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Abstract. In this paper, we study the vertical, horizontal and complete
lifts of Frenet formulas given by ( 1. 1), the first acceleration pool cen-
ters and the Darboux vector defined on sp&eto its tangent space
TR?® = RS. In addition, we include all special cases of the curvature
x and torsionry of the Frenet formulas with respect to the vertical, hor-
izontal and complete lifts on spade® to its tangent spac&R3. As a
result of this transformation on spaé® to its tangent spac€R? , we
can speak about the features of Frenet formulas on $p&éeby looking

at the lifting of characteristic§T’, N, B, «, T } of the first curve on space
R3. Each curve transformation supported by examples.
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1. INTRODUCTION

In differentiable geometry, the lift method has an important role. Because, it is possible
to generalize it from the differentiable structures from any space (for exaRy)leo ex-
tended spaced’R?) using the lift function [11, 12, 16, 17, 18, 20]. Also the Riemannian
manifolds and the tangent bundles studyed a lot of authors [1, 2, 3, 8, 9, 10, 11, 14, 15] too.
Thus, the Theorem 1.1 may be extended on sp&ice its tangent spacER3.

Theorem 1.1. For a unit speed curvey(t) with curvatures<)0 on R?, the derivatives of
Frenet frame{T, N, B} are given by[7, 18]

T =kN, B'= —1yN, N' = —xT + 7,B (1. 1)
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wherek, T, N, B, 1y is the curvature, tangent vector, normal vector, binormal vector,
torsion of the curvey(t), respectively

Definition 1.2. Letag(¢) be a unit speed curve with curvatureg) (the curve is a line for

x = 0,thus we will accepk)0) on R?, and suppose thdf, B, N be respectively tangent,
binormal, normal vectors of Frenet frame on any pointgft). Then, we call that triple

{T, N, B} is Frenet frame such th4b, 7, 18]

TN = B.N=BT=0, (1.2
TT = B.B=NN-=1,
where "" is a dot (scalar) product.
The paper is structured as follows. In section 2, the vertical, horizontal and complete lifts
of a vector field defined on any manifold of dimensionm and their lift properties will
be extended to spadeR?3. In section 3, vertical lift of the Theorem 1.1 will be obtained.
Then, smilar to vertical, horizontal and complete lifts analogues of the related theorem are
given. Later, we get the first acceleration pool centers according to vertical, complete and
horizontal lifts of the Frenet formulas ahR?3. Finally, the Darboux vector with recpect to
vertical,complete and horizontal lifts GhR? are defined.
In this study, all geometric objects will be assumed to be of ofé¥sand the sum is
taken over repeated indices. Alsg,H andc denote the vertical, horizontal and complete
lifts of any differentiable geometric structures definediohto its tangent spaceR3.

2. LIFT OF VECTOR FIELD

The vertical lift of a vector field on the spacé?? to the extended R?*(= RS) is the
vector fieldév € x(TR?) given by [11, 20]:

§(f) = (€f)”

wheref¢ € F (TR?) is the complete lift of thef € F (R3).
The vector fieldt© € x(TR?) defined by

E(f) = (&), Vf € F(RY)

is called the complete lift of a vector fieldon R? to its tangent spacER3.
The horizontal lift of a vector field on spaceR?® to TR? is the vector fieldc” <
x(T'R?) determined by

eM(f) = (&f)", Vf € F(R?)

the general properties of vertical, horizontal and complete lifts of a vector fiel@®on
as follows:
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Proposition 2.1. [18, 19, 20L et be functions alff, g € F (R?) and vector fields alf, n €
x(R?). Then, the following equalities are satisfied.

E+n)Y = &+ E+n) =+ (E+n)T =T+,
(FE" = [U+& (fO° = fo€ + fo¢, €(f") =0,(f9)" =
E(fY) = €°(f°) = (E)".€(F) = (€N E7 () = (&),

) = s xrv) =se{ 5 o )

ON _ o (9N _ o (oN"_ o 0
Oz 0z’ \ oz ) Oy’ \Oze oz X B oy

wherel'3 are Christoffel symbolsl/ andT'U are respectively topolgical open sets of
R®andTR®, f, f € F(TR?),€",n",&%n% " ,n" € x(TR?),1 < o, <3.

3. LIFTING FRENET FORMULAS

In this section, we compute the vertical, complete and horizontal lifts of Frenet formulas
given by means of’, N and B Frenet vectors on a unit speed curvgt) with curvature
)0 on spacer?.

3.1. The vertical lifting Frenet formulas. LetT™ be vertical lift of tangent vectdl’ on
a unit speed curve(t). Lenght of T is given as:
[T =T°T" = (TT)" =

with respect to product rule, it follows

(T*T") =0 = (T")' T" + T*(T*) = 2T°(T") . (3. 3)
From (3. 3) (T%) is orthonormal ta™. Similarly, from (1. 2), we have
T'.N” = B"'.T" = B".N" = 0. (3. 4)

In this casel™”, NV and BY are three orthonormal Frenet vectors@f(t) = (ao(t))?
in the 6—dimensional spacé R3.

Theorem 3.2. For a unit speed curve; (t) with curvaturex¥)0 on TR3, the derivative’s
vertical lifts of the Frenet vectors are given as follows:

(T/)U — IQUNU7 (B/)U — _(T())UNU, (N/)v — _KUT'U + (TO)UBU
where(ry)? = —NV.(B’)? is the torsion of the curve; (¢).
Proof. Let(7")", (B')”, (N')" be vertical lifts ofl”, B’, N’ which are derivative’, B, N,
respectively. We already know
(T")" = (k)"N"
by definition of (NV)?, where the curvature” describes variation in direction af*.
Also, we shall find B’)” and(N')?. In particular, given

(B/)v =a (T)u —|—b1(N)U +C]_(B)U.
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Ifit can be identifiedu;, b1, c1, BY,T% andN" then it will be known(B’)?. Firstly, we
have

T°(B')Y = a,T°T° 40 T°N® 4 ¢, T°B®

= a(TT)" +b,(TN)® + ¢, (TB)®

= a1.1+b1.0+01.0

= aj.
Similarly, NV.(B")" = b; and(B)".(B’)" = ¢;. So, it follows

(B)" = (T"(B")")(T)" + (N)".(B)")(N)" + ((B)".(B")")(B)".
Now let’s identify T (B’)”. We knowT".(B)" = 0 = (T.B)", so that
(T°.(B)") =0=(T')"(B)" + T"(B')"

by vertical lift properties and the product rule.

T1;(B/>v _ _(T’)U(B)u
—(K)"(N)"(B)" (from(3.4))
al = 0
Fromo = ((N)*.(B)") = (N')".(B)" + (N)".(B)", we get
(N)".(B)" —(N)".(B)"

From(B.B)" =1 = (B)"(B)", we have
0 = ((B)(B)) +(B)"(B)
= 2B)"(B)".
Thus, we get; = (B)"(B’)" = 0. From the above(B')" is calculated as:
(B')" = —(r0)"(N)"
Now it will be obtained(N")* for (B")". So, it follows
(N')" = (T"(N')")(T)" + (N)*.(N')")(N)" + ((B)".(N")*)(B)"

From the same types of calculations, we ¢BtN)? = TYN? = 0,therefore0 =
(T")".N"+ T*(N")* and(T")” = (k)" N" so it is obtained™ (N")" = —(x)’N'N? =
—(k)¥. Also N"N? = 1, s0(N)".(N")” = 0, (B)".(N)" = 0, in this casg B')".N"+
BY(N')” = 0. Thus, itis found to bgB)".(N")? = —(B')".N? = —N".(B')" = (7)"
from definition 1.2 Hence,(N’)" is computed to be

’

(V)" = =(r)"T" + (10)"(B)".
Therfore, proof finished. O

Corollary 3.3. The Frenet formulas off R? are similar structure and apperance ®°
with respect to vertical lifts.
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Example 3.4. A circular helix curveay(t) on R? has similar appearance with the curve
a1(t) = (ap(t))” on TR3. Because of the curvature and torsionr, of a circular helix
curve is constanf6], we writex” = k and(7y)? = 79. So, the curvey (t) = (ao(t))” on
TR3 has the same and .

3.5. The complete and horizontal lifting Frenet formulas.

Theorem 3.6. For a unit speed curve(t) = (ap(t))¢ with curvatures©)0 on tangent
spacel R?, complete lifts of the derivatives of the Frenet frame are given by the following
equalities:
(T')° = RON®, (N')° = —r°T" + (19)°B", (B')" = —(10)°N*,  (3.5)
where(ry)¢ = —N°.(B’)¢ is the torsion of curve, (t), respectively.

Proof. Similarly to vertical lifts, the theorem easily proved with respect to complete lift.
]

Corollary 3.7. Let the curvaturex and torsionr, of the curveay(t) on R* are non-
constant functions (for example the general helix c(ix83). The Frenet formulas off R?

are similar structure and apperance #° with respect to complete lifts (see the formulas (
1.1)and (3.5)).

Corollary 3.8. Let the curvatures and torsionr, of the curveay(t) on R? be constant
functions (for example circular helix cur{6]). Then the curve: (t) = (ag(t))¢ onTR?
is line with respect to complete lifts.

Proof. Let the curvature: and torsionry be constant, we get® = 0 and ()¢ = 0. So,
(T')° =0, (B')* =0, (N')°=0.Then the curver,(t) = (ao(t))° onTR? is line. [

Corollary 3.9. Let the curvatures and torsionr, of the curveaq(t) on R* be constant
and non-constant functions, respectively (for example Salkowski jvd hen the curve
az(t) = (ap(t))¢ onTR? is line with respect to complete lifts.

Proof. Let the curvature: be constant, we get® = 0. So, (T )¢ = 0, (N')¢ = (1)°B¢,
(B")¢ = —(79)¢N¢ . Then the curvex(t) = (ag(t))¢ onTR? is line. a

Corollary 3.10. Let the curvatures and torsionr, of the curveay(t) on R* be non-
constant and constant functions, respectively (for example anti Salkowski[é{l)vEhen
(T")° = 0 and (N’)¢ are on the same tangent plane with respect to complete lifts.

Proof. Let the curvaturey, be constant, we géty)® = 0. So,(T')¢ = k°N¢, (N')¢ =
—k°T¢, (B')*=0.Then(T")¢ = 0 and (N’)¢ are on the same tangent plane. O

Theorem 3.11. All curvesay(t) on R? is line onT R? with respect to horizontal lifts

Proof. Let the curvature: and torsionr, of the curvea,(t) be constant or non-constant
functions onR?. For all functions onRk?, we write f = 0 with respect to horizontal
lifts. So, (k) = (70)7 = 0 and(T)¥ = (B = (N)¥ = 0 onTR®.Consecuently,
asz(t) = (ao(t))? onTR3 is line. a
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3.12. The first acceleration pool centers of the Frenet formulas o’ R3.

Definition 3.13. The first acceleration pool centers of the Frenet formulagdrare given
by the following equalitiefr]:

T' = —kT+KN+k(r)B
N = KT~ (& + (1))N — () B
B' = —k(m)T — (1) N — (70)B

wherex, T, N, B, 7y is respectively curvature, tangent vector, normal vector, binormal
vector, torsion of the curveg(t).

It is possible to generalize to the first acceleration pool centers with respect to vertical
lifts of the Frenet formulas on spad®® to its tangent spac&R3 by using lift function
[11, 12, 18, 20].

Theorem 3.14. For a unit speed curve () with curvatures:*)0 on T R3, the first accel-
eration pool centers with respect to vertical lifts of the Frenet formulag'&t are given
as:

(T )v _ _(HQ)UT’U+(H/)’L)N'U+K/’U(TO)’UB’U
(N') = —(5)"TY = ((K%)" + ((10)})")N" + ((0) )" B
(B = (8)"(10)"T" = ((10) )*N" = ((0)*)" B

where(r)?, (9)" is respectively curvature and torsion of the cunvét) on TR3.

Proof. From the derivatives of the Theorem 3.2, we get the following results
(T = (&) N"+ " (N")
= (8)"N"+&"(=K"T" + (0)" B")
= —(K))°T" + (K )’ N" + k¥(10)" B".

(N = me—meHmvavwwW
—(&)"TY = K*(K"N") + ((10)") B + (10)" (—(70)"N")
= ()T — ((K*)" + ((10)2)")N” + ((10) )" B
(B = —((r0)") N" — (r0)"(N*)

= —((10)") N" = (10)"(=K"T" + (0)" B)
= (K)"(10)"T" — ((10) )’N" — ((10)?)"B"
Therfore, proof finished. O

Similarly, we can easily prove the following theorem of the first acceleration pool cen-
ters with respect to complete lifts of the Frenet formulagat? .
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Theorem 3.15. Let x¢ be the curvature of the curve;(t) = (ag(t))¢ on TR3. The first
acceleration pool centers according to complete lifts of the Frenet formuld®hare
given as:

(T”)c _ 7(K/2)CTC ( )CNC+I<LC 7—0)0 Be
(NT) = =(&)T° = ((5*)° + ((10)*))N° + ((70) ) B
(B = (9)°(r0)°T° = ((10) )*N° = ((70)*)° B¢

whereas () = (ap(t))¢ a unit speed curve with curvatufe) on T R3.

"

Corollary 3.16. Because of the Theorem 3.11, we @&t)? = (N")¥ = (B")H = 0.
3.17. The Darboux vector with recpect to vertical,horizontal and complete lifts on
TR3.
Definition 3.18. The Darboux vectow on R? defined a$7]:
w = (19,0,k) = 70T + kB
w is a vector in the plan€l’, B) and perpendicular to the normal vector of the cunve.
vector field has the following properties:
wT = 719, wN=0,wB=x
wAT = T,wAN=N', wAB=D5".
Theorem 3.19. Let a4 (t) be a unit speed curve with curvaturés)V)0 on TR?, Thew"
Darboux vector with respect to vertical lifts dnR> defined as:
w’ = (19)",0,k")
= (10)’T" + (k)"B"

wv vector field has the following properties

w' T’ = (19), w'.N"=0, w’".B" = (k)’
W'ATY = (T)", w’AN" = (N')", w’AB" = (B)".
Proof. From Proposition 1 and Definition 3, we get the following results
WO = ((10)°T" + (k)" BY).T"
= (1)"(T.1)" + (x)"(B.T)"
= (70)".1+ (k)"0
= (70)"
w’.(N)” = ((10)"T" + ()" B").(N)"
= (70)"(T.N)" + ()" (B.N)"

0

((10)"T" + ()" B").(B)"
= (10)"(T.B)" + (r)"(B.B)"
= (k)

K

E/Q
=
I
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Theorem 3.20. If we definedv® Darboux vector with respect to complete lifts B3,
thenw® = ((10)%,0, (k)¢) = (10)°T° + (k)°B°. we get

W =w(N) = w.(B)=0
wherex andr, non-constant functions.
Proof. The results get easily from ( 1. 2 ) and Proposition 1. O

Corollary 3.21. Let the curvature: and torsionr, be constant, we get® = 0 and ()¢ =
0. So,w* = 0. Then the Darboux vectar® with respect to complete lifts GRR? is point.

Corollary 3.22. Let the curvatures and torsionr, of the curveay(t) on R* be non-
constant and constant functions, respectively. Then wevget (x)°B¢ (the Darboux
vectorw® linear dependencys® on T R3.

Corollary 3.23. Let the curvature: and torsionr, of the curven,(t) on R? be constant
and non-constant functions, respectively. Then weuget (7)<T° (the Darboux vector
w® linear dependency® onTR3.

Theorem 3.24. Darboux vectorw® with respect to horizontal lifts o' R? is a point
everytime

Proof. From Theorem 3.11, we gét)! = (15)" = 0. So,w™ = 0 onTR? with respect
to horizontal lifts. The theorem is proved. O

4. CONCLUSION

In this study, using lifting methods, we see that it may be generalized the Frenet formulas
given by (1. 1), the first acceleration pool centers and the Darboux vector defined on space
R3 to its tangent spacER® = RS.
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