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Abstract. The paper investigated the polynomials whose coefficients are
generalized distribution. Convolution via generalized polylogarithm and
subordination methods were employed to obtain the upper bounds for the
first few coefficients of the class defined. Furthermore, relevant connec-
tions to Fekete-Szego classical theorem were established, particularly in
conic region. Conclusively, consequences of various choices of parame-
ters involved were pointed out. The results further established geometric
properties of the generalized distribution associated with univalent func-
tions.
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1. INTRODUCTION

Let us denote byA the class of functions

f(z) = z +
∞∑

n=2

anzn (1. 1)

which are analytic and univalent in the open unit diskU = {z : z ∈ C, |z| < 1}, and let
Y ∈ A consist of univalent functions inU normalized withf(0) = f ′(z)− 1 = 0.
Supposef andg are analytic inU , thenf is said to be subordinate tog written asf(z) ≺
g(z), if there exists a functionw(0) = 0 and|w(z)| < 1 such thatf(z) = g(w(z)) (z ∈
U).
Recently, Porwal [20] investigated generalized distribution and its geometric properties
associated with univalent functions.
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Let S denote the sum of the convergent series of the form

S =
∞∑

n=0

an,

wherean ≥ 0 for all n ∈ N . The generalized discrete probability distribution whose
probability mass function is given as

p(n) =
an

S
, n = 0, 1, 2..,

p(n) is the probability mass function becausep(n) ≥ 0 and
∑

n pn = 1.
Furthermore, let

ψ(x) =
∞∑

n=0

anxn,

then fromS =
∑∞

n=0 an seriesψ is convergent for both|x| < 1 andx = 1.
He provided information on various definitions and their derivations. For example:
(1). If X is a discrete random variable that takes valuesx1, x2, ... associated with proba-
bilities p1, p2, ... then the expectedX denoted byE(X) is defined as

E(X) =
∞∑

n=1

pnxn

. (2). The moment of a discrete probability distribution(rth) aboutx = 0 is defined by

µ′r = E(Xr)

whereµ′1 is the mean of the distribution and the variance is given as

µ′2 − (µ′1)
2.

(3). Moment about the origin is given as

Mean = µ′1 =
ψ′

S
,

V ariance = µ′2 − (µ′1)
2 =

1
S

[
ψ′′(1) + ψ′(1)− (ψ′(1))2

S

]
.

The moment generating function of a random variableX is denoted byMX(t) and defined
by

MX(t) = E(eXt)

and the moment generating function of generalized discrete probability is given as

MX(t) =
ψ(et)

S

For special values ofan various well known discrete probability distributions such as Yule-
Simon distribution, Logarithmic distribution, Poisson distribution, Binomial distribution,
Beta-Binomial distribution, Zeta distribution, Geometric distribution and Bernoulli distri-
bution can be obtained (see for detail [20]).
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Of particular interest is the polynomial whose coefficients are probabilities of the general-
ized distribution introduced and investigated in [20] and it is defined by

Kψ(z) = z +
∞∑

n=2

an−1

S
zn, (1. 2)

whereS =
∑∞

n=0 an.
Forf(z) defined in (1.1) andh with the series formh(z) = z + c2z

2 + ..., the convolution
of f andh denoted byf ∗ h is given as

(f ∗ h)(z) = z +
∞∑

n=2

akckzk = (h ∗ f)(z). (1. 3)

Suppose|z| < 1 and there existp ≥ 2, the classical polylogarithmLiγ
(z) of Leibniz with

Bernoulli in 1696, is defined by the absolutely convergent series

Liγ
(z) =

∞∑
n=1

zn

np
.

Several other mathematicians have investigated polylogarithm function in various perspec-
tive (see for detail [18]). For the reason not known to the present author, studies on polylog-
arithm stopped for many periods of time, not until recently when its investigation gathered
momentum again which is likely to be associated to its importance and application in many
fields of endeavour, see for applications in [1,14].
Recently, Al-Shaqsi and Darus [22] generalized Ruscheweyh and Salagean derivative op-
erators, using polylogarithm functions on function of the form (1).
Let f belongs toA, the generalized polylogarithmsDm

λ f(z) : A → A

Dm
λ f(z) = z +

∞∑
n=2

nm(n + λ− 1)!
λ!(n− 1)!

zn (1. 4)

wherem ∈ N0 = {0, 1, 2, ..}, z ∈ U . It is obvious that the derivative operatorDm
λ f(z)

engages two derivative operators. Ifλ = 0, the operator reduces to Salagean differential
operator and ifm = 0 the operator reduces to Ruscheweyh operator (see for more proper-
ties of polylogarithm in [18]).
Motivated by the works in [17,19,20,22], we investigate bounds for the class defined in
conic domain. The principal significance of the sharp bounds of the coefficients is the in-
formation about geometric properties of the functions. For instance, the sharp bounds of
the second coefficient of normalized univalent functions readily yields the growth and dis-
tortion bounds. Also, sharp bounds of the coefficient functional|a3 − µa2

2| helps in the in-
vestigation of univalence of analytic function. Additionally, apart fromn− th coefficients,
bounds were used to determine the extreme points of the classes of analytic functions; (see
also [3]).
Furthermore, by applying the concept of convolution defined in (1.3) to (1.2) and using a
function of the form (1.4) yields

Dm
λ ∗Kψ(z) = z +

∞∑
n=2

nm(n + λ− 1)!
λ!(n− 1)!

an−1

S
zn (1. 5)
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wherem,λ ∈ N ∪ {0} andS =
∑∞

n=0 an

The present work is designed as follows: section one contained the introduction and short
literature review as background information to the present investigation, section 2 contains
lemma, definition and objective while section 3 contains our main results for the present
investigation; and lastly conclusion and acknowledgment followed.

2. LEMMA AND DEFINITION

Let P denote the analytic functions and letp ∈ P with Re p(z) > 0 andp(z) =
1 + p1z + ... in U ; if there existk ∈ [0,∞) andpk ∈ P , such thatp ≺ pk in U , where the
functionpk maps the unit disk conformally onto the regionΩk then we have

∂Ωk =
{
u + iv : u2 = k2(u− 1)2 + k2v2

}
.

The detail of functions in conic region can be found in the literatures [5,6-13,21].
Definition 2.1 Let k ∈ [0,∞), α ∈ [0, 1), m, λ ∈ N ∪ {0}, b 6= 0, the functionf ∈ A
is in the classψSm

λ (b, pk) if

1 +
1
b

((
z(Dm

λ Kψ(z))′

Dm
λ Kψ(z)

)
− 1

)
≺ pk(z) (z ∈ U),

andf ∈ A is in the classψCm
λ (b, ψ(z)) if

1
b

(
z(Dm

λ Kψ(z))′

Dm
λ Kψ(z)

)
≺ φ(z)− 1 (z ∈ U).

Lemma 2.1Let w(z) = w1z+w2z
2+ ... ∈ Ω be so that|w(z)| < 1 in U . If ρ is a complex

number, then ∣∣w2 + tw2
1

∣∣ ≤ max(1, |ρ|).
The sharp inequality for the functionsw(z) = z or w(z) = z2, (see also [2,4,15,16]).
In this work the author investigates the first few early coefficients of the defined subclasses
and its relevant connection to Fekete-Szego functional associated with polylogarithms in
conic domain using subordination principle.

3. BOUNDS FORGENERALIZED DISTRIBUTION

Here the first few coefficient bounds for the class defined in Definition 2.1. is considered.
Theorem 3.1Let k ∈ [0,∞), 0 ≤ α < 1, m, λ ∈ N ∪ {0} b 6= 0. If f given by (1.1)
belongs toψSm

λ (b, pk) then
∣∣∣a1

S

∣∣∣ ≤ |b|p1

2m(λ + 1)

∣∣∣a2

S

∣∣∣ ≤ |b|p1

3m(λ + 2)(λ + 1)
max

{
1,

∣∣∣∣
p2

p1
+ bp1

∣∣∣∣
}

∣∣∣∣
a2

S
− µ

a2
1

S2

∣∣∣∣ ≤
|b|p1

3m(λ + 2)(λ + 1)
max

{
1,

∣∣∣∣
p2

p1
+

22m(λ + 1)− 3mµ(λ + 2)
22m(λ + 1)

bp1

∣∣∣∣
}
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Proof. If f ∈ ψSb
q(pk), andw ∈ Ω such that

1 +
1
b

((
z(Dm

λ Kψ(m, z))′

Dm
λ Kψ(m, z)

)
− 1

)
= pk(w(z)). (3. 6)

It is observed that

2m(λ + 1)
a1

S
z2 + 3m(λ + 2)(λ + 1)

a2

S
z+...

= b
[
p1w1z

2 + (p1w2 + p2w
2
1)z

3 + ...2m(λ + 1)
a1

S
p1w1z

3 + ...
]
. (3. 7)

Hence by (3.6) and (3.7) we have

a1

S
=

bp1w1

2m(λ + 1)
(3. 8)

and
a2

S
=

bp1

3m(λ + 2)(λ + 1)

(
w2 +

(
p2

p1
+ bp1

)
w2

1

)
. (3. 9)

By (3.8) and (3.9) we have

a2

S
− µ

a2
1

S2
=

bp1

3m(λ + 2)(λ + 1)
(
w2 + tw2

1

)

where

ρ =
p2

p1
+

22m(λ + 1)− 3mµ(λ + 2)
22m(λ + 1)

bp1.

The desired result is obtained by applying Lemma 2.1
Corolllary 3.1 k ∈ [0,∞), 0 ≤ α < 1, m = 0 b 6= 0 in Theorem 3.1 and iff ∈
ψS0

λ(b, pk) then
∣∣∣a1

S

∣∣∣ ≤ |b|p1

(λ + 1)

∣∣∣a2

S

∣∣∣ ≤ |b|p1

(λ + 2)(λ + 1)
max

{
1,

∣∣∣∣
p2

p1
+ bp1

∣∣∣∣
}

∣∣∣∣
a2

S
− µ

a2
1

S2

∣∣∣∣ ≤
|b|p1

(λ + 2)(λ + 1)
max

{
1,

∣∣∣∣
p2

p1
+

λ(1− µ) + (1− 2µ)
(λ + 1)

bp1

∣∣∣∣
}

Corollary 3.2 For k ∈ [0,∞), 0 ≤ α < 1, λ = 0 b 6= 0 in Theorem 3.1, and if
f ∈ ψSm

0 (b, pk) then
∣∣∣a1

S

∣∣∣ ≤ |b|p1

2m

∣∣∣a2

S

∣∣∣ ≤ |b|p1

2× 3m
max

{
1,

∣∣∣∣
p2

p1
+ bp1

∣∣∣∣
}

∣∣∣∣
a2

S
− µ

a2
1

S2

∣∣∣∣ ≤
|b|p1

2× 3m
max

{
1,

∣∣∣∣
p2

p1
+

22m − 2× 3mµ

22m
bp1

∣∣∣∣
}
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Corollary 3.3 Let k ∈ [0,∞), 0 ≤ α < 1, m = 0, λ = 0 b 6= 0 and if f ∈ ψS0
0(b, pk)

then ∣∣∣a1

S

∣∣∣ ≤ |b|p1

∣∣∣a2

S

∣∣∣ ≤ |b|p1

2
max

{
1,

∣∣∣∣
p2

p1
+ bp1

∣∣∣∣
}

∣∣∣∣
a2

S
− µ

a2
1

S2

∣∣∣∣ ≤
|b|p1

2
max

{
1,

∣∣∣∣
p2

p1
+ (1− 2µ)bp1

∣∣∣∣
}

Corollary 3.4 Let k ∈ [0,∞), 0 ≤ α < 1, m = 1, λ = 1 b 6= 0 and if f ∈ ψS1
1(b, pk)

then
∣∣∣a1

S

∣∣∣ ≤ |b|p1

4
∣∣∣a2

S

∣∣∣ ≤ |b|p1

2× 32
max

{
1,

∣∣∣∣
p2

p1
+ bp1

∣∣∣∣
}

∣∣∣∣
a2

S
− µ

a2
1

S2

∣∣∣∣ ≤
|b|p1

2× 32
max

{
1,

∣∣∣∣
p2

p1
+

23 − 32µ

23
bp1

∣∣∣∣
}

Theorem 3.2. Let k ∈ [0,∞), 0 ≤ α < 1, b 6= 0, m, λ ∈ N ∪ {0} and letpk(z) =
1 + p1z + p2z

2 + p3z
3 + ...,. If f ∈ ψCm

λ (b, φ(z)), then
∣∣∣a1

S

∣∣∣ ≤ |b|c1

2m+1(λ + 1)

∣∣∣a2

S

∣∣∣ ≤ |b|c1

3m+1(λ + 2)(λ + 1)
(
c1 + max

{
2c1,

∣∣bc2
1|+ 2|c2|

})

∣∣∣∣
a2

S
− µ

a2
1

S2

∣∣∣∣

≤ 2|b|c1

3m+1(λ + 2)(λ + 1)

(
c1 + max

{
2c1,

∣∣∣∣
22(m+1)(λ + 1)− 3m+1µ(λ + 2)

22(m+1)(λ + 1)

∣∣∣∣ |b|c1 + 2|c2|
})

Proof: The method of proof is similar to that of Theorem 3.1 except that instead of using
(3.6) we make use of

1 +
1
b

(
z(Dm

λ Kψ(z))′

Dm
λ Kψ(z)

)
= (φ(z)− 1)

Corollary 3.5 Let k ∈ [0,∞), 0 ≤ α < 1, b 6= 0, m = 0 and iff ∈ ψC0
λ(φ(z)), then

∣∣∣a1

S

∣∣∣ ≤ |b|c1

2(λ + 1)

∣∣∣a2

S

∣∣∣ ≤ |b|c1

3(λ + 2)(λ + 1)
(
c1 + max

{
2c1,

∣∣bc2
1|+ 2|c2|

})
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∣∣∣∣
a2

S
− µ

a2
1

S2

∣∣∣∣ ≤
2|b|c1

3(λ + 2)(λ + 1)

(
c1 + max

{
2c1,

∣∣∣∣
λ(4− 3µ)− 2(2− 3µ)

4(λ + 1)

∣∣∣∣ |b|c1 + 2|c2|
})

Corollary 3.6. Let k ∈ [0,∞), 0 ≤ α < 1, b 6= 0, λ = 0 and iff ∈ ψCm
0 (b, φ(z)), then

∣∣∣a1

S

∣∣∣ ≤ |b|c1

2m+1

∣∣∣a2

S

∣∣∣ ≤ |b|c1

3m+1

(
c1 + max

{
2c1,

∣∣bc2
1|+ 2|c2|

})

∣∣∣∣
a2

S
− µ

a2
1

S2

∣∣∣∣ ≤
|b|c1

3m+1

(
c1 + max

{
2c1,

∣∣∣∣
22m+1 − 3m+1µ

22m+1

∣∣∣∣ |b|c1 + 2|c2|
})

Corollary 3.7. Let k ∈ [0,∞), 0 ≤ α < 1, b 6= 0, m = 0, λ = 0 and if f ∈
ψC0

0 (b, φ(z)), then
∣∣∣a1

S

∣∣∣ ≤ |b|c1

2
∣∣∣a2

S

∣∣∣ ≤ |b|c1

3
(
c1 + max

{
2c1,

∣∣bc2
1|+ 2|c2|

})

∣∣∣∣
a2

S
− µ

a2
1

S2

∣∣∣∣ ≤
|b|c1

3

(
c1 + max

{
2c1,

∣∣∣∣
2− 3µ

2

∣∣∣∣ |b|c1 + 2|c2|
})

4. CONCLUSION

It is hereby concluded that with special values of parameters involved various interesting
new results can be obtained. Also, result obtained to the best of our knowledge are new.
Furthermore, the work establishes more relationship between Geometric Function Theory
and Statistics.
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