 € 0,€ € [0,1].

We now introduce some new classes which@geometricallyh andp-geometrically
log h- convex mappings in the first sense and in the second sense.

Definition 2.4. Leth : J — R be a non-negative mapping. A mapping
¢ : o — Ris said to bep-geometricallyh-convex mapping in the first sense w.r.tp@, -)
and a nonnegative mappirtg if

(8" 7n%) <H(1—€)s(8) + (&)[s(2) + ¢(s(n), ()], Va,n € 0, € [0,1].
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If L = L(n, ), then the Definition 2.4 reduces to

Definition 2.5. [25] Leth : J — R be a non-negative mapping. A non-negative mapping
¢: o0 — MRis said to be geometrically-convex, if

(8" %) < b(1 = £)s() + b(&)s(n),Va,n € 0, € [0,1].

Definition 2.6. Leth : J — P be a non-negative mapping. A mapping
¢ : o — MR, is said to bep- geometrically logh-convex in the first sense w.r.to4:, -)
and a nonnegative mappirtg if

<(87%) < [<(@)]"Ie(0) + (s(m),<(8)]" O, Vo, n € 0, € € 0,1 (2. 1)
If ¢ =1, then
s(WVan) < @] s(8) + (s(n),s(2)]" ), Ve, € o. (2. 2)

The mapping; is known asp-geometrically Jensen ldgconvex mapping.

From Definition 2.6, we have
log (' ~*n*) < b(1 — &) logls()] + h(§) log[s() + ¢(s(n),<(2))];
and

(8" 1% <51 = O[s(d)] + b(&)[s(2) + (s(n),5(2))].

It shows that every-geometrically logh-convex mapping is a-geometricallyh-convex
mapping. However the converse is not true.

Now we will discuss some special casesmfieometrically logh-convex mappings in
the first sense.

If L = L(n, ), then Definition 2.6 becomes

Definition 2.7. . Leth : J — P be a non-negative mapping. A mappingo — (0, o0)
is said to be lody-convex or multiplicatively-convex in the first sense, if

(@) < @' O], Vane o €0,1).

Now we will discuss some special casesgafieometrically logh-convex mappings in
the first sense.

I. If (&) = &, then Definition 2.6 becomes

Definition 2.8. A mapping : ¢ — R, is said to bep-geometrically log convex w.r.to a
o(, ), if
(8" *n%) < [s(@))'°[s(2) + w(s(m),<(2)))%, Yo, € 7,& € [0, 1].
I If h(&) = &*, then Definition 2.6 becomes
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Definition 2.9. A mappings : ¢ — R, is said to bed-geometrically logs-convex for
s € (0,1)wrtoap(-,-), if
(0" %) < [s()]" 9 [6(0) + ¢(s(n),<(2))]* .V, n € 0, € [0,1].
Il If (&) = 1, then Definition 2.6 becomes

Definition 2.10. A mappings : ¢ — PR, is said to be ap-geometrically logP-convex
w.rto ap(-,-), if
(0" *n*) < [5(2)][s(2) + ¢ (s(n), ()] Vo, € 0, € [0,1].
IV. If h(¢&) = % then Definition 2.6 becomes
Definition 2.11. A mappings : ¢ — PR, is said to be ap-geometrically log Godunova-
Levine convex w.rto a(-, ), if

(@ n°) < [s(@)TF (@) + (s(n). s(2))F. Ve, € 0,€ € (0,1).

We now introduce a new class gfgeometrically convex mappings, which is called the
p-geometricallyh-convex mappings and in the second sense.

Definition 2.12. Leth : J — R be a non-negative mapping. A mappinges — R is said
to be p-geometricallyh-convex mapping in the second sense w.r.to @nd non negative
mappingp, if

s(8"5n%) < b1 = &B(&)[25(2) + ©(s(n),<(2))], Y8, n € 0,€ € [0,1].

If L = L(n, 8), then Definition 2.12 reduces to the following new concept.

Definition 2.13. Leth : J — 9 be a non-negative mapping. A non-negative mapping
¢ : 0 — (0,00)is said to be h-convex in the second sense, if

(8" %) < b(1 = )B(&)[s(8) + <(n)],Va.n € 0, £ € [0,1].

Definition 2.14. Leth : J — R be a non-negative mapping. A mapping o — R, is
said to bep-geometrically logh-convex in the second sense w.r.tp@, -), if

b(&)h(1-¢&)
(@) < {1@11s@ + olsta) (o} Vameog el
2. 3)

If ¢ =1, then

h?(3)
s(Van) < {[C(é)}k(@)+w(§(n),<(§))]} Vo, €o.

The mapping; is known as theo-geometrically Jensen ldg-convex mappings in the sec-
ond sense.
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From (2. 3), we have

log <(251) < H(E)b(1 - s>{ logfs(2)] + logls(2) + ¢(s(n). <<@m}.

Now we will discuss some special casesgafieometrically logh-convex mappings in
the second sense.

I. If (&) = &, then Definition2.14 becomes
Definition 2.15. A mappings : ¢ — R, is said to bep-geometrically logtgs-convex
w.rto ap(-,-), if

£(1-¢)
(@) < {@lk@+ s} vaneaceio

Il. If (&) = &°, then Definition2.14 becomes

Definition 2.16. A mapping : ¢ — PR is said to bep-geometrically log (tgss)-convex
in the second sense ferc (0, 1] w.r.to ay(-,-), if

£ (1-9)°
s(6' ) < {k@]k(@) + so(c(n%c(é))]} veneo.sel0.1)

I If h(&) = &P andh(l — &) = (1 — £)9 then, Definition2.14 becomes

Definition 2.17. A mapping : 0 — R is said to bep- geometrically log beta-convex in
the second sense w.r.tad-, -), if

&P(1-¢)?
(6" nf) < {[c(é)][c(@) + so(c(n),c(@)]} Yo,n € 0,6 €10,1].
IV. If (&) + (1 — &) = 1andh(§) = &P, then Definition2.14 becomes
Definition 2.18. A mapping : ¢ — Q. is said to bep- geometrically log Toader-convex
w.rto ap(-,-), if

§r(1-¢7)
<(0" %) < {k(@)}k(@) + (<), g@m} Ve € o, & (0.1

We would like to point out that for suitable choice of the bifunctiof, .) and the non-
negative mapping(.), one can obtain several known and new classes of convex mappings
as special cases. This clearly shows that these concepts are quite flexible and unifying one.
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3. MAIN RESULTS

We develop several new (H-H) type integral inequalities gasgeometrically logh-
convex mapping in the first sense and in the second sense in this section.

Theorem 3.1. Lets be ap-geometrically logy-convex mapping in the first sense®and
h(3) # 0. Then

log ¢(v/an)""

L 1 T s(@) +e(s(%h),s(@))
Yo (logn—logé)/g togl z Jdx

1 (z)
= (lognflogé)/ log[= x Jd

< log { <(@(@) + o(s(n), <<@)1} JRCCLS

Proof. Let ¢ bep-geometrically logh-convex mapping in the first sense. Then

log (8" ~*n*) < {b(1 — &) log[s(2)] + b(€)log[s(a) + ¢(s(n),s(2)]},
Yo,n € 0, €[0,1]. (3. 4)

Integrating (3. 4 ) w.r.tg on [0,1], we have
1 1
/0 log<(#¢nf)de < / {01 - €)logls(d)] + b(€) logl<(3) + (s(n), s(8)] }dé
= log {[<(@5(d) + (s (). (@)} / h(e)de

Thus
! ) -
T / log{*Jd < tog {[<(2)s(2) + (sl (@} | w)ae

Consider the Jensen form of thegeometrically log convex mapping in the first sense and
subsitutingr = (' ~¢n¢) andy = (3n'~¢), we have

(3. 5)

S(Vom) < 6@ D@ 0% + ol (8076, 5 (85"

- {k(@l-fnﬁ)nc(@l—fnﬁ)+¢<<<@fb1—f>,<<@1-€nf>>1} ’
This implies that

logo(VED) < b >log{[ (@ )]l (@) + (e ~), <glfnf>>]}.
3. 6)
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Integrating (3. 6 ) on [0,1], we have

(@) + (s (F),s(2))

1 1 K s(x)
h(%)logdﬁ) < (lognlogg))/g {log] - | + log| -~ ]}dz.
Thus
1 1 1o s(@) + (s (), ¢(x))
S VI~ o [, e faa
71 ! (0] @ x
= (logn—logé)/@ togl=, " de-
3.7
Combining(3. 5) and (3. 7 ), we have
— L 1 T s(@) +e(s(8h),s(@)
logc(@) 2 — (lognbgé)[ log| - Jdz
! "ogl"@ oz
: (logn — logQ)/ log[~~1d
< tog {@I(@) + (st} | nie)ae
which is the proof. O

Corollary 3.2. If L = L(n, ) and using the assumptions heorem 3.1we obtain a new
result.

> 2hl% ; ()
C(\/&) (2) < exp (logn—logé)/ log[ }dx< / (¢

Now we will have some special cases of Theorem 3.1.

() If L = L(n, ) andh(&) = ¢ in Theorem 3.1, then we obtain a following new result.

Theorem 3.3. Lets : ¢ — PR be ap-geometrically logh-convex mapping os. Then

s(z)

T

(W) < e ot Mol ar < \/s(@stn)]

(I If (&) = &*, then Theorem 3.1 becomes
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Theorem 3.4. Lets : 0 — PR be ap-geometrically logs-convex mapping oa with
€ (0,1). Then

ows (V)" - M/g tog S A, g,
(logn—logé)/g, log[ =1

1
< {[@]<(d) + 9(s(n).s(@)]} / £de
B 1

<

= {[@s(@) + (s (@} 75

Corollary 3.5. If L = L(n, ), then, under the assumptions Sheorem 3.4we have a
new result.

IN

—, 257! 1 n ¢(z)
- log[ 22
g( Qn) exp (Tog 77 — oz @)/@ og| . |dz

IN

(@)} / £°de
— (@Il

Corollary 3.6. If L = L(n, 3) ands = 1 in Theorem 3.4we have a new result.

1
(logn —log o)

S(V/am) < exp / "logs(@)dz < /[s@)<m)].

(1) 1f h(&) = 1, then the Theorem 3.1 becomes the following new result.
Theorem 3.7. Lets : 0 — (0, 00) be ap-geometrically logP-convex mapping os. Then

s(vVen) - (lognilogé) [" IOg[qx)Jr@(j%)’g(x))]dI
1 1 s(z)
(logn—logé)/@ tog[=~ld=
< A{ls(2)]s(2) + ¢(s(n),s(2)] }-

A

Corollary 3.8. If L = L(n, ) in Theorem 3.7we have a new result.

= 2 T g(x) _
C(@) < eXp(logn—logé)/@ log[T]dx < [§(Q)<(77)} .

(IV) If p(¢) = 3 then, Theorem 3.1 reduces to the following new result.
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Theorem 3.9. Lets : ¢ — (0,00) be ay-geometrically log Godunova-Levin-convex
mapping orv. Then

X

@)
S(logn—logé)/ log|~ z Jdzde,

and

-
logn — log o

=) (5=2).
Corollary 3.10. If L = L(n, ¢) in Theorem 3.9then we obtain a following new result.

S(V/am) (@)

1 n
<exp—7—— log|—*|dz,
(logn—logg)/g d T ]

/ " ratogl"do < Log {[@(é)][c(é) ; w(c(n)m(é)]}

whererz = (

=

and

! ! ( ) _
M/ rologl=ode < 5 log{k(g)}[c(n)]}

whererz = (4=2)(3=2).

Theorem 3.11. Lets be ap-geometrically lod)-convex mapping in the second sense. Then

o 1 T (@) + e(s(4h), s (@)
logs(v/an) " — (logn—logé)/g log| Jdz

T

1 n ¢(z)
(logn — log 0) /g, log[T]dx

log {k(@)}k(@) T ols(n), c(@n} b(E)h(1 — E)de.

0

[N

IN

Proof. Let ¢ bep-geometrically logh-convex mapping in the second sense. Then

logs(0' %) < B(E)h(1 — €){ logls()] + log[s () + ¢(s(n), s(2)]}- (3.98)
Integrating (3. 8 ) w.r.tg on [0,1], we have

/ log (6" ~n*)dé

1
/0 BE)B(L - €){ logls(2)] + logls(d) + (s(n). <(2)] bde

= log {[S(@s(@) + B(s(n), ()]} / h(E)h(1 —

IN
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Thus
e ors . 1o S hdn < o {I(@)s(0)+ 0.} | hiemir -

Consider the Jensen form of thhegeometrically lof-convex mapping in the second sense
and substituting: = (5'~%7%) andy = (3°n' %), we have

(3. 9)

h*(3)
(W < {M(@l%)Hg(@l%ﬁ)w(qéfb”)),c(@lfnfn} |

This implies
logs(VED) < B >1og{[<1fnfm<gl-fnf>
+w<<<@fb1f>>,<<@1€n€>1}.

Integrating (3. 10) w.r.tg on [0,1], we have

1 _ ( ) s(z) + o(s(Fh):s())
hQ(%) gg(@) < m/ {log ]+10g[ - ]}dx
Thus

1 _ 1 no(@) + o(s(2),5(x))
L R / log] : Jdo
1 n s(z)
< oo J, oo e
3. 11)
Combining (3. 9) and (3. 11), we have
- 1 (@) + els(8), <(@))
10g€(@) 2 — (logn—logg)/é lg[ T Jdz
71 77O @ xr
= (logn—logé)/ log[=~1d
< tog { [€(@Es(@) + (s(n).<(21} / B(E)h(1 — ),
which is the proof. O

Corollary 3.12. If L = L(n, §), then, under the assumption ®heorem 3.11we have
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Wa)TT < et [Ny

logn —logd) J; x

< [s(2)s(m)] /0 BE)(1 — £)de.

Now we will discuss some special cases of Theorem 3.11.

I If L = L(n, 0) andph(&) = &, then we have a following new result.

Theorem 3.13. Let ¢ be p-geometrically log tgs-convex mapping in the second sense on
o. Then

W) e gt [Moss(r < [is@Hs’

logn —

Il. If L = L(n,5) andph(&) = &7, then we have a following new result.

Theorem 3.14. Let ¢ be p-geometrically log Toader-convex mapping in the second sense
ong. Then

W) e ot [Moss(aar < (S@IkmIAp+ 1+ 1),

4. CONCLUSION

In this article, we have introduced two new classes of generalized convex functions,
which are known as generalized geometrically log h-convex functions in the first sense
and in the second sense. We have shown that these classes unifies several new classes
of generalized geometrically log-convex functions. We have also obtained several new
integral inequalities of Hermite-Hadamard type for these classes. Some applications are
also discussed. Applications of these concepts in different areas is an interesting problem
for further research.
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