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Neighborhood Properties for k-Uniformly Starlike Functions

Zahra Orouji*1, Rasul Aghalary2
1,2 Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.

Email: z.orouji@urmia.ac.ir1, raghalary@yahoo.com2

Received: 13 August, 2018 / Accepted: 29 October, 2019 / Published online: 01 May, 2019

Abstract. In this note, we define the class Sp(α, k) and introduce and in-
vestigate coefficient estimates, neighborhood property for functions in the
class Sp(α, k). In addition we provide conditions such that the confluent
hypergeometric function, belongs to Sp(α, k).
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1. INTRODUCTION

We show the set of all holomorphic functions g in the unit diskE = {z : |z| < 1}which
are

g(z) = z +

∞∑
s=2

asz
s, (1. 1)

with A and let S be the subclass of A consisting of univalent functions. Suppose that T be
the subclass of S which are in the form

g(z) = z −
∞∑
s=2

asz
s (1. 2)

satisfies the conditions as ≥ 0 (s = 2, 3, ...) with
∑∞
s=2 as < 1.

Also suppose that S∗(α) be the famous subclass of S which are starlike of order α.
Indeed h ∈ S∗(α) is equivalent to Re(zh′(z)/h(z)) > α in E. This subclass has so long
history in geometric function theory (for example see [3, 4, 5, 7, 10]).

Let a, b, c ∈ C (the set of all complex numbers), such that c 6= 0,−1,−2, .... It is well
known that the answer of the ordinary equation

(1− z)zϕ′′(z) + [c− z(a+ b+ 1)]ϕ′(z)− abϕ(z) = 0

is

F (a, b, c; z) =

∞∑
s=0

(a)s(b)s
(c)s(1)s

zs

43



44 Zahra Orouji and Rasul Aghalary

and the function g(z) = zF (a, b, c; z), z ∈ E, is called hypergeometric function. We note
that (a)0 = 1 for a 6= 0 and (a)s = a(a+ 1)(a+ 2)...(a+ s− 1).

The hypergeometric function plays an important role in various fields. We refer to [9,
11, 12] and references therein for more details about this function.

Finally, for −1 ≤ α ≤ 1 and k ≥ 0, we introduce a subclass Sp(α, k) of starlike
functions in the following way

Sp(α, k) = {g ∈ S : Re

(
zg′(z)

g(z)

)
≥ k

∣∣∣∣zg′(z)g(z)
− 1

∣∣∣∣+ α, z ∈ E}. (1. 3)

This class is very famous and important in univalent function theory and relevant sub-
classes of it have been obtained by many authors such as ([8, 13]). We note that the case
k = 0 reduce to starlike functions of order α and the case k = 1 reduce to uniformly
starlike functions of order α. We also let

TSp(α, k) = T ∩ Sp(α, k) and TS∗(α) = T ∩ S∗(α).

Lemma 1.1. Let 0 ≤ α < 1, k ≥ 0 and β ∈ R. Then Re(w) > k|w− t|+ α is equivalent
to Re[w(1 + keiβ)− kteiβ ] > α where w and t are arbitrary complex numbers.

Lemma 1.2. Let k ≥ 0 and t ∈ C. Then Re(t) > k is equivalent to |t − (1 + k)| <
|t+ (1− k)|.

2. COEFFICIENT BOUNDS

In this section we introduce an inequality that provide a necessary and sufficient Coeffi-
cient for functions in the class TSp(α, k).

Theorem 2.1. Let −1 ≤ α ≤ 1, k ≥ 0 and g ∈ TSp(α, k) be in the form ( 1. 2 ). Then we
have

∞∑
s=2

(s(1− k) + k − α)as ≤ 1− α. (2. 4)

Proof. Let g ∈ TSp(α, k) be in the form ( 1. 2 ). By putting w = zg′(z)
g(z) in ( 1. 3 ) and by

lemma 1.1, we obtain Re(w(1 + keiβ)− keiβ) ≥ α or

Re(
(1 + keiβ)(1−

∑∞
s=2 sasz

s−1)− (keiβ + α)(1−
∑∞
s=2 asz

s−1)

1−
∑∞
s=2 asz

s−1 ) ≥ 0

If z ∈ E is real and tends to 1− through reals, then we have

Re(1− α+

∞∑
s=2

(α− s)as + keiβ
∞∑
s=2

(1− s)as) ≥ 0.

Therefore

1− α−
∞∑
s=2

(s− α)as + k

∞∑
s=2

(s− 1)as ≥ 0.

�
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Theorem 2.2. Let k ≥ 0 and g ∈ T be an analytic function of the form ( 1. 2 ). Then the
following condition is sufficient for g to be in the class Sp(α, k).

∞∑
s=2

(k(s− 1) + s− α)|as| ≤ 1 (2. 5)

if −1 ≤ α < 0 and
∞∑
s=2

(k(s− 1) + s− α)|as| ≤ 1− α (2. 6)

if 0 ≤ α ≤ 1.

Proof. By lemma 1.1, we note that the condition ( 1. 3 ) is equivalent to Re(w(1+keiβ)−
(α + keiβ)) ≥ 0 where w = zg′(z)

g(z) . So by lemma 1.2, it is sufficient to show that A ≥ B

where

A = |1 + w(1 + keiβ)− (α+ keiβ)|

=

∣∣∣∣ (z −∑∞s=2 asz
s) + (1 + keiβ)(z −

∑∞
s=2 sasz

s)− (keiβ + α)(z −
∑∞
s=2 asz

s)

z −
∑∞
s=2 asz

s

∣∣∣∣
and

B = |1− w(1 + keiβ) + α+ keiβ |

=

∣∣∣∣z −∑∞s=2 asz
s − (1 + keiβ)(z −

∑∞
s=2 sasz

s) + (keiβ + α)(z −
∑∞
s=2 asz

s)

z −
∑∞
s=2 asz

s

∣∣∣∣ .
Let M = 1/|1−

∑∞
s=2 asz

s−1|. Therefore

A ≥M(|2− α| −
∞∑
s=2

(k(s− 1) + |α− (s+ 1)|)|as|) (2. 7)

and

B ≤M(|α|+
∞∑
s=2

(k(s− 1) + |s− (1 + α)|)|as|). (2. 8)

So by the hypothesis, if −1 ≤ α < 0, then by ( 2. 7 ) and ( 2. 8 )

A−B ≥ 2M(1−
∞∑
s=2

(k(s− 1) + s− α)|as|).

The last expression is non-negative by ( 2. 5 ) and so g belongs to the class Sp(α, k). Also
if 0 ≤ α ≤ 1, then by ( 2. 7 ) and ( 2. 8 ) we obtain

A−B ≥ 2M(1− α−
∞∑
s=2

(k(s− 1) + s− α)|as|).

The last expression is non-negative by ( 2. 6 ) and so g ∈ Sp(α, k). �

The case k = 0 in two previous theorems leads to
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Corollary 2.3. Let g(z) = z −
∑∞
s=2 asz

s ∈ T and 0 ≤ α ≤ 1. Then g ∈ S∗(α) if and
only if

∑∞
s=2(s− α)as ≤ 1− α.

Theorem 2.4. Let −1 ≤ α ≤ 1, 0 ≤ k < 1 and let g1(z) = z,

gs(z) = z − 1− α
s(1− k) + k − α

zs, s ≥ 2.

If g ∈ TSp(α, k) then we have g(z) =
∑∞
s=1 λsgs(z) where λs ≥ 0 and

∑∞
s=1 λs = 1.

Proof. Let g ∈ TSp(α, k) has the form z −
∑∞
s=2 asz

s. By Theorem 2.1 we obtain
∞∑
s=2

s(1− k) + k − α
1− α

as ≤ 1

and so

as ≤
1− α

s(1− k) + k − α
, s ≥ 2.

Therefore we can set λs = s(1−k)+k−α
1−α as for s = 2, 3, ... and λ1 = 1 −

∑∞
s=2 λs. Thus,

0 ≤ λs ≤ 1 for each s ∈ N and
∑∞
s=1 λs = 1. Also g(z) has the form

g(z) = z −
∞∑
s=2

asz
s = z −

∞∑
s=2

λs(1− α)

s(1− k) + k − α
zs

= λ1z +

∞∑
s=2

λs(z −
1− α

s(1− k) + k − α
zs)

=

∞∑
s=1

λsgs(z).

�

Theorem 2.5. Let 0 ≤ α ≤ 1 and 0 ≤ k < 1. Also let a, b ∈ C−{0} and c > |a|+ |b|+1.
Then the condition

Γ(c− |a| − |b| − 1)Γ(c)

Γ(c− |a|)Γ(c− |b|)
((1 + k)|ab|+ (1− α)(c− |a| − |b| − 1)) ≤ 2(1− α) (2. 9)

is sufficient for the function zF (a, b, c; z) belongs to Sp(α, k).

Proof. Set zF (a, b, c; z). By Theorem 2.2, we need to show that

N :=

∞∑
s=2

[s(1 + k)− (k + α)]

∣∣∣∣ (a)s−1(b)s−1
(c)s−1(1)s−1

∣∣∣∣ ≤ 1− α.

According to |(a)s| ≤ (|a|)s, we observe that

N ≤
∞∑
s=2

[s(1 + k)− (k + α)]
(|a|)s−1(|b|)s−1

(c)s−1(1)s−1

= (1 + k)

∞∑
s=1

(s+ 1)(|a|)s(|b|)s
(c)s(1)s

− (k + α)

∞∑
s=1

(|a|)s(|b|)s
(c)s(1)s
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= (1 + k)

∞∑
s=1

(|a|)s(|b|)s
(c)s(1)s−1

+ (1− α)

∞∑
s=1

(|a|)s(|b|)s
(c)s(1)s

=
|ab|
c

(1 + k)

∞∑
s=0

(1 + |a|)s(1 + |b|)s
(1 + c)s(1)s

+ (1− α)

∞∑
s=1

(|a|)s(|b|)s
(c)s(1)s

=
|ab|
c

(1 + k)F (1 + |a|, 1 + |b|, 1 + c; 1) + (1− α)(F (|a|, |b|, c; 1)− 1)

=
|ab|
c

(1 + k)
Γ(c+ 1)Γ(c− |a| − |b| − 1)

Γ(c− |a|)Γ(c− |b|)
+ (1− α)

Γ(c)Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

− (1− α).

Therefore according to ( 2. 9 ), N is less than 1− α. �

In the following section we investigate neighborhood property of the functions belongs
to the class TSp(α, k). We remark that this property was introduced by Goodman [6] and
Ruscheweyh [14]. See also [1], [2] and [15].

3. NEIGHBORHOOD PROPERTY AND APPLICATIONS

For η ≥ 0 and a function f belonging to A of the form ( 1. 1 ), we let (η, ρ)-
neighborhood of f by

N η
ρ (f) = {g ∈ A : g(z) = z +

∞∑
s=2

bsz
s,

∞∑
s=2

sη|as − bs| ≤ ρ}.

For e(z) = z, the identity function, we obtain

N η
ρ (e) = {g ∈ A : g(z) = z +

∞∑
s=2

bsz
s,

∞∑
s=2

sη|bs| ≤ ρ}.

Theorem 3.1. Let 0 ≤ k < α ≤ 1 and η ≤ 1. Then TSp(α, k) ⊆ N η
ρ (e) where ρ =

2(1−α)
2−(α+k) .

Proof. Let g(z) = z −
∑∞
s=2 asz

s be in a class TSp(α, k). By Theorem 2.1 we obtain
∞∑
s=2

(s(1− k) + k − α)as ≤ 1− α (3. 10)

and so
∞∑
s=2

sηas ≤
∞∑
s=2

sas ≤
1− α
1− k

+
α− k
1− k

∞∑
s=2

as. (3. 11)

On the other hand, from ( 3. 10 ), we implies that
∞∑
s=2

as ≤
1− α

2(1− k) + k − α
. (3. 12)
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Therefore by ( 3. 11 ) and ( 3. 12 ) we have

∞∑
s=2

sηas ≤
2(1− α)

2− (α+ k)
.

�

Corollary 3.2. For 0 ≤ α ≤ 1 and η ≤ 1, we have TS∗(α) ⊆ N η
ρ (e) where ρ = 2(1−α)

2−α .

The case η = 1 in Theorem 3.1 leads to

Corollary 3.3. Let g(z) = z−
∑∞
s=2 asz

s ∈ T and 0 ≤ k < α ≤ 1. If g(z)+εz1+ε ∈ Sp(α, k),
in which ε > 0, then

∞∑
s=2

sas ≤
2(1− α)(1 + ε)

2− (k + α)

and equation is established for the following function

g(z) = z − (1− α)(1 + ε)

2− (k + α)
z2.

Theorem 3.4. Let g ∈ T and 0 ≤ k < α ≤ 1. If g(z)+εz1+ε ∈ Sp(α, k), in which ε > 0, then
Nβ(g) is a subset of Sp(α, k) where

β ≤ 1− α
1 + k

− 2(1− α)(1 + ε)

2− (k + α)
. (3. 13)

Proof. Let g(z) = z −
∑∞
s=2 asz

s and f(z) = z +
∑∞
s=2 bsz

s ∈ Nβ(g). This means that
we have

∑∞
s=2 s|as + bs| ≤ β. So by the hypothesis and Corollary 3.3, we obtain

∞∑
s=2

s|bs| =

∞∑
s=2

s|bs + as − as|

≤ β +
2(1− α)(1 + ε)

2− (k + α)

≤ 1− α
1 + k

.

Therefore we have
∞∑
s=2

s(1 + k)− (k + α)

1− α
|bs| ≤

1 + k

1− α

∞∑
s=2

s|bs| ≤ 1

and by Theorem 2.2, f(z) ∈ Sp(α, k). �
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