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Abstract. Finding the solution of the fractional Bratu’s differential equa-
tions (FBDES) in this paper is based on a semi-analytical iterative ap-
proach. Temimi and Ansari introduced this method and called it TAM.
Three examples, with their approximate solutions, are presented in this
way to show its suitability, convenience, simplicity and efficiency. The
results demonstrate that the advantage of this method to other methods
is that there are no limiting conditions for nonlinear fractional differen-
tial equations with initial conditions or boundary conditions. Regarding
the help of the softwaré/ athematica, all the results have been obtained
and the calculations have been done.
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1. INTRODUCTION

A problem of the non-linear eigenvalue problemnidimensions is the Bratu differential
equations (BDES) as follows [25]

AD(t) + Nexp(P(t)) = 0, (1.1

inwhicht = (t1,t2, - ,t,), A denotes thex-dimensional Laplace operator aftg] < 1
fori=1,2,...,n, with the following initial conditions foif¢;| = 1

&(t) = 0. 1.2

In this paper, we consider one-dimensioridD) BDEs

u’(t) + Xexp(u(t)) =0, 0<t<T, (1. 3)
w(0) = ug, u(0) = ug. (1. 4)
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where)\ > 0 and¢ € R are constant functions, and the analytic solution is presented as
follows:

—2
cosh (%(t - %))
cosh (%) ’
in which ¢ is the solution ofy = v/2X cosh (%) [24, 42]. Whereas\. = 3.513830719,

the BDEs has

e one solutions when = )\,
e two solutions ifA < A,
e no solution whem > \..

u(t) = log

The Bratu’s problem has a long history and it was introduced by Bratu in 1914 [8]. The
Bratu problem appears in a large variety of application areas such as the fuel ignition model
of thermal combustion, radiative heat transfer, thermal reaction, the Chandrasekhar model
of the expansion of the universe, chemical reactor theory and nanotechnology [21, 41, 23,
32]. In [21] a summary of the history of the problem is given.

On the motivation and significance of BDEs, it should be noted that it has a key role
in many of the physical phenomena, chemical models and other sciences. Such applica-
tions include the model of thermal reaction process, the fuel ignition model of the thermal
combustion theory, the Chandrasekhar model of the expansion of the universe, the radiative
heat transfer nanotechnology and the chemical reaction theory [21, 42, 15, 32, 24].

As another instance, mathematical modeling in chemistry for the electro-spinning process
is related to BDEs via thermo-electro-hydrodynamics balance equations. Colantoni and his
co-author [10] represented a model that is the mono-dimensional Bratu equation as follows:

u”(t) + Xexp(u(t)) = 0, (1. 5)

18 E?(I-r*k E)?
e

featuring\ = , in which

r is the radius of the jet at axial coordinaXein the Fig.1,

I is the electrical current intensity,

E is the electric area in the axial direction,

p is the material density,

k is a fixed value which is only dependent on temperature with regard to incom-
pressible polymer.

Calculus and differential equations of non integer (or fractional differential equations (FDES))
have many utilizations in the real world in different branches of sciences and topics of engi-
neering. Some of these applications were offered by Sun et al. in [43]. These topics may be
included in sciences such as physics, biology, environmental and disciplines of engineering
such as control, signal processing, image processing, mechanics, dynamic systems.

We invite interested readers to check some informative books which have been written to
get a better grasp of calculus with non integer derivative and non integer integral [6, 29, 35].

In this research work, we have, for the first time, shown that it is possible to use Temimi
and Ansari method (TAM) to tackle with fractional Bratu’s differential equations (FBDES)
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FIGURE 1. Electro-spinning process setup.

of the following form:

D%u(t) + Aexp(u(t)) =0, 1<a<2, 0<t<T, (1. 6)
w(0) = ug, u'(0) = ug. 1.7
The operatoD“ denotes the Caputo’s derivative [29] of order
1

¢
D%u(t) = 3 /0 (t —s)* 'u™(s)ds, t >a, n—1<a<n, neN. (L 8)

I'(n—a

Approximate methods have been introduced and used by many researchers to solve the
BDEs and FBDEs. We will refer in the following part to the most widely used methods,
including homotopic perturbation method [16, 17, 14], neural networks [37], finite dif-
ference method [33], differential transform method [20], optimal homotopy asymptotic
method [11], wavelet method [28], Laplace transform decomposition method [27], B-
splines method [9], variational iteration technique and modified variational iteration tech-
nique [12, 18], Adomian decomposition method [42, 19], differential quadrature method
[36], Lie-group shooting method [1], reproducing kernel Hilbert space method [3, 5],
pseudo-spectral collocation method [7], Picard’s method [40], Sinc-Galerkin method [31],
Taylor wavelets method [26], radial basis functions method [25] and etc [39, 23, 30]. We
can solved BDEs and FBDEs with methods have been referred to in [2, 13, 4, 22].

As a preparation, in Section 2, we first elaborate on the methodology of TAM. In Section
3, convergence of this method and error analysis are verified. In Section 5, we provide the
applications and results.

2. THE METHODOLOGY OFTAM
To explain the TAM, assume the nonlinear differential equation below featuring bound-

ary assumptions

{ Lu(t)] + N [u(t)] + G(t) = 0, 2. 9)

B (u, ?TIZ) =0,

in which ¢ represents the independent variahlg;) is the unfamiliar functionB(x) is a
boundary operator7(¢) is a given familiar function/(x) is the linear operator any (x)
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is the nonlinear operator. For Eq. (1. 6), we consiflién(t)] = D*u(t), N [u(t)] =
Aexp(u(t)) andG(t) = 0.

The TAM will start with an initial guess(¢). To gain functionu(t) as a solution, we
solve the following system of equations boundary conditions problems:

L{ug(t)] + G(t) = 0, B (uo, &) =0,
Lui(t)] + N [uo(t)] + G(t) =0, B (uq, %)
Llug(t)] + N [ur ()] + G(t) = 0, B (us, %)

0,
0, (2. 10)

L [tuns1(t)] + N [un(t)] + G(t) =0, B (unﬂ, du5t+1) =0.

Then, byu = lim w,, the solution is given.

n—oo
3. CONVERGENCE OFTAM AND ERROR ANALYSIS

3.1. Convergence of TAM. The following topic and theorem are provided for conver-
gence of the TAM.
Consider problem 2. 9. Thus we have

Yo =uo(t)
Y1 =R (yo)
Y2 =R (Yo + 1) (3. 11)

Ynt1 =R Wo+y1+ ...+ Yns1),
in which operato® = L~! is found as follows forn > 1

m—1
RWm) =Tm = Y_ vi(t). 3. 12)
=0

TheT,, in Eqg. (3. 12) is the obtained solution by TAM

N0
=0

in whichm > 1. By an iterative process, we can get the solution as follows:

Llym(t)] + N +G(t) =0, (3. 13)

n—oo

u(t) = lUm w,(t) = Zyl
=0

The solution is in the form of the seriegt) = ioj y;(t) by using Eq. (3.12) and Eq.
(3. 13). =

Theorem 3.2. Let 8 defined in Eq(3. 12 ) be an operator from a Hilbert spadé to H.
The series solution,, (t) = f:oyi(t) converges if there existse (0, 1) such that

Ro+wy+...+yiv1) CORWo+yi+ ... +vi),
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(such thaty; 1 < 0y;)foralli=0,1,2,....

This theorem is a special case of Banach'’s fixed point theorem which is a sufficient
condition to study the convergence.

Proof. See [34]. d
Theorem 3.3. Suppose operatak considered in Eq(3. 12 )be an operator of a Hilbert

spaceH to H. If there exist® € (0, 1) such thatl|y;+1|| < 0 ||y;|| for all ¢ > iy for some

m—1
1o € N, then the series solutiory | y; is convergent.
=0

Proof. Suppose the sequencgs, } 2, specified with

Vo =0
‘/1 =Yo + Y1,
Va =yo + Y1 + Yo, (3.14)

Ve=vo+y1+y2+...+p

Itis enough to show that in the Hilbert spdR¢he sequenc{av;,}gozo is a Cauchy sequence.
For this target, suppose

Vo1 = Vol = llyptll
<yl
< 0llyp-ll

< 0"y .
Supposing thap > ¢ > iy and for everyp, ¢ € N, we have
Vo =Vall = 1(Vo = Vor) + (Voo = Vi) + .+ (Vg = Vo)

<NV = Vo)l + 1(Voa = Vo) -+ (Ve = Vo)l
<O Nlgio |+ 077 ol - 0T g

L (1—gra
=0 (L2200 ol

It arrives at lim |Vp, — V4|l = 0, with regard to th& € (0, 1). So, in the Hilbert spacg,
q— 00

sequencgV, }o¢ , is a Cauchy sequence and this implies that the series solution converges

o0
to series y;(t). O
=0
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3.4. Error analysis. In this subsection, to provide an error analysis and the convergence
criteria, we first recall the definition df2-norm on a certain domais for any continuous

functionh:
Il =/ [ w2 d.
@

In the following part, we present four convergence criteria in order to help them analyze
the error analysis for the results of computations.

e The formula for calculation of the absolute error is given by

En = |un(t) - 'U/Ea:act(t)‘ .
e The formula for calculation of the consecutive error is given by

Cn = ||tns1 — UnH .
e The formula for calculation of th&2-norm reference error with respect to the ex-
act solutions is given by

Rn = HuEzact - un” .
e The formula for calculation of the residual error is given by

Resn = [|L (un (1)) + N (un (1)) + G (#)]]-
4. APPLICATIONS AND RESULTS

Various examples in this section are now provided to help reader get familiar with the
TAM for FBDEs. The software Mathematica in these examples has been utilized for com-
putations and graphs.

Example 4.1. We offer the FBDE equation for the first example:
D%u(t) — 2exp(u(t)) =0, 0<t<1,1<a<2 (4. 15)
with the exact solution(t) = u(t) = log((cost)~2) for o = 1 and the initial conditions:
u(0) = 0, u'(0) = 0. (4. 16)
Following the TAM, according to what was formulated and presented in section 2 for
Egs(4. 15 }(4. 16 ) we can calculatesy, us, .. ., u, and then gain the approximate so-
lution ., (¢) of (4. 15)

The approximated solutions fer = 2 with u3, which are obtained via various values
of t in Table 1 is illustrated.

We may see the exact and approximate solutionvw4a 2, in Figure 2.

Example 4.2. We offer the FBDE for the second example:
Du(t) + m* exp(—u(t)) = 0, (4.17)
0<t<l,l<a<?,
via the exact solutiom(t) = log(1 + sin(nt)) for o = 2 and the initial conditions:
u(0) = 0, u'(0) = 7. (4. 18)
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TABLE 1. Comparative outcomes of Example 4.1.

t TAM FEzxact Absolute error
0.0 0.0 0.0 0.0
0.2 0.0402695 0.0402695 1.059480°
0.4 0.164458 0.164458 308.6930°°
0.6 0.38392 0.38393 9.9401510~°
0.8 0.72264 0.722781 141.1820°¢
1.0 1.22983 1.23125 1.4198603
u
1.2 *
1.0 *
0.8 * Exact
°8E * % Approx
0.4 *
H
0.2
+*
e il - ] =t

FIGURE 2. AgreemeniTAM for Eq.(4. 15) and exact solution.

The unknown coefficients, i = 1,2,...,n with the TAM, matching to section 2 for Eq.
(4. 17 )are determined.

In Figure 2 and in Table 2, the exact and third approximate answers featuring different
valuesa through applying TAM can be seen.

Exact

0.15f * Approx

L L L L
0.2 0.4 0.6 0.8 1.0

FIGURE 3. Agreement TAM for Eq.(4. 17 ) and exact solution.

Example 4.3. We offer the FBDE for the third example:
Du(t) +2exp(u(t)) =0, 0<t<1, 1<a<2, (4. 19)
including the following initial conditions and the exact solutioft) = —2 log(cosh(t)):
u(0) = 0, u'(0) = 0. (4. 20)
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TABLE 2. Approximate result of example 4.2 with various valuesof

TAM
t a=1.7 a=1.8 a=19 a=2 Exact
0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.413879 0.419304 0.408313 0.462341 0.46234
0.4 0.537005 0.551575 0.522075 0.668414 0.668371
0.6 0.426693 0.453927 0.398671 0.66901 0.668371
0.8 0.0628188 0.109603 0.0142946 0.467205 0.46234

In Figure 4 and in Table 3, the exact and third approximate solutions featuring various
valuesa through applying TAM can be seen.

- =16

- =18

“p- =2

vninm Exact

FIGURE 4. Comparative outcomes via TAM of Eq.(4. 19 ) for various
values oft anda.

TaBLE 3. Comparative outcomes of Example 4.3

t TAM Ezxact Absolute error
0.0 0.0 0.0 0.0

0.2 -0.0397361 -0.0397361 974.5470!2
0.4 -0.155907 -0.155907 220.8680~°
0.6 -0.340275 -0.340271 4.6549110~
0.8 -0.581543 -0.581507 35.71%A0 S
1.0 -0.867714 -0.867562 152.1880°

Fig.5 shows the absolute error for various value$cf ¢ < 1 for a = 2. Table 4 illus-
trates an absolute error comparison of the TAM and approximate methods: Blockystr
method (BNMJ]24], Non-polynomial spline (NP$23], Laplace transform method (LTM)
[32], Decomposition method (DM30], B-splines method (BSM9], Lie-group shooting
method (LGSMJ)1] and Sinc-collocation method (SCK88].
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FIGURE 5. Absolute error for test example 4.3.

TABLE 4. Absolute error comparison of example 4.3.

01 191x10°™ 971x10°° 213x10°° 152x107> 1.72x10°° 4.03416x10°° 6.88x10 * 0

0.3 117x107* 198x107% 6.19x107° 589x107% 449x107° 522122x107° 821x10”*  955.649<10°
05 1.88x107'% 260x107% 9.60x107° 6.98x107% 556x107° 1.4554x10~°  8.60x10~*  322.33x10°°
07 116x107'% 1.98x107% 1.19x107° 589x107° 4.49x107° 5.19455x107° 8.21x10~* 2.72804x107*

09 190x107'" 971x107? 1.09x107® 152x107% 172x107° 4.01345x10"°® 6.88x10~* 12.6937x10"*

5. CONCLUSION

We have efficiently utilized TAM to acquire approximate solution of the fractional Bratu
differential equations (FBDES). The results demonstrate that via few iterations of TAM, we
can achieve useful approximate solutions.

Finally, it should be noted that the suggested technique can be utilized for solving frac-
tional integral equation&IEs, fractional integro partial differential equatiof$PDES,
fractional differential equatiorSDEs, fractional partial differential equatio®PDES frac-
tional differential system equatiof®SEsand fractional partial differential system equa-
tionsFPDSEs
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