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Abstract. The paper investigated the polynomials whose coefficients are
generalized distribution. Convolution via generalized polylogarithm and
subordination methods were employed to obtain the upper bounds for the
first few coefficients of the class defined. Furthermore, relevant connec-
tions to Fekete-Szego classical theorem were established, particularly in
conic region. Conclusively, consequences of various choices of parame-
ters involved were pointed out. The results further established geometric
properties of the generalized distribution associated with univalent func-
tions.
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1. INTRODUCTION

Let us denote byl the class of functions
flz)=z+ Z an2" 1.1
n=2

which are analytic and univalent in the open unit disk= {z : z € C,|z| < 1}, and let

Y € A consist of univalent functions i&f normalized withf(0) = f'(z) — 1 = 0.

Supposef andg are analytic inlJ, thenf is said to be subordinate towritten asf(z) <

g(z), if there exists a functiomw (0) = 0 and|w(z)| < 1 such thatf(z) = g(w(z)) (z €

U).

Recently, Porwal [20] investigated generalized distribution and its geometric properties
associated with univalent functions.
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Let S denote the sum of the convergent series of the form

S:ian,

n=0

wherea,, > 0 for alln € N. The generalized discrete probability distribution whose
probability mass function is given as

p(n) = %, n=20,1,2.,

p(n) is the probability mass function becayge) > 0 and) _ p, = 1.
Furthermore, let

blo) = ana”,
n=0

then fromS = > >°  a,, seriesy is convergent for bothr| < 1 andz = 1.

He provided information on various definitions and their derivations. For example:
(1). If X is a discrete random variable that takes valugseo, ... associated with proba-
bilities p1, p2, ... then the expecte® denoted byE(X) is defined as

E(X) = pown
n=1

. (2). The moment of a discrete probability distributieri”) aboutz = 0 is defined by
p = E(X")

wherey is the mean of the distribution and the variance is given as
py — ().

(3). Moment about the origin is given as

Mean = i}y = %7
1 (1))2
Variance = iy — (11)* = 5 |4/ (1) + /(1) - %

The moment generating function of a random variables denoted by\/ x (¢) and defined
by

Mx (t) = E(e™")
and the moment generating function of generalized discrete probability is given as

For special values af,, various well known discrete probability distributions such as Yule-
Simon distribution, Logarithmic distribution, Poisson distribution, Binomial distribution,
Beta-Binomial distribution, Zeta distribution, Geometric distribution and Bernoulli distri-
bution can be obtained (see for detail [20]).
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Of particular interest is the polynomial whose coefficients are probabilities of the general-
ized distribution introduced and investigated in [20] and it is defined by

z):z—&—zaiglz”, 1.2
n=2

whereS =Y ay.
For f(z) defined in (1.1) and with the series fornk(z) = 2 + c22% + ..., the convolution
of f andh denoted byf x h is given as

(f*h)(z):z—l—Zakckzk:(h*f)(z). 1.3)
n=2
Supposéz| < 1 and there exisp > 2, the classical polylogarithm;_(z) of Leibniz with
Bernoulliin 1696, is defined by the absolutely convergent series

_ i 2"
n=1 np

Several other mathematicians have investigated polylogarithm function in various perspec-
tive (see for detail [18]). For the reason not known to the present author, studies on polylog-
arithm stopped for many periods of time, not until recently when its investigation gathered
momentum again which is likely to be associated to its importance and application in many
fields of endeavour, see for applications in [1,14].
Recently, Al-Shagsi and Darus [22] generalized Ruscheweyh and Salagean derivative op-
erators, using polylogarithm functions on function of the form (1).
Let f belongs toA, the generalized polylogarithanf(z) tA— A

m n+)\_1) n

wherem € Ny = {0,1,2,..},z € U. Itis obvious that the derivative operatbty" f(z)
engages two derivative operators.\lf= 0, the operator reduces to Salagean differential
operator and ifn = 0 the operator reduces to Ruscheweyh operator (see for more proper-
ties of polylogarithm in [18]).

Motivated by the works in [17,19,20,22], we investigate bounds for the class defined in
conic domain. The principal significance of the sharp bounds of the coefficients is the in-
formation about geometric properties of the functions. For instance, the sharp bounds of
the second coefficient of normalized univalent functions readily yields the growth and dis-
tortion bounds. Also, sharp bounds of the coefficient functitmal- pa3| helps in the in-
vestigation of univalence of analytic function. Additionally, apart from th coefficients,
bounds were used to determine the extreme points of the classes of analytic functions; (see
also [3]).

Furthermore, by applying the concept of convolution defined in (1.3) to (1.2) and using a
function of the form (1.4) yields

n"(n+A—an_1 ,
A(n —1)! S

DY+ Ky (z —z—i—z (1. 5)
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wherem, A € NU{0}andS =3 ja

The present work is designed as follows: section one contained the introduction and short
literature review as background information to the present investigation, section 2 contains
lemma, definition and objective while section 3 contains our main results for the present
investigation; and lastly conclusion and acknowledgment followed.

2. LEMMA AND DEFINITION

Let P denote the analytic functions and lete P with Re p(z) > 0 andp(z) =
14+ piz+ ... In U; if there existk € [0, 00) andpy, € P, such thap < p; in U, where the
functionp;, maps the unit disk conformally onto the regi@p then we have

oY = {u+iv:u® =k*(u—1)> + k**}.

The detail of functions in conic region can be found in the literatures [5,6-13,21].
Definition 2.1 Letk € [0,00), « € [0,1), m,A € N U{0}, b # 0, the functionf € A
is in the classbS;"(b,pk) if

(D Ky(2))
andf € Aisinthe class)Cy* ( P(z)) if

(DR L
b( Dy Ky (2) )”}” L (=el)

Lemma 2.1Letw(z) = wyz+wqz? +... € Q be sothatw(z)| < 1in U. If pis a complex
number, then

’wg + tw%| < maz(1,|p|).
The sharp inequality for the functions(z) = z orw(z) = 22, (see also [2,4,15,16]).
In this work the author investigates the first few early coefficients of the defined subclasses

and its relevant connection to Fekete-Szego functional associated with polylogarithms in
conic domain using subordination principle.

3. BOUNDS FORGENERALIZED DISTRIBUTION

Here the first few coefficient bounds for the class defined in Definition 2.1. is considered.
Theorem 3.1Letk € [0,0), 0 < a < 1, m,A € NU{0} b # 0. If f given by (1.1)
belongs taySy* (b, p) then

‘ |b|p1
Sl— 2m A+ 1)

|
’?‘ = 3m() +|b22;1(A e {

+ bp1

}

pﬁ N 22m()\+ 1) _ 3mu()\+ 2)
1 22m(N+1)

|b\p1

a2 a% mcwc{l,
=3+ 2)(A+ 1)

5 M2

bp1

|
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Proof. If f € ¢S} (pr), andw € Q such that

- (((ggf e 1) — pu(w(2)). (3.6)

It is observed that
1) = a1 2 m 2 1

=b {plwle + (prwa + powd) 2 + .2 (N + 1)%p1w1z3 + ... (3.7
Hence by (3.6) and (3.7) we have
ap bprw;
S T 2m(A41) (3.8)
and
as bpy P2 2
—= = =+ . 3.9
s =gy (ot (2 rom) o) -9
By (3.8) and (3.9) we have
2
az al _ bpy 9
S M2 T amia )+ 1) (wa + tur)
where

2 MO D) -3 +2)
m + 22m(\ 4 1)
The desired result is obtained by applying Lemma 2.1
Corolllary 3.1 k € [0,00), 0 < o < 1, m = 0 b # 0in Theorem 3.1 and iff €
¥S9(b, py) then

bpl .

' |b|p1

A +1)

|b[p1 D2
1122 1
’ A+2(A+1)mam o T
2

ag  a |blp1 p2 | A —p)+ (1 —2p)
Pk 1, |22 b
s Mz = (A+2)(A+1)m”{ o T (A +1) P1

Corollary 3.2 Fork € [0,00), 0 < o < 1, A = 0 b # 0 in Theorem 3.1, and if
f e Sy (b, pr) then

|b|p1
S - am
b
’ | |p1 maa:{l, 12+bp1 }
b1
2 2m m
as a3 |b|p1 P2 2*M —2x 3™y
22 %< 1|2z T2 By
S T G Gl P 92m P1
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Corollary 3.3 Letk € [0,00), 0 < a <1, m=0,A=00b=#0andif f € ¥»SJ(b, px)
then

a1’
—1<1b
S _||p1
b
‘ ’<||p1 x{l,m+bp1}
p1

2
as aj |b[p1 P2
— —u—= < 1 1—2u)b
g /ASQ_ 2mowz: ,pl—f—( w)bp1

Corollary 3.4 Letk € [0,00), 0 < a <1, m=1,A=1b# 0andif f € ¥S] (b, px)
then

‘@’ < [blpy
Sl— 4
|b|P1 P2
1,22 +b

S = 2 mazr 9 ) + D1

2 3 2
as af |b[p1 p2 2% =3
R L2y 22
g Mo Son M b, T s

Theorem 3.2. Letk € [0,00), 0 < a < 1, b # 0, m,A\ € NU{0} and letp,(z) =
L+ p12z + pez® 4+ p3z® + ..y If f € CT (b, ¢(2)), then

@ [b]ea

S| = 2m+I(X 4+ 1)

|bley

g‘ S 0T (c1 4+ maz {2c1, |be}| + 2|c2|})

as al

s s
2|bley 22(m+D (A 4 1) — 3™ (A + 2)

< 2 b 2

S 00D (01 +maac{ c1, 2 D () 1) |bler + 2]ez]

Proof: The method of proof is similar to that of Theorem 3.1 except that instead of using
(3.6) we make use of

g () = e -

Corollary 3.5 Letk € [0,00), 0 < a <1, b# 0, m=0andif f € pCY(4(z)), then
ar |blea
200+ 1)

|b|Cl

aj . blaea 2
< T2 D) ((31 + max {201, |bcl| —|—2|cz|})
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2

as ai 2|bleq A4 —3u) —2(2—3p)
— — —_— 2 b 2
S MSE| T30\ mer e A1) [bles +2fe|
Corollary 3.6. Letk € [0,00), 0 <a <1, b#0, A=0andif f € pCJ*(b, ¢(2)), then
ar| _ |bles
S| — ogm+l
’a—Q < [Bles (c1 4+ maz {2c1, |be}| + 2|c2|})
G| = gm+1 1 1 1 2
2 2m+1 m+1
as aj |bley 2 —3"
<~ ,LL? < 1 (61 + max {201, S |bler + 2|ca]

Corollary 3.7. Letk € [0,0), 0 < a < 1, b # 0, m = 0,A = 0andif f €
$CY(b, 6(2)), then

g‘ < bl
SI— 2
az| _ |bles 2
<S5 (c1 +maz {2¢y, |bet| + 2|ca|})
2 b 2 —
CLSQ _ H% < H% <c1 + mazx {261, 23”‘ |blc1 +2|Cz|}>

4. CONCLUSION

Itis hereby concluded that with special values of parameters involved various interesting
new results can be obtained. Also, result obtained to the best of our knowledge are new.
Furthermore, the work establishes more relationship between Geometric Function Theory
and Statistics.
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