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Abstract. Nowadays, the operational matrix plays an important role in
solving problems with partial, ordinary or fractional derivatives. In the
current study, we construct the operational matrix of the fractional integral
for cubic B-spline scaling function and wavelets and it applies to solve va-
rieties of the fractional integro-differential equations. To do this, firstly,
the operational matrix of fractional integral for Haar scaling functions is
constructed by using the definition of the Riemann-Liouville fractional
integral operator and the orthogonal projection of polynomial on space of
Haar scaling functions. Afterward, we obtain the operational matrix of
cubic B-spline functions from fractional order using approximation cubic
B-spline functions with Haar scaling functions and collocation method.
The principal characteristics of this method are as follows: The opera-
tional matrix of cubic B-spline functions is obtained simply because of the
useful properties of the Haar scaling functions, reducing the time, the less
occupation of the computer memory which converts to a system of linear
and nonlinear equations. Finally, we will show the validity and efficiency
of the new method by numerical examples and convergence analysis.

AMS (MOS) Subject Classification Codes: 45G99; 65D99; 65R20
Key Words: Fractional calculus, Fractional integro- differential equation, Haar scaling
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1. INTRODUCTION

Recently, investigations in engineering, science, and other fields illustrate that there
are many considerable numbers of phenomena that can be modeled by fractional calcu-
lus, in particular, the material that have the property of memory and hereditary effects,
heat conduction in fractal porous media, sliding mode control and viscoelastic damping.
Also, many articles cover progression and growing of fractional calculus in various fields
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such as bioengineering [19], mechanics[2], system identification and controls[6], Signal
Processing[32], economics[4] and etc.

The focus in the current study is on solving different varieties of linear and nonlinear
fractional integro-differential equations with a numerical method. At the first place, the
operational matrix of fractional integration is obtained for Haar scaling functions by using
the definition of the Riemann-Liouville fractional integral operator and the orthogonal pro-
jection of polynomial on space of Haar scaling functions. The Haar scaling functions have
useful properties, in particular, they are an orthonormal basis of vju and {vju}ju∈Z is a
multiresolution analysis for L2(R) [22, 5]. Afterward, the operational matrix of fractional
integration for cubic B-spline scaling functions and wavelets is presented by approximating
them with the Haar scaling functions. Our purpose is the conversion of the problem un-
der consideration into a system of linear or nonlinear equations. Because of the properties
of Haar scaling function, the conversion is easily done in the nonlinear fractional integro-
differential equations. The semi-orthogonal B-spline scaling functions and wavelets used in
the present paper have the properties of compact support, vanishing moments, smoothness
function and the representation by a closed-form expression[5]. With these assumptions,
time is reduced, computer memory is less occupied and the operation matrix is always
available.

The wavelets can be generated by transmission and dilation a function along the line
real and they are an orthogonal basis for space L2(R). Their rich mathematical content
has been led to the vast applications in a variety of fields especially in modeling multiscale
phenomena, signal processing, solving of partial differential equations, integrodifferential
equation, statistics, data and image compression, soft computing, and etc.

In recent years, various methods have been presented to solve fractional intgro-differential
equations, fractional differential equations, and fractional partial differential equations [1,
3]. The method based on the Adomian decomposition method has been presented in[24,
25, 9, 23]. Jaradat in [13] proposed the homotopy analysis method. Also, there are meth-
ods based on the variational iteration method and fractional differential transform method
in [26, 35]. An increasing number of methods are based on to convert the varieties of
fractional equations into the algebraic system by using wavelets and wavelet operational
matrices, we refer the interested reader to[21, 29, 17, 15, 16, 34, 37, 12, 33, 10, 14, 18, 11,
38, 36, 27, 28]. These articles use Legendre wavelets, Haar wavelets, Chebyshev wavelets,
B-spline wavelets, and CAS wavelets for varieties of problems including the fractional
derivative.

The structure of this paper is organized as follows: In Section 2, we introduce some
basic definitions and preliminaries of Haar scaling functions, cubic B-spline scaling func-
tions and wavelets and fractional calculus. In Section 3, we describe some properties and
results of the Haar scaling functions and relationships between them and the cubic B-spline
scaling functions and wavelets. In Section 4, the operational matrix of fractional integra-
tion for Haar scaling function is analytically obtained and then it used for construction of
the fractional operational matrix of the cubic B-spline scaling functions and wavelets. The
implementation of the proposed method and error analysis are given in Sections of 5 and
6. In Section 7, some numerical examples are presented to demonstrate the validity and
accuracy of this method.
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2. PRELIMINARIES

This section expresses some necessary definitions about Haar scaling functions, cubic
B-spline scaling functions and wavelets and the fractional calculus operators which are
used further in this study.

2.1. The Haar scaling functions. The function ϕ which is defined as follows is the func-
tion of Haar[8]:

ϕ(x) =

{
1 x ∈ [0, 1)

0 O.W
(2. 1)

we put ϕju,n(x) = (2ju+1 + 3)
1
2ϕ((2ju+1 + 3)x− n) then

ϕju,n(x) =

{
(2ju+1 + 3)

1
2 x ∈ [ n

2ju+1+3 ,
n+1

2ju+1+3 )

0 O.W
(2. 2)

The subspace of vju is considered as span{ϕju,n(x), n ∈ Z} is the space of Haar scaling
functions. It has been proved [8] that the family of {ϕju,n(x), n ∈ Z} forms an orthogonal
basis in L2(R), also this family is an orthonormal basis for vju . The sequence of vector
spaces {vju}ju∈Z is Multi Resolution Analysis(MRA) for L2(R). The properties of MRA
gives

... ⊂ vju−1 ⊂ vju ⊂ vju+1 ⊂ ...,
∪
ju∈Z

vju = L2(R) (2. 3)

(vju ⊂ vju+1 refers to vju is a proper subset of vju+1.)
Because the vju makes up an increasing chain, then∪

ju∈Z
vju = lim

ju→∞
vju (2. 4)

So it can be said vju when ju limits infinity is dense in L2(R), then any f(x) ∈ L2(R)
may be approximated by linear combination as

f(x) ≃
∑
n∈Z

cnϕju,n(x), cn = (2ju+1 + 3)
1
2

∫ n+1

2ju+1+3

n

2ju+1+3

f(x)dx (2. 5)

The condition of support (ϕju,n(x)) = [ n
2ju+1+3 ,

n+1
2ju+1+3 ], for f(x) ∈ L2[0, 1] leads to

f(x) ≃
2ju+1+2∑

n=0

cnϕju,n(x) (2. 6)

We define

c = [c0, c1, c2, ..., c2ju+1+2], γju(x) = [ϕju,0(x), ϕju,1(x), ....ϕju,2ju+1+2(x)]
T

(2. 7)
Therefore, ( 2. 6 ) in the form of a matrix can be expressed as follows:

f(x) ≃ cγju(x) (2. 8)
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2.2. The cubic B-spline scaling functions and wavelets on [0,1]. The cubic B-spline
scaling functions(Fourth-order B-spline ) with knots sequence X(j0) on [0,1] can be recur-
sively defined by the following expansion [5, 7, 14]:

BX(j0),4;k(x) =
x− xk

xk+3 − xk
BX(j0),3;k(x) +

xk+4 − x

xk+4 − xk+1
BX(j0),3;k+1(x) (2. 9)

that

BX(j0),1;k(x) = χ[xk, xk+1](x), k = 0, 1, ..., 2j0 − 1

Xj0 : x−3 = ... = x0 = 0 < x1 =
1

2j0
< x2 =

2

2j0
< ... < xk =

k

2j0
<

... < 1 = x2j0 = ... = x2j0+3,

Xj0+1 : x−3 = ... = x0 = 0 < x1 =
1

2j0+1
< x2 =

2

2j0+1
< ... < xk =

k

2j0+1

< ... < 1 = x2j0+1 = ... = x2j0+1+3.

We put

φj0,k(x) = BX(j0),4;k(x), Vj0 = span{φj0,k(x), k = −3, ..., 2j0 − 1} (2. 10)

support (φj0,k) = [2−j0k, 2−j0(k + 4)]
∩
[0, 1][5].

Define the set of indices
Qj0 = {k ∈ Z : [2−j0k, 2−j0(k + 4)]

∩
[0, 1] ̸= ∅}, j0 ∈ Z

It is obvious that minQj0 = −3 and maxQj0 = 2j0 − 1, j0 ∈ Z.
Then φj0,k for k = −3,−2,−1 are left boundary, for k = 2j0 − 3, ..., 2j0 − 1 are right
boundary and for k = 0, ..., 2j0 − 4 are inner scaling function.

Also, the semi-orthogonal cubic B-spline wavelets corresponding with this scaling func-
tions are described as follows. To facilitate our presentation, we define:

vi =φj0,i−4(x) = BX(j0),4;i−4(x), i = 1, ..., 2j0 + 3,

ui =φj0+1,i−4(x) = BX(j0+1),4;i−4(x), i = 1, ..., 2j0+1 + 3 (2. 11)

It is obvious that Vj0 is a proper subspace of Vj0+1, therefore, the orthogonal complemen-
tary subspace Wj0 of Vj0 relative to Vj0+1 according to the orthogonality conditions is
expressed by the following equations [5].

Wj0 = span{ψj0,k(x), k = −3, ..., 2j0 − 4}, ψj0,i−4(x) = wi, i = 1, ..., 2j0 (2. 12)

wi is obtained by wi =
1

∥Θi∥2
Θi that

Θi = det

(
ui ui+1 · · · u2i+6

< ui, v1 > < ui+1, v1 > · · · < u2i+6, v1 >
...

...
. . .

...
< ui, vi+6 > < ui+1, vi+6 > · · · < u2i+6, vi+6 >


)
,

i = 1, 2, 3
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Θi = det

(
u2i−4 u2i−3 · · · u2i+6

< u2i−4, vi−3 > < u2i−3, vi−3 > · · · < u2i+6, vi−3 >
...

...
. . .

...
< u2i−4, vi+6 > < u2i−3, vi+6 > · · · < u2i+6, vi+6 >


)
,

i = 4, 5

( < ui, vj >, i = k, ..., 2k+6, j = 1, ..., k+6, k = 1, ..., 5 refers to the inner product of
functions ui and vj in the Hilbert space of L2(R).)
wi, i = 4, 5 and wi, i = 1, 2, 3 are interior B-spline wavelets and left boundary B-spline
wavelets respectively, due to the symmetry property of B-spline wavelets for right boundary
B-spline wavelets we will have:

wi = ψj0,5−i(1− x), i = 6, 7, 8

Also ψj,k(x) for j > j0 is given by [20]:

ψj,k(x) =


ψj0,k(2

j−j0x) k = −3,−2,−1

ψj0,2j−7−k(1− 2j−j0x) k = 2j − 6, ..., 2j − 4

ψj0,0(2
j−j0x− k

2j0
) k = 0, ..., 2j − 7

(2. 13)

It can be proved that Wj for j ∈ Z is orthogonal complement Vj in Vj+1 also {ψj,k, k, j ∈
Z} is Riesz basis for L2(R). Therefore

L2(R) =
∑
j∈Z

⊕Wj = Vj0 ⊕
∞∑

j=j0

⊕Wj =
∪
j∈Z

Vj (2. 14)

So according to ( 2. 14 ) the orthogonal projection any function f(x) ∈ L2([0, 1]), trun-
cated in definite ju and the lowest level j0 = 3 can be expanded as follows:

f(x) ≃
2j0−1∑
k=−3

cj0,kφj0,k(x) +

ju∑
j=j0

2j−4∑
k=−3

dj,kψj,k(x) (2. 15)

With assumption

βju(x) = [φj0,−3(x), ..., φj0,2j0−1(x), ψj0,−3(x), ..., ψj0,2j0−4(x), ψj0+1,−3(x), ...,

(2. 16)

ψju,2ju−4(x)]
T , ρ = [cj0,−3, ..., cj0,2j0−1, dj0,−3, ..., dj0,2j0−4, dj0+1,−3, ...,

dju,2ju−4]

( 2. 15 ) can be rewritten in the matrix form as

f(x) ≃ ρβju(x) (2. 17)
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(a) (b)

FIGURE 1. a. Scaling function of cubic B-spline in V3 b. Wavelet cubic
B-spline in W3

2.3. The fractional calculus. In this part, we present some necessary definitions and
mathematical preliminaries of the fractional calculus theory such as Riemann-Liouville
and Caputo fractional derivative[2, 6].
The Riemann-Liouville fractional integral of α order is defined as

aI
α
xφ(x) =

1

Γ(α)

∫ x

a

φ(t)

(x− t)1−α
dt, x > a, ℜ(α) > 0. (2. 18)

The Caputo fractional derivative is expressed by:

CaD
α
t φ(t) =

1

Γ(n− α)

∫ t

a

φ(n)(τ)

(t− τ)α−n+1
dτ, t ∈ R+, α /∈ N. (2. 19)

In addition, the relationship between the Riemann-Liouvill integral and Caputo derivative
for n− 1 < α ≤ n and φ(t) ∈ C⌈α⌉[0, 1] is described by:

0I
α
t C0D

α
t φ(t) = φ(t)−

⌈α⌉−1∑
j=0

tj

j!
(
dj

dtj
f)(0) (2. 20)

(⌈α⌉ referred to the smallest integer greater than or equal to α)

3. THE PROPERTIES OF HAAR SCALING FUNCTIONS AND THE IMPORTANT
RELATIONSHIPS BETWEEN THEM AND CUBIC B-SPLINES

In this section, some specifications and results of Haar scaling functions in vju space
used for the easy accomplishment of the nonlinear fractional integro- differential equation
are presented, subsequently, we describe the important relationships between the Haar scal-
ing functions of vju space and cubic B-spline scaling functions and wavelets.
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Lemma 3.1. Suppose that f(x) ≃ cγju(x) is the approximation of the function f(x) ∈
L2[0, 1] then we have for any integer number k ≥ 2

[f(x)]k ≃ 1

(2ju+1 + 3)
1
2

[((2ju+1 + 3)
1
2 c0)

k, ((2ju+1 + 3)
1
2 c1)

k, ..., (3. 21)

((2ju+1 + 3)
1
2 c2ju+1+2)

k]γju(x)

Proof. At first we prove that it is true for k = 2. By using equations ( 2. 2 ) and ( 2. 5 ) we
have:

γju(x) =


ϕju,0(x) 0 · · · 0

0 ϕju,1(x) · · · 0
...

...
. . .

...
0 0 · · · ϕju,2ju+1+2(x)


then

[f(x)]2 ≃ f(x)f(x)T = cγju(x)γ
T
ju(x)c

T = [c0, c1, c2, ..., c2ju+1+2]
ϕ2ju,0(x) 0 · · · 0

0 ϕ2ju,1(x) · · · 0
...

...
. . .

...
0 0 · · · ϕ2ju,2ju+1+2(x)

 [c0, c1, c2, ..., c2ju+1+2]
T

we put

ηju(x) =γju(x)γ
T
ju(x) = [ϕ2ju,0(x), ϕ

2
ju,1(x), ..., ϕ

2
ju,2ju+1+2(x)]

T (3. 22)

=(2ju+1 + 3)
1
2 γju(x)

therefore

[f(x)]2 ≃ [c20, c
2
1, ..., c

2
2ju+1+2]ηju(x) =

1

(2ju+1 + 3)
1
2

[((2ju+1 + 3)
1
2 c20)

2,

((2ju+1 + 3)
1
2 c21)

2, ..., ((2ju+1 + 3)
1
2 c22ju+1+2)

2]γju(x)

then, for k = 2 it is true. Now, we prove that is true for k + 1.

[f(x)]k+1 ≃ [f(x)]kf(x)T

=
1

(2ju+1 + 3)
1
2

[((2ju+1 + 3)
1
2 c0)

k, ((2ju+1 + 3)
1
2 c1)

k, ...,

((2ju+1 + 3)
1
2 c2ju+1+2)

k]γju(x)γ
T
ju(x)[c0, c1, c2, ..., c2ju+1+2]

T

According to ( 3. 22 ) are obtained:

[f(x)]k+1 ≃ 1

(2ju+1 + 3)
1
2

[((2ju+1 + 3)
1
2 c0)

k+1, ((2ju+1 + 3)
1
2 c1)

k+1, ...,

((2ju+1 + 3)
1
2 c2ju+1+2)

k+1]γju(x)

so using mathematical induction it can be shown that ( 3. 21 ) is established. �
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Theorem 3.2. Suppose that h(x) is an analytic function, prove that the function h(f(x))
can be expanded in the space of vju as

h(f(x)) ≃ 1

(2ju+1 + 3)
1
2

[h((2ju+1 + 3)
1
2 c0), h((2

ju+1 + 3)
1
2 c1), ..., (3. 23)

h((2ju+1 + 3)
1
2 c2ju+1+2)]γju(x)

Proof. Because h(x) is an analytic function, then Maclaurin’s series expansion is available
in the form of

h(x) =
∞∑
k=0

h(k)(0)

k!
xk

According to Lemma 3.1 and equation ( 3. 21 ) we have
h(f(x)) ≃

∑∞
k=0

h(k)(0)
k! (f(x))k = 1

(2ju+1+3)
1
2

∑∞
k=0

h(k)(0)
k! [((2ju+1 + 3)

1
2 c0)

k,

((2ju+1 + 3)
1
2 c1)

k, ..., ((2ju+1 + 3)
1
2 c2ju+1+2)

k]γju(x) =
1

(2ju+1+3)
1
2

[∑∞
k=0

h(k)(0)
k!

((2ju+1 + 3)
1
2 c0)

k,
∑∞

k=0
h(k)(0)

k! ((2ju+1 + 3)
1
2 c1)

k, ...,
∑∞

k=0
h(k)(0)

k! ((2ju+1 + 3)
1
2

c2ju+1+2)
k
]
γju(x) =

1

(2ju+1+3)
1
2
[h((2ju+1 + 3)

1
2 c0), h((2

ju+1 + 3)
1
2 c1), ...,

h((2ju+1 + 3)
1
2 c2ju+1+2)]γju(x) �

Now, by using the collocation points, the vector of βju(x) (cubic B-spline scaling func-
tions and wavelets) may be approximated by the vector of γju(x) (Haar scaling functions)
and conversely. For this approximation, we consider the collocation points as follows:

xi =
2i− 1

2(2ju + 3)
, (i = 1, 2, ..., 2ju + 3) (3. 24)

The cubic B-spline scaling fuctions and wavelets ∆ju can be expressed by:

∆ju =
[
βju(x1), βju(x2), ..., βju(xju)

]
(3. 25)

We put

βju(x) = Aγju(x)

With respect to the Haar scaling functions in space of vju are incompatible and each of
these collocation points are located in an interval, with some simple calculations it can be
concluded that

A =
1

(2ju+1 + 3)
1
2

∆ju

Therefore

βju(x) =
1

(2ju+1 + 3)
1
2

∆juγju(x) (3. 26)

We have to solve the system ( 3. 26 ) by using the Gauss elimination method, consequently,
the matrix ∆−1

ju
of the inverse matrix ∆ju are obtained. Therefore,

γju(x) = (2ju+1 + 3)
1
2∆−1

ju
βju(x) (3. 27)
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Now we apply the equations of ( 3. 21 )-( 3. 27 ) to describe the useful properties of the cu-
bic scaling fuctions and Wavelets that will be useful in solving the linear and nonlinear frac-
tional equations. By assuming C = [c0, c1, c2, ..., c2ju+1+2],D = [d0, d1, d2, ..., d2ju+1+2]
and F is an analytic function, we define

CD =
1

(2ju+1 + 3)
1
2

[(2ju+1 + 3)c0d0, (2
ju+1 + 3)c1d1, ..., (3. 28)

(2ju+1 + 3)c2ju+1+2d2ju+1+2]

F (C) =
1

(2ju+1 + 3)
1
2

[F ((2ju+1 + 3)
1
2 c0), F ((2

ju+1 + 3)
1
2 c1), ..., (3. 29)

F ((2ju+1 + 3)
1
2 c2ju+1+2)]

We assume f(x) ≃ Cβju(x) is the expansion of f(x), by using cubic B-spline scaling
fuctions and wavelets and with respect to the equations of ( 3. 23 ), ( 3. 26 ), ( 3. 27 ) and (
3. 29 ), we obtain:

F (f(x)) ≃F (Cβju(x)) ≃ F (
1

(2ju+1 + 3)
1
2

C∆juγju(x))

≃F (C̄)γju(x)) ≃ (2ju+1 + 3)
1
2F (C̄)∆−1

ju
βju(x),

that C̄ =
1

(2ju+1 + 3)
1
2

C∆ju

Therefore

F (f(x)) ≃ (2ju+1 + 3)
1
2F (C̄)∆−1

ju
βju(x) (3. 30)

Moreover, if g(x) ≃ Dβju(x) is expansion of g(x), then, according to the equations of ( 3.
21 ), ( 3. 26 ), ( 3. 27 ) and ( 3. 28 ), we have

f(x)g(x) ≃ Cβju(x)Dβju(x) ≃
1

(2ju+1 + 3)
1
2

C∆juγju(x)
1

(2ju+1 + 3)
1
2

D∆juγju(x) ≃

C̄γju(x)D̄γju(x) ≃ C̄D̄γju(x) ≃ (2ju+1 + 3)
1
2 C̄D̄∆−1

ju
βju(x),

that C̄ =
1

(2ju+1 + 3)
1
2

C∆ju and D̄ =
1

(2ju+1 + 3)
1
2

D∆ju

Thus

f(x)g(x) ≃ (2ju+1 + 3)
1
2 C̄D̄∆−1

ju
βju(x) (3. 31)

Also, from relations ( 3. 30 ) and ( 3. 31 ), with the assumption of the analyticity of G, it
can be concluded that:

F (f(x))G(g(x)) ≃ (2ju+1 + 3)
1
2F (C̄)G(D̄)∆−1

ju
βju(x)
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4. THE OPERATIONAL MATRIX OF THE RIEMANN-LIOUVILLE FRACTIONAL
INTEGRAL FOR CUBIC B-SPLINE SCALING FUNCTIONS AND WAVELETS

In this section, at first the operational matrix of the Riemann-Liouville fractional in-
tegral for the Haar scaling functions (γju(x)), that produce space of vju , are obtained in
a way that will be mentioned, then, by using relationships between Haar scaling func-
tions and cubic B-spline scaling functions and wavelets derive the operational matrix of
Riemann-Liouville fractional integral for cubic B-spline scaling functions and wavelets.
The following theorem gives us the operational matrix of the Haar scaling functions from
α order.

Theorem 4.1. Suppose aI
α
x is operator of the Riemann-Liouville fractional integral from α

order and γju(x) is the vector of the Haar scaling functions in space of vju also aI
α
x γju(x) =

Gαγju(x) then Gα is called the operational matrix of the Riemann-Liouville fractional in-
tegral for the Haar scaling functions from α order and it is obtained from the following
relation.

Gα ≃ 1

Γ(α+ 2)(2ju+1 + 3)α


ω1 ω2 ω3 · · · ω2ju+1+3

0 ω1 ω2 · · · ω2ju+1+2

0 0 ω1 · · · ω2ju+1+1
...

...
. . .

...
0 0 0 · · · ω1

 (4. 32)

that

ω1 = 1, ωs = sα+1 − 2(s− 1)α+1 + (s− 2)α+1,

(s = 2, 3, ..., 2ju+1 + 3− t), (t = 0, 1, ..., 2ju+1 + 2)

Proof. By substituting γju(x) instead φ(x) in equation ( 2. 18 ), we have:

0I
α
x γju(x) =

1

Γ(α)

∫ x

0

(x− t)α−1γju(t)dt = Gαγju(x), 0 ≤ x < 1 (4. 33)

By using the definition of convolution, from the equation of ( 4. 33 ) it can be concluded:

0I
α
x γju(x) =

1

Γ(α)
xα−1 ∗ γju(x) (4. 34)

The right side of equation ( 4. 34 ) is a matrix from order of 1× 2ju+1 + 3 that each entry
of matrix is as follows:

0I
α
x ϕju,t(x) =

1

Γ(α)
xα−1 ∗ ϕju,t(x) (4. 35)

=
(2ju+1 + 3)

1
2

Γ(α)
xα−1 ∗ (u t

2ju+1+3
(x)− u t+1

2ju+1+3

(x))
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that ua(x) is a unit step function and t = 0, 1, ..., 2ju+1 + 2
by taking Laplace transform on both sides of the equation ( 4. 35 ), we have

L[0I
α
x ϕju,t(x)] =

(2ju+1 + 3)
1
2

Γ(α)
L[xα−1]]L[(u t

2ju+1+3
(x)− u t+1

2ju+1+3

(x))] (4. 36)

=
(2ju+1 + 3)

1
2

Γ(α)

Γ(α)

sα
1

s
[e

−t

2ju+1+3
s − e

− t+1

2ju+1+3
s
]

=
(2ju+1 + 3)

1
2

sα+1
e

−t

2ju+1+3
s − (2ju+1 + 3)

1
2

sα+1
e
− t+1

2ju+1+3
s

If we get the inverse Laplace transform from equation ( 4. 36 ), then the following equation
will be obtained.

0I
α
x ϕju,t(x) =

(2ju+1 + 3)
1
2

Γ(α+ 1)

[
(x− t

2ju+1 + 3
)αu t

2ju+1+3
(x)− (4. 37)

(x− t+ 1

2ju+1 + 3
)αu t+1

2ju+1+3

(x)
]

According to the space of vju , we expand the right side of equation ( 4. 37 ), therefore

(x− t

2ju+1 + 3
)αu t

2ju+1+3
(x) ≃ Πγju(x), Π = [π0, π1, ..., π2ju+1+2] (4. 38)

It can be derived from equations of ( 2. 5 ) and ( 4. 38 ) that

πk =

∫ k+1

2ju+1+3

k

2ju+1+3

(x− t

2ju+1 + 3
)u t

2ju+1+3
(x)φju,k(x)dx

= (2ju+1 + 3)
1
2

∫ k+1

2ju+1+3

k

2ju+1+3

(x− t

2ju+1 + 3
)u t

2ju+1+3
(x)dx

=
(2ju+1 + 3)

1
2

α+ 1

(
(
k + 1− t

2ju+1 + 3
)α+1 − (

k − t

2ju+1 + 3
)α+1

)

for k ≥ t and according to definition of (u t

2ju+1+3
(x)) for k < t we have: πk = 0.Thus

πk =

 (2ju+1+3)
1
2

α+1

(
( k+1−t
2ju+1+3 )

α+1 − ( k−t
2ju+1+3 )

α+1
)

k ≥ t

0 k < t

Similarly, if we put

(x− t+ 1

2ju+1 + 3
)αu t+1

2ju+1+3

(x) ≃ Π
′
γju(x), Π

′
= [π

′

0, π
′

1, ..., π
′

2ju+1+2] (4. 39)

where

π
′

k =

 (2ju+1+3)
1
2

α+1

(
( k−t
2ju+1+3 )

α+1 − ( k−t−1
2ju+1+3 )

α+1
)

k ≥ t+ 1

0 k < t+ 1
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Therefore, it is obvious that the vectors Π and Π
′

in equations of ( 4. 38 ) and ( 4. 39 ) are
as follows:

Π = [0, 0, ..., ν1, ν2, ..., ν2ju+1+3−t], Π
′
= [0, 0, ..., ν1, ν2, ..., ν2ju+1+2−t]

(4. 40)

that ν1 =
(2ju+1 + 3)

1
2

(α+ 1)(2ju+1 + 3)α+1
and νs =

(2ju+1 + 3)
1
2

(α+ 1)(2ju+1 + 3)α+1
(sα+1 − (s− 1)α+1)

The equations ( 4. 37 ) and ( 4. 40 ) conclude that

0I
α
x ϕju,t(x) ≃

(2ju+1 + 3)
1
2

Γ(α+ 1)
[0, 0, ..., 0, ν1, ν2 − ν1, ..., ν2ju+1+3−t − ν2ju+1+2−t]

(4. 41)

≃ 1

Γ(α+ 2)(2ju+1 + 3)α
[0, 0, ..., 0, ω1, ω2, ..., ω2ju+1+3−t]

According to the above concepts, the matrix Gα is represented by equation ( 4. 32 ). �

Now, by from the operational matrix of the Riemann-Liouville fractional integral for the
Haar scaling functions, which is represented by equation ( 4. 32 ), we obtain the operational
matrix of the Riemann-Liouville fractional integral for cubic B-spline scaling functions
and wavelets. For this purpose, we assume Gβ

α is the operational matrix of the Riemann-
Liouville fractional integral from α order for cubic B-spline scaling functions and wavelets,
then

0I
α
x βju(x) ≃ Gβ

αβju(x) (4. 42)

Employing equations ( 3. 26 ), ( 3. 27 ) and ( 4. 32 ), we get

0I
α
x βju(x) ≃0I

α
x

1

(2ju+1 + 3)
1
2

∆juγju(x) ≃
1

(2ju+1 + 3)
1
2

∆ju 0I
α
x γju(x) (4. 43)

≃ 1

(2ju+1 + 3)
1
2

∆juGαγju(x) ≃ ∆juGα∆
−1
ju
βju(x)

Thus, from equations ( 4. 42 ) and ( 4. 43 ), we have

Gβ
α ≃ ∆juGα∆

−1
ju

(4. 44)

Therefor

0I
α
x βju(x) ≃ Gβ

αβju(x) ≃ ∆juGα∆
−1
ju
βju(x) (4. 45)

5. SOLVING THE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY THE
PROPOSED METHOD

In this section, we use the cubic B-spline operational matrix of fractional order, de-
scribed in the previous section, for solving a generalized form from the nonlinear fractional
Volterra integro-differential equation. Also, in this method, we apply some relationships
between the Haar scaling functions and cubic B-spline scaling functions and wavelets. The
proposed method can be similarly used for the varieties of fractional order equations.
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We consider a generalized form from the nonlinear fractional Volterra integro-differential
equation with initial conditions as:

C0D
α
xy(x) = p(x)F (y(x)) + f(x) + λ

∫ x

0

k(x, t)G(y(t))dt, (5. 46)

y(0) = y0, y
′
(0) = y1, ..., y

⌈α−1⌉(0) = y⌈α−1⌉,

Without the loss of generality, we can assume 0 ≤ x ≤ 1, the functions of f(x), p(x) and
k(x, t) are continuous. Also F and G are analytic functions.

By using the fractional operational matrix, we transform the equation ( 5. 46 ) into
a system of nonlinear algebraic equations. So, C0D

α
xy(x) is approximated by βju(x) as

follows:

C0D
α
xy(x) = Sβju(x) (5. 47)

where the vector of S is unknown coefficients and it must be obtained. We apply aI
α
x

integral operation on the both sides ( 5. 47 ) and by using the equations ( 2. 20 ) and ( 4.
42 ), we will have:

y(x)−
⌈α⌉−1∑
k=0

y(k)(0)

k!
xk ≃ SGβ

αβju(x) (5. 48)

we put h(x) = −
∑⌈α⌉−1

k=0
y(k)(0)

k! xk. For simplicity, we approximate the function h(x)
with βju(x) as:

h(x) ≃ κβju(x), where κ ≃ H∆−1
ju

and H = [h(x1), h(x2), ..., h(x2ju+1+3)] (5. 49)

(xi, i = 1, 2, ..., 2ju+1+3) are collocation points expressed by equation ( 3. 24 ). Expres-
sions( 5. 48 ) and ( 5. 49 ) yield

y(x) ≃ Σβju(x), where Σ ≃ SGβ
α +H∆−1

ju
(5. 50)

From equation ( 3. 30 ), we get

G(y(x)) ≃ (2ju+1 + 3)
1
2G(Σ̄)∆−1

ju
βju(x), (5. 51)

F (y(x)) ≃ (2ju+1 + 3)
1
2F (Σ̄)∆−1

ju
βju(x)

Also, by substituting the equations ( 5. 47 ), ( 5. 50 ) and ( 5. 51 ) into equation ( 5. 46 ),
we get

Sβju(x) = f(x) + (2ju+1 + 3)
1
2F (Σ̄)∆−1

ju
p(x)βju(x)+ (5. 52)

λ(2ju+1 + 3)
1
2G(Σ̄)∆−1

ju

∫ x

0

k(x, t)βju(t)dt

Equation ( 5. 52 ) is a nonlinear system. We put collocation points, that were defined
by equation ( 3. 24 ) instead of x into above equation, hence it converts to a nonlinear
system of algebraic equations with 2ju+1 + 3 unknowns. By solving this nonlinear system
with the Newton iteration method, the unknown coefficients S are obtained and y(x) is
eventually derived from the equation ( 3. 24 ). On the other hand, by rewriting g(x) =∫ x

0
k(x, t)βju(t)dt in the form κβju(x), where κ ≃ T∆−1

ju
and
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T = [g(x1), g(x2), ..., g(x2ju+1+3)], and by assuming p(x) = 1, the equation ( 5. 46 ) will
be(
S− (2ju+1+3)

1
2F (Σ̄)∆−1

ju
−λ(2ju+1+3)

1
2G(Σ̄)∆−1

ju
T∆−1

ju

)
βju(x) = f(x) (5. 53)

By multiplying the dual of cubic B-spine scaling functions and wavelets on both sides
equation ( 5. 53 ), it can be solved by the Galerkin method.

6. CONVERGENCE ANALYSIS

In this section, at first, the error upper bound for equation ( 5. 46 ) is investigated when
y(x) were approximated by cubic B-spline scaling functions and wavelets. Then, we show
that this proposed method is convergence. At the end, the existence and uniqueness of the
solution of equation ( 5. 46 ) are proved.

Theorem 6.1. For the m-th order B-spline wavelet suppose yju is the approximate solution
of the exact solution y, then error upper bound of approximation is given by

∥y − yju∥ ≤ Cm2−jum∥y(m)∥2 , Cm =

√
B2m

(2m)!
(6. 54)

Where B2m is Bernoulli number of order 2m [20].

The following theorem investigates the error upper bound and convergence for the ap-
proximate solution.

Theorem 6.2. Suppose that M1 = max |F ′
(x)|, M2 = max |G′

(x)|,
M3 = maxx∈[0,1] |p(x)|, M4 = max(x,t)∈[0,1]×[0,1] |k(x, t)| ,F and G are analytic func-
tions, ỹju(x) is approximate solution and y(x) is exact solution then the error upper bound
for y(x), that applies in ( 5. 46 ) equation, can be given from the following equation.

|y(x)− ỹju(x)| ≤ Cm2−jum∥y(m)∥2
( M1M3

Γ(α+ 1)
+

M2M4

Γ(α+ 2)

)
(6. 55)

also we have limju→∞ ỹju(x) = y(x)

Proof. Since fuctions F and G is analytic functions, then

|F (y(x))− F (ỹju(x))| ≤M1|y(x)− ỹju(x)| (6. 56)

|G(y(x))−G(ỹju(x))| ≤M2|y(x)− ỹju(x)|

By implementation the operation of aI
α
x on both sides ( 5. 46 ) also by using the definition

of fractional integration ( 2. 18 ) [30], equation ( 2. 20 ) and the mentioned concept in the
previous section, we obtain:

y(x) =h(x) +
1

Γ(α)

∫ x

0

(x− t)α−1p(t)F (y(t))dt+
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt

(6. 57)

+
1

Γ(α+ 1)

∫ x

0

(x− t)αk(x, t)G(y(t))dt,
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that h(x) =
∑⌈α⌉−1

j=0
xj

j! (
dj

dtj y)(0).
Also the pproximate solution ỹju(x) establishes the following equation:

ỹju(x) =h(x) +
1

Γ(α)

∫ x

0

(x− t)α−1p(t)F (ỹju(t))dt (6. 58)

+
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt+
1

Γ(α+ 1)

∫ x

0

(x− t)αk(x, t)G(ỹju(t))dt,

We subtract equation ( 6. 58 ) from ( 6. 57 ) as:

y(x)− ỹju(x) =
1

Γ(α)

∫ x

0

(x− t)α−1p(t)
(
F (y(t))− F (ỹju(t))

)
dt

+
1

Γ(α+ 1)

∫ x

0

(x− t)αk(x, t)
(
G(y(t))−G(ỹju(t))

)
dt

with respect to the equations ( 6. 54 ), ( 6. 56 ), x ∈ [0, 1] and the assumption of theorem
we obtain:

|y(x)− ỹju(x)| ≤
1

Γ(α)
Cm2−jumM1M3∥y(m)∥2

∫ x

0

(x− t)α−1dt

+
1

Γ(α+ 1)
Cm2−jumM2M4∥y(m)∥2

∫ x

0

(x− t)αdt

≤ 1

Γ(α)
Cm2−jumM1M3∥y(m)∥2

1

α

+
1

Γ(α+ 1)
Cm2−jumM2M4∥y(m)∥2

1

α+ 1

=Cm2−jum∥y(m)∥2
( M1M3

Γ(α+ 1)
+

M2M4

Γ(α+ 2)

)
and it is clear if ju → ∞ then ỹju(x) → y(x). �

Theorem 6.3. Suppose that the assumption of Theorem (6.2) are established. Then equa-
tion ( 5. 46 ) have the unique solution provided M1M3 +M2M4 < Γ(α+ 1)

Proof. With the definition of integral operator A : C[0, 1] → C[0, 1] as follows:

Ay(x) =h(x) + 1

Γ(α)

∫ x

0

(x− t)α−1p(t)F (y(t))dt+
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt

+
1

Γ(α+ 1)

∫ x

0

(x− t)αk(x, t)G(y(t))dt,

that h(x) =
∑⌈α⌉−1

j=0
xj

j! (
dj

dtj y)(0).
Suppose ỹju(x) ∈ C[0, 1] is an approximation of y ∈ C[0, 1]; therefore,

Ay(x)−Aỹju(x) =
1

Γ(α)

∫ x

0

(x− t)α−1p(t)
(
F (y(t))− F (ỹju(t))

)
dt

+
1

Γ(α+ 1)

∫ x

0

(x− t)αk(x, t)
(
G(y(t))−G(ỹju(t))

)
dt
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with respect to the equation ( 6. 56 ), x ∈ [0, 1] and the assumption of theorem we obtain:

|Ay(x)−Aỹju(x)| ≤
1

Γ(α)
M1M3∥ỹju − y∥∞

∫ x

0

(x− t)α−1dt

+
1

Γ(α+ 1)
M2M4∥ỹju − y∥∞

∫ x

0

(x− t)αdt

≤ 1

Γ(α)
M1M3∥ỹju − y∥∞

1

α

+
1

Γ(α+ 1)
M2M4∥ỹju − y∥∞

1

α+ 1

=
( M1M3

Γ(α+ 1)
+

M2M4

Γ(α+ 2)

)
∥ỹju − y∥∞

≤
(
M1M3 +M2M4

) 1

Γ(α+ 1)
∥ỹju − y∥∞

We put Lp,K,M1,M2,α =
(
M1M3 + M2M4

)
1

Γ(α+1) . Then, according to assumption
Lp,K,M1,M2,α < 1.
due to the Banach contraction mapping theorem the equation of ( 5. 46 ) has unique answer
on C[0, 1]. �

7. NUMERICAL EXAMPLES

In this section, to illustrate the validity and applicability of the proposed method in
this study, we solve the different varieties of fractional integro-differential equations and
compare proposed method with the other methods in various paper. Also, we use the root
mean square error to show the accuracy of approximation as:

∥ eju(x) ∥2 =
(∫ 1

0

e2ju(x)dx
) 1

2

=
(∫ 1

0

(y(x)− ỹju(x))
2dx
) 1

2

(7. 59)

≃

(
1

N

N∑
i=0

(y(xi)− ỹju(xi))
2

) 1
2

To solve these examples, the mathematica10.4 software has been used.
Example 1. Consider the following nonlinear fractional Volterra integro-differential equa-
tion

C0D
3
2
x y(x) =720(x− sin(x))− 120x3 + 6x5 +

2

Γ(1.5)
x

1
2

−
∫ x

0

cos(x− t)(y(t))3dt,

with initial conditions y(0) = y
′
(0) = 0.

The exact solution of this problem is y(x) = x2. We solve this example by the proposed
method. The numerical results for ju = 4 are shown in Fig. 2 and Table 1. The absolute
error and root mean square error have been compared with the proposed method in [27], for
the method of [27] ∥ e(x) ∥2= 5.97586 × 10−4, but with this our method is ∥ e4(x) ∥2=
4.72951× 10−4. These results illustrate that the accuracy of our numerical solutions are a
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TABLE 1. The results for example 1 by cubic B-spline scaling functions
and wavelets(ju = 3, 4).

xi Exact solution Absolute error of this Absolute error of this Absolute error
propsed method (ju = 3) proposed method (ju = 4) the method of [27]

0.1 0.001 9.90985 × 10−4 2.85175 × 10−4 2.7975 × 10−4

0.2 0.004 1.24 × 10−3 3.49151 × 10−4 5.4594 × 10−4

0.3 0.09 1.4268 × 10−3 3.97966 × 10−4 6.3356 × 10−4

0.4 0.16 1.58273 × 10−3 4.38991 × 10−4 5.5630 × 10−4

0.5 0.25 1.71901 × 10−3 4.74974 × 10−4 6.0926 × 10−4

0.6 0.36 1.84071 × 10−3 5.07168 × 10−4 6.7714 × 10−4

0.7 0.49 1.9497 × 10−3 5.36019 × 10−4 8.7750 × 10−4

0.8 0.64 2.04533 × 10−3 5.6132 × 10−4 9.1878 × 10−4

0.9 0.81 2.12435 × 10−3 5.82158 × 10−4 7.9774 × 10−4

1.0 1.00 .218021 × 10−3 5.80052 × 10−4 7.9890 × 10−4

few better than the numerical solutions obtained in the method of [27]. Also, by comparing
the absolute error of yju for ju = 3, 4 in Table 1, it can be concluded that the error term
becomes smaller as ju increases.

(a) (b)

FIGURE 2. a. Comparison between the approximation and exact solu-
tion b. Absolute error

Example 2. Consider the linear fractional Fredholm integro-differential equation

C0D
1
2
x y(x) = 2

√
x

π
+

3x
√
π

4
− 9

10
+

∫ 1

0

y(t)dt

subject to the initial condition y(0) = 0.
The exact solution is y(x) = x + x

3
2 . This problem has been solved by the proposed

method for ju = 4. Table 2 shows the exact and approximate solutions and absolute error



62 Hamid Mesgarani, Hamid Safdari, Abolfazl Ghasemian and Yones Esmaeelzade

TABLE 2. The results for example 2 by cubic B-spline scaling functions
and wavelets(ju = 4).

ti Exact solution yju=4 Approximat solution Absolute error of Absolute error
the method of [31] this proposed method the method of [31]

0.1 0.131623 0.132957 0.1333 1.3338 × 10−3 1.7 × 10−3

0.2 0.289443 0.290853 0.2911 1.40988 × 10−3 1.7 × 10−3

0.3 0.464317 0.465853 0.4661 1.53657 × 10−3 1.8 × 10−3

0.4 0.652982 0.654648 0.6549 1.6655 × 10−3 1.9 × 10−3

0.5 0.853553 0.855343 0.8556 1.78953 × 10−3 2.0 × 10−3

0.6 1.06476 1.06667 1.0670 1.90756 × 10−3 2.2 × 10−3

0.7 1.28566 1.28768 1.2880 2.01979 × 10−3 2.3 × 10−3

0.8 1.51554 1.51767 1.5180 2.12674 × 10−3 2.5 × 10−3

0.9 1.75381 1.75604 1.7564 2.22898 × 10−3 2.6 × 10−3

1.0 2.00 2.00233 2.0027 2.32833 × 10−3 2.7 × 10−3

of Example 2 by this proposed method and the method of [31] in some arbitrary points. The
root mean square error with our method is ∥ e4(x) ∥2= 1.76336 × 10−3 and the method
of [31] is ∥ e(x) ∥2= 6.9 × 10−3. By comparing the two methods, it can be seen that
our method has less error, therefore, it is more accurate. This example has been solved by
using second kind Chebyshev wavelet(k = 4,M = 4) in [31]. Also Fig. 3 shows that the
numerical solution is in a very good agreement with the exact solution.

(a) (b)

FIGURE 3. a. Comparison between the approximation and exact solu-
tion b. Absolute error

Example 3. Consider the nonlinear fractional Fredholm integro-differential equation

C0D
5
6
x y(x) =

3

Γ( 16 )

(
2 6
√
x− 432

91

6
√
x13
)
+ x
(
248e− 674

)
+

∫ 1

0

xet(y(t))2dt,
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TABLE 3. The results for example 3 by cubic B-spline scaling functions
and wavelets(ju = 4).

ti Exact solution yju=4 Absolute error Absolute error
proposed method (ju = 4) the method of [28]

0.1 0.099 0.0996469 6.46882 × 10−4 7.3210 × 10−4

0.2 0.192 0.192525 5.24887 × 10−4 7.3841 × 10−4

0.3 0.273 0.273451 4.50886 × 10−4 6.7841 × 10−4

0.4 0.336 0.336395 3.95241 × 10−4 5.8431 × 10−4

0.5 0.375 0.37535 3.50174 × 10−4 5.5893 × 10−4

0.6 0.384 0.384312 3.12495 × 10−4 5.7452 × 10−4

0.7 0.375 0.357281 2.8058 × 10−4 5.3282 × 10−4

0.8 0.288 0.288253 2.53487 × 10−4 5.8422 × 10−4

0.9 0.171 0.171231 2.3062 × 10−4 6.4470 × 10−4

1.0 0.000 0.000211818 2.11818 × 10−4 6.7731 × 10−4

The exact solution and initial condition are y(x) = x−x3 and y(0) = 0, respectively. Fig. 4
shows the behavior of the approximate and exact solution and the graphs of the absolute
error of the proposed method. Also, it can be seen the exact and approximate solutions,
and absolute error for some arbitrary points. The root mean square error with our method
is ∥ e4(x) ∥2= 3.65707×10−4 and the method of [28] is ∥ e(x) ∥2= 6.3440×10−4. This
example has been solved by using the CAS wavelet method in [28].

(a) (b)

FIGURE 4. a. Comparison between the approximation and exact solu-
tion b. Absolute error
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8. CONCLUSION

In this present work, the Haar scaling functions and the collocation method has been
successfully applied to obtain the operational matrix of fractional integration for cubic B-
spline scaling functions and wavelets. Then, the nonlinear fractional integro-differential
equation reduced into a nonlinear system that can be solved with Newton method. The
operation matrix can be simply obtained for any basis of the approximation space and
it is always available, therefore it can be applied for different varieties of problems with
fractional derivatives. Illustrative examples demonstrate that approximation solution fairly
matches with the exact solution. The upper bound of error exponentially decreases by
growing of approximation space.

ACKNOWLEDGMENTS

The authors would like to express their sincere thanks to the reviewers for their careful
reading, valuable comments and suggestions.

REFERENCES

[1] M. A. Anwar, S. U. Rehman, F. Ahmad, M. I. Qadir, A Numerical Iterative Scheme for Solving Nonlinear
Boundary Value Problems of Fractional Order 0 < α < 1, Punjab Univ. j. math, 51, No. 1 (2019) 115-126.

[2] T. M. Atanackovic, S. Pilipovic, B. Stankovic and D. Zorica, Fractional calculus with applications in me-
chanics, Vibrations and diffusion processes, John Wiley and Sons (2014).

[3] A. Babaei, S. Banihashemi,A. Mohammadpour, A Numerical Scheme to Solve an Inverse Problem Related
to a Time-Fractional Diffusion-Wave Equation with an Unknown Boundary Condition, Punjab Univ. j. math,
51, No. 2 (2019) 61-78.

[4] R. T. Baillie, Long memory processes and fractional integration in econometrics, Journal of Econometrics
73, No. 1 (1996) 5-9.

[5] C. K. Chui, Wavelets: a mathematical tool for signal analysis, Society for Industrial and Applied Mathe-
matics (1997).

[6] S. Das, Functional fractional calculus for system identification and controls, (2008).
[7] Y. Edrisi-Tabri, M. Lakestani and A. Heydari, Two numerical methods for nonlinear constrained quadratic

optimal control problems using linear B-spline functions, Iranian Journal of Numerical Analysis and Opti-
mization, 6, No. 2 (2016) 17-38.

[8] J. C. Goswami and A. K. Chan, Fundamentals of wavelets: theory, algorithms, and applications, John Wiley
and Sons, 233, (2011).

[9] F. Haq, K. Shah, A. Khan, M. Shahzad and G. ur Rahman, Numerical Solution of Fractional Order Epidemic
Model of a Vector Born Disease by Laplace Adomian Decomposition Method, Punjab Univ. j. math. 49, No.
2 (2017) 13-22.

[10] M. H. Heydari, M. R. Hooshmandasl, F. Mohammadi and C. Cattani, Wavelets method for solving systems of
nonlinear singular fractional Volterra integro-differential equations, Communications in Nonlinear Science
and Numerical Simulation 19, No. 1 (2014) 37-48.

[11] M. H. Heydari, M. R. Hooshmandasl, C. Cattani and M. Li, Legendre wavelets method for solving fractional
population growth model in a closed system, Mathematical Problems in Engineering, (2013).

[12] M. R. Hooshmandasl, M. H. Heydari and F. M. M. Ghaini, Numerical solution of the one-dimensional heat
equation by using chebyshev wavelets method, Applied and Computational Mathematics 1, No. 6 (2012).

[13] H. Jaradat, F. Awawdeh and E. A. Rawashdeh, Analytic solution of fractional integro-differential equations,
Annals of the University of Craiova-Mathematics and Computer Science Series 38, No. 1 (2011) 1-10.

[14] X. Li, Operational method for solving fractional differential equations using cubic B-spline approximation,
International Journal of Computer Mathematics 19, No. 12 (2014) 2584-2602.

[15] X. Li, Numerical solution of fractional differential equations using cubic B-spline wavelet collocation
method, Communications in Nonlinear Science and Numerical Simulation 17, No. 10 (2012) 3934- 3946.



The Cubic B-spline Operational Matrix Based on Haar Scaling Functions 65

[16] X. Li, Numerical solution of fractional partial differential equations using cubic B-spline wavelet collocation
method, Australian Communications and Media Autority 1, No. 3 (2012) 159-164.

[17] G. B. Loghmani, B-Spline Solution of Boundary Value Problems of Fractional Order Based on Optimal
Control Strategy, Journal of Sciences, Islamic Republic of Iran 23, No. 1 (2012) 59-65.

[18] A. Lotfi, S. A. Yousefi and M. Dehghan, Numerical solution of a class of fractional optimal control problems
via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule,
Journal of Computational and Applied Mathematics 250, (2013) 143-160.

[19] R. L. Magin, Fractional calculus in bioengineering, Redding: Begell House, 269-355 (2006).
[20] K. Maleknejad and M. Nosrati Sahlan, The method of moments for solution of second kind Fredholm integral

equations based on B-spline wavelets, International Journal of Computer Mathematics 87, No. 7 (2010)
1602-16.

[21] A. M. Mahdy and E. M. Mohamed, Numerical studies for solving system of linear fractional integro-
differential equations by using least squares method and shifted Chebyshev polynomials, Journal of Abstract
and Computational Mathematics (2016) 24-32.

[22] S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the
American mathematical society 315, No. 1 (1989) 69-87.

[23] R. C. Mittal and R. Nigam, Solution of fractional integro-differential equations by Adomian decomposition
method, The International Journal of Applied Mathematics and Mechanics 4, No. 2 (2008)87-94.

[24] S. Momani and Z. Odibat, Analytical solution of a time-fractional Navier Stokes equation by adomian de-
composition method, Appl Math Comput. 177, No. 2 (2006) 488-94.

[25] S. Momani and R. Qaralleh, An efficient method for solving systems of fractional integro-differential equa-
tions, Computers and Mathematics with Applications 52, No. 3 (2006) 459-70.

[26] D. Nazari and S. Shahmorad, Application of the fractional differential transform method to fractional-order
integro-differential equations with nonlocal boundary conditions, Journal of Computational and Applied
Mathematics 234, No. 3 (2010 ) 883-91.

[27] Y. Ordokhani and N. Rahimi, Numerical solution of fractional Volterra integro-differential equations via the
rationalized Haar functions, Modern research physics 14, No. 3 (2014) 211-224.

[28] H. Saeedi, M. M. Moghadam, N. Mollahasani and G. N. Chuev, A CAS wavelet method for solving nonlin-
ear Fredholm integro-differential equations of fractional order, Communications in Nonlinear Science and
Numerical Simulation 16, No. 3 (2011) 1154-63.

[29] H. Saeedi, Applicaion of Haar wavelets in solving nonlinear fractional Fredholm integro-differential equa-
tions, J. J. Mahani Math. Res. Center 2, (2013) 15-28.

[30] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and applications:
theory and applications, (1993).

[31] A. Setia, Y. Liu and A. S. Vatsala, Solution of linear fractional Fredholm integro-differential equation by
using second kind Chebyshev wavelet, In Information Technology: New Generations (ITNG), 11th Interna-
tional Conference on 2014 Apr 7, IEEE(2014) 465-469.

[32] H. Sheng, Y. Chen and T. Qiu, Fractional processes and fractional-order signal processing: techniques and
applications Springer Science and Business Media(2011).

[33] N. H. Sweilam, T. M. Al-Ajami and R. H. Hoppe, Numerical solution of some types of fractional optimal
control problems, The Scientific World Journal, (2013).

[34] Y. Wang and F. Qibin, The second kind Chebyshev wavelet method for solving fractional differential equa-
tions, Applied Mathematics and Computation 218, No. 17 (2012) 8592-8601.

[35] G. Wu and E. W. M. Lee, Fractional variational iteration method and its application, Physics Letters A.
374, No. 25 (2010) 2506-2509.

[36] S. A. Yousefi, A. Lotfi and M. Dehghan, The use of a Legendre multiwavelet collocation method for solving
the fractional optimal control problems, Journal of Vibration and Control 17, No. 13 (2011) 2059-2065.

[37] L. Yuanlu, Solving a nonlinear fractional differential equation using Chebyshev wavelets, Communications
in Nonlinear Science and Numerical Simulation 15, No. 9 (2010) 2284-2292.

[38] L. Zhu and F. Qibin, Solving fractional nonlinear Fredholm integro-differential equations by the second
kind Chebyshev wavelet, Communications in Nonlinear Science and Numerical Simulation 17, No. 6 (2012)
2333-2341.


