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Abstract. The aim of this article is to develop some distance measures for
newly defined framework of picture hesitant fuzzy set (PHFS). A PHFS is
apicture fuzzy set (PFS) having membership, abstinence and non-membership
grades in the form of hesitant fuzzy numbers (HFNs). These distance
measures include generalized picture hesitant distance measure, general-
ized picture hesitant normalizer distance measure, generalized picture hes-
itant weighted distance measure and generalized picture hesitant normal-
izer weighted distance measure along with some other distance measures.

A comparison of developed distance measures is established with existing
distance measures and their advantages are discussed.
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1. INTRODUCTION

The notion of fuzzy set (FS) was developed by Zadeh [60] in 1965 opening a new area of
interest for researchers. Zadeh’s model of FS defined the membership of an element to a set
in terms of a characteristic function on a unit interval and therefore described the uncertain
events in a unique way. Zadeh’s work was followed extensively by researchers as in [1] FS
theory applied in medical diagnosis, [11,12] provide a way of handling the decision mak-
ing problems, [20] proposed fuzzy soft set in BCI-Modules [18] applied fuzzy relations
to solve clusters and [5] provide information on optimal control using fuzzy techniques.
Some interesting application of FS theory are discussed in [6,7]. Atanassov [8] improved
the idea of FS proposed by Zadeh and developed the theory of intuitionistic fuzzy sets
(IFSs). An IFS generalizes the model of FS by describing the non-membership degree of
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an element along with membership degree and proved to be optimal in dealing with uncer-
tain events, especially events having uncertainty of yes or no types. Some basic work on
IFSs can be found in [17,22,29,30] and for some interesting applications of IFS theory we
refer to [31,36,35,13,14,15] etc. The framework of IFS developed by Atanassov handled
problems having uncertainty strongly but there was a problem the decision makers faced
while dealing with voting situation where one may have more than two types of openions
as one may vote in favor or remain abstain or vote against or refused to vote. Such type of
circumstances could not be modeled using ordinary IFS creating a motivation for Cuong
as he developed a new fuzzy model known as PFS [16] which is defined in terms of four
characteristic functions denoting the membership, abstinence, non-membership and refusal
degree of an element to a set. For some developments on PFSs we refer to [51,52,47,48,56].
The concept of hesitant fuzzy set (HFS) proposed by Torra [61] is also a generalization of
FS providing the membership of an element in terms of a finite subset of unit interval [0,1].
HEFES theory have been greatly applied to many challenging problems. Some work on HFSs
could be found in [42,43,38,9,10,32]. It is common that combing two or more structures
provided flexibility always in the history of FS theory. Some example can be found in
[33,34,39,49,56,57] etc. Motivated by the work of [33,34,39,49,53,54,56,57,58], in [59],
the theory of picture hesitant fuzzy sets is developed as a combination of PFS and HFS.
The aim of this article is to develop some new distance measures for the newly defined
framework of PHFSs. Motivated by the work of [43] some new distance measures are pro-
posed in this article in the framework of PHFSs as a generalization of existing DMs. These
distance measures could be very useful in pattern recognition problems. For some relevant
work, one may refer to [2,3,4,19,21,23-28,37,40,41,44-46,50,55]. This article is organized
as follows: Section one is based on a historical background of FS, IFS, PFS, HFS and re-
lated notions pointing towards the limitation of existing literature and the generalization of
new concepts. In section two, some basic notions are defined providing a base for proposed
work. Section three consists of a number of distance measures developed for PHFSs and
the generalization of defined distance measures are proved using some remarks and exam-
ples. Some advantages of proposed work and concluding points are added at the end of the
article.

2. NOTATION AND PRELIMINARIES

In this section, some basic results of IFSs, PFSs, HFSs and PHFSs are studied along
with the basic concepts of similarity and distance measures.

2.1. Definition [8]. Let X be a set. Then a IFS is having the shape Z = {< I(z), J(z) >:
x € X}twhereI: X — [0,1] and J : X — [0, 1] are the degree of membership and non-
membership degree of = in Z respectively, provided that 0 < I(z) + J(z) < 1. Further,
R(z) =1— (I(z) + J(x)) is termed as hesitancy degree of x in X.

2.2. Definition [11]. Let X be a set. Then a PFS is having the shape Q = {< I(z), J(x),
K(z) > xe X}wherel: X —[0,1],J: X — [0,1] and K : X — [0, 1] are the degree
of membership, abstinence and non-membership degree of x in () respectively, provided
that 0 < I(z) 4+ J(x) + K(z) < 1. Further, R(z) =1 — (I(z) + J(x) + K(x)) is termed
as refusal degree of = in X.
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2.3. Definition [36]. Let X be a set. Then a HFS on X is a mapping S that gives us few
elements of [0, 1] against each z € X. i.e H = {< x,I(x) >: I(x)is a finite subset of
[0,1]Va € X }. Moreover I(x) is called hesitant fuzzy number (HFN).

2.4. Definition [49]. Let X be a set. Then a PHFS is having the shape P = {< I(x), J(z)
, K(x) >: } where I, J, K are HFNs denoting the degree membership, abstinence/neutral
and non-membership degree of x in P respectively, provided that 0 < sup(I(x)) +
sup(J(z))+sup(K(x)) < 1. Further, R(z) = 1—(sup(I(z))+sup(J(z))+sup (K (z)))
is term as refusal degree of z in P.

2.5. Definition [49]. Let P = (I, J, K), P1 = (Il, Jl, Kl) and PQ = (IQ, JQ,KQ) be the
three PHFNs. Then
[11 P, U Py = (max(]
[2] PL NPy = (min(l;
31 P* = (K (), J(x).

(m),Ig(x)),min(Jl(sc),Jg(a?)),min(Kl(x),Kg(x)))
g x), Iz(x)), min(Jy (), J2(x)), max (K1 (z), K2(z)))

()

2.6. Definition [49]. Let P, @ be two PHFSs on X. Then d(P,Q) is called a distance
measure satisfying the following conditions:
[1]0<d(P,Q)<1
d(P,Q)=0<P=Q
d(P,Q) = d(Q, P)

2.7. Definition [49]. Let P, Q be two PHFSs on X. Then S(P, Q) is called a similarity
measure satisfying the following conditions:
[110<S(P,Q)<1
S(P,Q)=0&P=Q
S(P,Q)=5(Q,P)

~—

3. DISTANCE MEASURE FOR PICTURE HESITANT FUzZzZY SET

In this section, we proposed several distance measures for PHFSs. Note that PHF'S(X)
denote the set of all PHFS on X in this manuscript.

3.1. Definition. Let P,Q, R € PHF S(X) where X is any set and J > 0. The general-
ized picture hesitant distance measure (GPHDM) is of the form:

m (2 (@) - 10 \ )

7o
(
dgpham(P,Q) = | Y 7 > ((JO( () — o( )( D) (1)
j=1 =1 (K° (l)(x]) Kgg(l)(xj))l(

Obviously, the following properties hold true for GPHDM:
[1] 0 < dgphdm(Pa Q) < 1

[2] dgphdm(P7 Q) =0& P= Q

[3] dgphdm(Pv Q) = dgphdm(Qv P)

[4] dgphdm(P7 Q) + dgphdm (Qu R) 2 dgphdm(P7 R)
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Proof. 1t is easy to see that dgpnam (P, Q) satisfies the conditions (1 — 3). We have
only to prove (4) for dgpham(P,@Q). Let P C Q C R then I3 (z;) < Ig(l)(scj) <

I (), T (25) < IQ (25) < T () and K20(ay) < KGP(a5) < K3 (ay)
Vax; € X. It follows that

(13 () = 15 (23))*+ (I (5) = I () +
(T3 (@) = I @)+ | = | () =T °<>< i)+
(K5 (2;) = K5 (@)’ (50 (a5) — K3 ()
m () 7 (@) -1\
2 ls 2| Ve - T )P >
j=1 Ti =1 (K® (U(xj) Kg(l)(x]))j
o () Zo @) -0 V)
Dol sz 2| R @) - IR @)+
=\ (K () - K%”(W

QQQ‘
=
g
b
)
O

) > dgphdm(P> R)
similarly

dgphdm(Q7 R) > dgphdm(P7 R)
then, we combined the above two inequality such that
dgphdm (P7 Q) + dgphdm(Q7 R) Z dgphdm(Pa R)
]

3.2. Definition. Let P,Q, R € PHF S(X) where X is any set and J > 0. The general-
ized picture hesitant normalizer distance measure (GPHNDM) is of the form:

N Zo, [ () - 120+ \\ )

7°@
(
dgphndm(Pa Q) = ;L Z 321 Z ((JO( )(I ) 0(1)( )) + (2)
ST (g0 ) - K )

Obviously, the following properties hold true for GPHNDM:
[l] 0 < dgphndm(PvQ) < 1
[2] dgphndm(P7Q> =0 P=0Q
[3] dgphndm(Pa Q) = dgphndm(Q7 P)
]

[4 dgphndm(Pa Q) + dgphndm (Q7 R) > dgp}mdm(P7 R)

Proof. Straightforward. ]
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3.3. Remark. If we place J = 1. Then Fq.(1) and Eq.(2) are known as generalized
picture hesitant hamming distance measure (GPHHDM) and generalized picture hesitant
normalizer hamming distance measure (GPHNHDM). Similarly, if we place J = 2. Then
Eq.(1) and Eq.(2) are known as generalized picture hesitant Euclidean distance mea-
sure (GPHEDM) and generalized picture hesitant normalizer Euclidean distance measure
(GPHNEDM). If we take J = 0. Then Eq.(1) and Eq.(2) are known as generalized
intuitionistic hesitant distance measure (GIHDM) and generalized intuitionistic hesitant
normalizer distance measure (GIHNDM) [46].

3.4. Definition. Let P,Q, R € PHF S(X) where X is any set and J > 0. The general-
ized picture hesitant normalizer weighted distance measure (GPHNWDM) is of the form:

o (B @) -1\ \)
dapraan(PQ) = | Dwj | 57— > | (T3 (ay) = °“< )P+ (3)
j=1 i =1 ((K;(i)(xj) ch(?)(xj)):l

Obviously, the following properties hold true for GPHNDM:
[1] 0 S dgphnwdm(PaQ) S 1

[2] dgphnwdm(P7 Q) =0 P= Q

[3] dgphnwdm (Pa Q) = dgphnwdm(Q7 P)

[4] dgphnwdm (P, Q) + dgphmudm(Q R) > dgphnwdm (P R)
Where w;(j = 1,2,..,m) is weighted such that Z w;=1

Proof. Straightforward. g

3.5. Remark. If we place J = 1. Then Eq.(3) are known as generalized picture hesitant
normalizer weighted hamming distance measure (GPHNWHDM). Similarly, we if place
J = 2. Then Eq.(3) are known as generalized picture hesitant normalizer weighted Eu-
clidean distance measure (GPHNWEDM). If we take J = 0. Then Fq.(3) are known as
generalized intuitionistic normalizer weighted distance measure (GIHNWDM).

3.6. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The general-
ized picture hesitant Hausdorff distance measure (GPHHDM) is of the form:

(I () = 157 (25))+
dgpnnam (P, Q) = Zmax (T3 (25) = J, "“( i)+ (4)
(K5 () - Kzf’)m))ﬂ

1/1

Obviously, the following properties hold true for GPHHDM:
[1] 0 < dgphhdm(Pa Q) < 1

[2] dgphhdm(P, Q) =0 P= Q

(3] dgphhdm (Pa Q) = dgphhdm(Q, P)

(4] dgphnam (P, Q) + dgphham (Q, R) > dgphnam (P, R)
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Proof. 1t is easy to see that dgppnam (P, Q) satisfies the conditions (1 — 3). We have
only to prove (4) for dgpnnam (P, Q). Let P C Q C R then I8 (z;) < Ig)(l) (z;) <
I (y), T (25) < IQ (25) < T () and K20 (wy) < KGP(a5) < K3 (ay)
Vx; € X. It follows that

(I3 () = 167 (23))+ (I (@) = I () P+
(T2 () = IQ (@) + | = (729 ) °<“< )Y+
(K3 ;) = KQ“< a (K59 () — KD )
z ) - 10w\
g o max | (7 () = J °“< 3+ >
= (K3 (@) - Kz;%jnj
1/3

dgphhdm(Pv Q) > dgphhdm(Pv R)
similarly
dgphhdm(Q7 R) Z dgphhdm<Pa R)
then, we combined the above two inequality such that
dgphhdm (P, Q) + dgprham (Qs R) > dgprham (P, R)
O

3.7. Definition. Let P,Q, R € PHF S(X) where X is any set and J > 0. The general-
ized picture hesitant Hausdorff weighted distance measure (GPHHWDM) is of the form:

| % (13" <xj> 5" ( )
dgphhwdm(P7 Q) = g Z w; max (( (.277) ( )) (5)
S0 ) - Kz?;” ()

1/1

Obviously, the following properties hold true for GPHHWDM:
[1] 0 S dgphhwdm(Pa Q) S 1

[2] dgphhwdm(P7 Q) =0&P= Q

[3] dgphhwdm(Pa Q) = dgphhwdm (Qa P)

[4] dgphhwdm(Pa Q) + dgphhwdm(Q7 R) > dgphhwdm(P7 R)

Proof. Straightforward. ]
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3.8. Remark. If we place J = 1. Then Fq.(4) and Eq.(5) are known as generalized
picture hesitant Hausdorff hamming distance measure (GPHHHDM) and generalized pic-
ture hesitant Hausdorff weighted hamming distance measure (GPHHWHDM). Similarly, if
we place J = 2. Then Eq.(1) and Eq.(2) are known as generalized picture hesitant Haus-
dorff Euclidean distance measure (GPHHEDM) and generalized picture hesitant Hausdorff
weighted Euclidean distance measure (GPHHWEDM). If we take J = 0. Then E¢q.(4) and
Eq.(5) are known as generalized intuitionistic hesitant distance measure (GIHDM) and
generalized intuitionistic hesitant weighted distance measure (GIHWDM).

3.9. Definition. Let P,Q, R € PHF S(X) where X is any set and J > 0. The general-
ized hybrid picture hesitant weighted distance measure (GHPHWDM) is of the form:

L @@ - 15"
ey Timt | (U (w) =IO @)Y+ | |+
— Kg ()]

1/1

dghphwdm P Q Z %

Obviously the above Eq. (6), the following properties hold true for GHPHWDM:
[1] 0 S dghphwdm(Pa Q) S 1

[2] dghphwdm(Pa Q) =0&P= Q

[3] dghphwdm(Pa Q) = dghphwdm (Q7 P)

[4] dghphwdm(Pa Q) + dghphwdm(@a R) Z dghphwdm (Pv R)

Proof. Straightforward. O

3.10. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The gener-
alized hybrid picture hesitant normelizer weighted distance measure (GHPHNWDM) is of
the form:

g [ (@) = 150 )+ v

7 i | (T (w) — T | |+
23) — K50 (e))

Iﬁ?(wﬁ 5" (x5))

(25) - °<”< i)’

(K;@(wj)ng“( i)

1 wj
dghphnwdm P Q E Z ?J +
= +

Obviously the above is called Eq. (7), the following properties hold true for GHPHN-
WDM:

[1] 0 < dghphnwdm(P Q) < 1

[2] ghphnwdm(P Q) =0&P= Q
[3] thhnwdm(P7 Q) = dghphnwdm(Q; P)
[4] ghphnwd’rrL(P7 Q) + dghphnwd7rL(Q7 R) Z dghphnwdm(P; R)

Proof. Straightforward. ]
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3.11. Remark. If we place J = 1. Then Eq.(6) and Fq.(7) are known as generalized hy-
brid picture hesitant weighted hamming distance measure (GHPHWHDM) and generalized
hybrid picture hesitant normalizer weighted hamming distance measure (GHPHNWHDM).
Similarly, if we place J = 2. Then Fq.(6) and Fq.(7) are known as generalized hybrid
picture hesitant weighted Euclidean distance measure (GHPHWEDM) and generalized hy-
brid picture hesitant normalizer weighted Euclidean distance measure (GHPHNWEDM).
If we take J = 0. Then Eq.(6) and Eq.(7) are known as generalized hybrid intuitionis-
tic hesitant weighted distance measure (GHIHWDM) and generalized hybrid intuitionistic
hesitant normalizer weighted distance measure (GHIHNWDM).

We are fined the previous work of distance measure for discrete. The all elements under
integral is continues. The weights w(z) € [0,1] of z € X = [I,p] and [ w(z)dz =1

Then we proposed the following definitions.

3.12. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The general-
ized continuous picture hesitant weighted distance measure (GCPHWDM) is of the form:

D (( 0(1) )_Io(z)( )) I 1/1

) ™ (@
dgcphwdm(P,Q): /w(a:) 37z Z (( o()( ) 0(1)( ))_|_ dx
' 5\ (39 ) — KO ()

Obviously the above is called Eq. (8), the following properties hold true for GCPH-
WDM:

[1] 0 < dgcphwdm(P7Q) < 1

[2] dgcphwdm(P7 Q) =0 P=0Q
[3] dgcphwdm(P7 Q) = dgcphwdm(Qa P)
[4] dgcph,wdm(Py Q) + dgcphwdm(Q» R) > dgcphwdm(Pa R)

Proof. Tt is easy to see that dgcphwam (P, Q) satisfies the conditions (1 — 3). We have
only to prove (4) for dgcphwam (P, Q). Let P C @@ C R then I;(z)(xj) < Ié’?(z)(xj) <
I (), T3 (25) < IQ (25) < T (wy) and K3O(wy) < KD (2;) < K3 (ay)
Vx; € X. It follows that

(I (5) = 157 (23))+ (I (g) = 1 (7)) +
(T3 () = J "“( D2 R @) = TR0 )+
((K;(z)(xj) _ Ko(z)( J)) ((K}O;(Z)(xj) _ K%(Z)(xj))j

o () -1 ) v
JACIEN B ol (e e B e

Ji=1 ((K;(i)(xj) _ KCOQ(U (”ij)):(

, Lz (@) - 1) -
[ )| 57 ((J;“?gx»—J,%%jw do

8
<)
~
|
—
—~
>
T
~
—
&
<.
~—
|
ESBSY
S
=
—~
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similarly
dgcphwdm(Qv R) Z dgcphwdm(Pa R)
then, we combined the above two inequality such that

dgcphwdm(Pv Q) + dgcphwdm(Qa R) Z dgcphwdm(Pv R)
O

3.13. Remark. If we place J = 1. Then Fq.(8) are known as generalized continuous pic-
ture hesitant weighted hamming distance measure (GCPHWHDM). Similarly, if we place
J = 2. Then Eq.(8) are known as generalized continuous picture hesitant weighted Eu-
clidean distance measure (GCPHWEDM)

If we consider w(z) = e l), then the Def.(15) is converted into Def.(16).

3.14. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The general-
ized continuous picture hesitant normalizer weighted distance measure (GCPHNWDM) is
of the form:

Za, (13 7o ;) — o()( )) I 1/3

dyerrmnan(P.Q) = | =15 [T 2 S| w °“>Ex> 7Ops | |ax| o
| P\ S (80 ) - KO )

Obviously, the following properties hold true for GCPHNWDM:
[1] 0 S dgcphnwdm(P7 Q) S 1

[2] dgcphnwdm(Pa Q) =0 P= Q

[3] dgcphnwdm(Pa Q) = dgcphnwdm(Qa P)

[4] dgcphnwdm(Pa Q) + dgcphnwdm,(Q7 R) Z dgcphnwdm(Pa R)

Proof. 1t is easy to see that dgcphnwam (P, Q) satisfies the conditions (1 — 3). We have
only to prove (4) for dgephnwim (P, Q). Let P C Q C R then Il‘?,(z) (z;) < Igg(z) (z;) <

I (y), TR () < JQ (25) < TR (@) and K2 (a5) < KQP(5) < K3 ()
Va; € X. It follows that

(1) = 17 () + (I3 () = T3 (23))+
((J;%j) JE @+ | = | (R0 () — T3 )+
(K29 () - IQ;“)(:J:J»))J (KR (@) = K ()

(30~ 10 ) v

NG “m)— K50 )
"“( )+
< P+ | | de
( 52’( j> o (z)))?

) gcphnwdm(P R)

/ o ((7p )Ex) TP | ]
J

3Z

Tj ;=1

dgcphnwdm (P
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similarly
dgcphnwdm(Q> R) > dgcphnwdm(P7 R)
Then, we combined the above two inequality such that

dgcphnwdm (P; Q) + dgcphnwdm(Qv R) > dgcphnwdm (Pa R)
]

3.15. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The general-
ized continuous picture hesitant Hausdorff weighted distance measure (GCPHHWDM) is
of the form:

1 (@)~ 150 @)r+ |\

» (
dgcphhwdm(P7 Q) = g / w(x) max ((J;(l)(m]) o(l)( j))l‘i‘ dx (10)
' " w0 - k206

Obviously, the following properties hold true for GCPHHWDM:
[1] 0 § dgcphhwdm(Pa Q) § 1

[2] dgcphhwdm(P7 Q) =0 P= Q

[3] dgcphhwdm(Pa Q) = dgcphhwdm(Qv P)

[4] dgcphhwdm(Pa Q) + dgcphhwdm(Q; R) 2 dgcphhwdm(P; R)

Proof. Straightforward. ]

3.16. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The general-
ized continuous picture hesitant housdroff normalizer weighted distance measure (GCPHH-
NWDM) is of the form:

_ (I3 () =I5 () +
dgephhnwdm (P, Q) = | =— / max | ((Jo (z;) — "“)(gc,))hr dx (11)
SO (K ) - Ky )

Obviously, the following properties hold true for GCPHHNWDM:
[1] 0 < dgcphhnwdm(Pv Q) < 1

[2] dgcphhnwdm(P7 Q) =0&P= Q

[3] dgcphhnwdm(Pa Q) = dgcphhnwdm(Qa P)

[4] dgcphhnwd'm(Pa Q) + dgcphhnwdm(Q; R) Z dgcphhnwchn (P7 R)

Proof. Straightforward. O

3.17. Remark. If we place 1 = 1. Then Eq.(9), Eq.(10) and Fq.(11) are known as
generalized continuous picture hesitant normalizer weighted hamming distance measure
(GCPHNWHDM), generalized continuous picture hesitant Hausdorff weighted hamming
distance measure (GCPHHWHDM) and generalized continuous picture hesitant Haus-
dorff normalizer weighted hamming distance measure (GCPHHNWHDM). Similarly, if
we place 1 = 2. Then Eq.(9), Eq.(10) and Eq.(11) are known as generalized continuous
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picture hesitant normalizer weighted Euclidean distance measure (GCPHNWEDM), gener-
alized continuous picture hesitant Hausdorff weighted Euclidean distance measure (GCPH-
HWEDM) and generalized continuous picture hesitant Hausdorff normalizer weighted Eu-
clidean distance measure (GCPHHNWEDM). If we take the J = 0. Then Eq.(9), Eq.(10)
and Fq.(11) are known as generalized continuous intuitionistic hesitant normalizer weighted
distance measure (GCIHNWDM), generalized continuous intuitionistic hesitant Hausdorff
weighted distance measure (GCIHHWDM) and generalized continuous intuitionistic hesi-
tant Hausdorff normalizer weighted distance measure (GCIHHNWDM).

3.18. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The gener-
alized hybrid continuous picture hesitant weighted distance measure (GHCPHWDM) is of
the form: dghcphwdm(P7 Q) =

Za ((Ip ( ) — ( ))+ 13
sz, St | (U O“g i) = “(() V|
L[ (K (x)) — K& (25))
5/1 w(x) ((Io(z)(mj)_lo(z)( e dr
S | ((20(,) — S0 ()
(K2 (x) — K"()( )

Obviously the above is called Eq. (12), the following properties hold true for GHCPH-
WDM:

[1] 0< dghcphwdm(P7 Q) <1

[2] thphwdm(Pa Q) =0& P= Q

[3] ghcphwdm (P7 Q) = dghcphwdm(Qa P)

[4] ghcphwdm(Pv Q) + dghcphwdm (Qa R) Z dghcphwdm (Pa R)

Proof. Straightforward. O

3.19. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The general-
ized hybrid continuous picture hesitant normalizer weighted distance measure (GHCPHN-
WDM) is of the form: dgnepnnwam (P, Q) =

(I () = 1§ (25))?
(J5 () — ‘“”( i)

(¢
( @ o0 (z))?

1 ! (Kp"(z;) = K5 (x5)) -
2(p—l)/1 ((Ip !
(O

(K

1/3
+
+

NG J>—I°“< i
9 2,) I8 (a,) o+
Kot (a,) - KO (a))

% max; (

(

Obviously the above is called Eq. (13), the following properties hold true for GHCPH-
NWDM:

[1] 0 < dghcphnwdm(P7 Q) < 1

[2] dghcphnwdm(P7 Q) =0 P= Q
[3] dghcphnwdm(Pa Q) = dghcphnwdm(Qv P)
[4] dghcphnwdm(P7 Q) + dghcphnwdm (Qa R) 2 dghcphnwdm(P7 R)
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Proof. Straightforward. O

3.20. Remark. If we place J = 1. Then Fq.(12) and Fq.(13) are known as general-
ized hybrid continuous picture hesitant weighted hamming distance measure (GHCPH-
WHDM), generalized hybrid continuous picture hesitant normalizer weighted hamming
distance measure (GHCPHNWHDM). Similarly, if we place 1 = 2. Then Eq.(12) and
Eq.(13) are known as generalized hybrid continuous picture hesitant weighted hamming
distance measure (GHCPHWHDM), generalized hybrid continuous picture hesitant nor-
malizer weighted hamming distance measure (GHCPHNWHDM). If we take J = 0. Then
Eq.(12) and Fq.(13) are known as generalized hybrid continuous intuitionistic hesitant
weighted distance measure (GHCIHWDM), generalized hybrid continuous intuition istic
hesitant normalizer weighted distance measure (GHCIHNWDM).

3.21. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The general-
ized picture hesitant ordered weighted distance measure (GPHOWDM) is of the form:

1/1
(To(s)) — 19 O (2a(s))) +
(@o()) — I (o)) +
9 (@o()) — KQ%(J)))J

Ze; (T3
(7)

S o

°(7> i=1 ((K o(i

dgphowdm P Q Zw]

Obviously the above is called Eq. (14), the following properties hold true for GPHOWDM:
[1] 0 S dgphowdm(P7 Q) S 1

[2] dgphowdm(Pa Q) =0 P= Q

[3] dgphowdm(Pa Q) = dgphowdm(Qa P)

[4] dgphowdm(P, Q) + dgphowdm(Q, R) Z dgphowdm(P, R)

Proof. Straightforward. g

3.22. Remark. If we place J = 1. Then Eq.(14) are known as generalized picture hesi-
tant ordered weighted hamming distance measure (GPHOWHDM). Similarly, if we place
J = 2. Then Eq.(14) are known as generalized picture hesitant ordered weighted Eu-
clidean distance measure (GPHOWEDM). If we take J = 0. Then F¢.(14) are known as
generalized intuitionistic hesitant ordered weighted distance measure (GIHOWDM). The
follows is holds obviously:

L (I3 (@oi41)) = 167 (woi41))+
57 2| (2 @egin) = TG (o))

To(j+1) j— o(t o(1
G+1) =1 ((KP( )(xo(j+1)) _ KQ( )(xo(j+1)))3

v

L 2 (TP (o) = 10 (o)) +
7 (75" (o) - JQ()((;Uom))JJr
To(j) 4= o(i

PEL (K (o) — K (o))
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3.23. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The gener-
alized picture hesitant Hausdorff ordered weighted distance measure (GPHHOWDM) is of
the form:

1/1
(5 E;(l’o(j)) TP )<wo<]>>> +

dgphhowdm (P, Q) = ij max ((JP (330(3')) JQ (-TO(]))) + (15)
(K (@o(s)) — K& (o))’

Obviously, the following properties hold true for GPHHOWDM:
[1] 0 < dgphhowdm(P7 Q) < 1

[2] dgphhowdm(Py Q) =0&P= Q

[3] dgphhowdm(P7 Q) = dgphhowdm(Qa P)

[4] dgphhowdm(Pa Q) + dgphhowdm (Q» R) Z dgphhowdm(P7 R)

Proof. Straightforward. g

3.24. Remark. If we place J = 1. Then Eq.(15) are known as generalized picture hesi-
tant Hausdorff ordered weighted hamming distance measure (GPHHOWHDM). Similarly,
if we place J = 2. Then Fq.(15) are known as generalized picture hesitant Hausdorff
ordered weighted Euclidean distance measure (GPHHOWEDM). If we take J = 0. Then
Eq.(15) are known as generalized intuitionistic hesitant Hausdorff ordered weighted dis-
tance measure (GIHHOWDM). The follows is holds obviously:

z, (17 <xo@+l>> 15 (o)) +
max Y | (U7 o) = I @)+ | 2
(K7

=\ (KR (@oi41) — Ko (2ogi41)))?

Zoy [ (U2 (o) = 16 (o) +
mlaxz ((J}),(i) (To(jy) — Jg(i)(:vo(j)))hr
=\ (B (o) = K (w(3))?
3.25. Definition. Let P,Q, R € PHFS(X) where X is any set and J > 0. The general-

ized hybrid picture hesitant ordered weighted distance measure (GHPHOWDM) is of the
form:

o, [ (@) = 150 o)+ ”
m] )
m 3ZIO(]) Zi:l ((((i( )(( o0 >)) KO(()m(OO))));_ *
wj Lo(j) Q (To(y)
dghphowdm (P, Q) = ; 2 (( ; )(x o)) — ()(wo(”)) +
smaxi | ((J2 (o) = J& (@a(s))+
(K3 (o)) — K O (o))’

Obviously the above is Eq. (16), the following properties hold true for GHPHOWDM:
[1] 0 < dghphowdm(P7 Q) < 1

[2] dghphmudm(P, Q) =0 P= Q

[3] dghphowdm(Pa Q) = dghphowdm(@v P)

[4] dghphowdm(P7 Q) + dghphowdm (Q7 R) Z dghphowdm(P7 R)



64 Naeem Jan, Zeeshan Ali, Kifayat Ullah and Tahir Mahmood

Proof. Straightforward. O

3.26. Remark. If we place J = 1. Then Eq.(16) are known as generalized hybrid picture
hesitant ordered weighted hamming distance measure (GHPHOWHDM). Similarly, if we
place 7 = 2. Then Fq.(16) are known as generalized hybrid picture hesitant ordered
weighted Euclidean distance measure (GHPHOWEDM). If we take J = 0. Then Eq.(16)
are known as generalized hybrid intuitionistic hesitant ordered weighted distance measure
(GHIHOWDM). The follows is holds obviously:

(5 o) = 13 (o) P+
7

ﬁ > (T2 () = TG (@ogren) '+ | +
1 ((Kfa(l)(zoml))* ()(xo(m))) -
2 z (I P (370 G+1) — (xo (5+1) ))J+ -
Fmaxi . | (2 (o) =I5 (o) Pt
(K (Z)(-To(j—&-l)) K ()(a%(ﬁ-l)))z|
- (T (@) = 1" (o)) +
7 Tt | (5 (@e) =I5 e+ | +
((K;( (wo(5)) — _I)<Zg(” (zo()))?

N =

(12 (@o()) = 16" (o))
gmax; | (T3 (@) = 15" (o))
(K (@os)) — KG (o))

4. APPLICATIONS

Distance and similarity measures have wide range of applications in pattern recognition
and clustering that can be useful in many practical applications of engineering and other
sciences. In this section, we are interested in applying the defined distance measures to a
problem of pattern recognition and multi attributive decision making (MADM) i.e. we used
the defined operators in building material recognition problems and MADM and discussed
the results.

4.1. Building Material Recognition. In this type of problems, we need to identify the
class of unknown building material using the distance measures for PHFSs. The detailed
algorithm of this type of problem is given below.

4.1.1. Algorithm. Step 1: Get the information about the known building materials P;(i =
1,2,3,...,n) and the unknown building material P in form of PHFNs.

Step 2: Compute the distance measure of each P; with P i.e. dghphowdm-

Step 3: Compute the similarity measure of each P; with P by subtracting the distance
measure form 1.

Step 4: Rank the degree of similarities of each P; with P and P is classified.

The process is demonstrated with the help of an example below after algorithm.

Example 1: We assumed the example described in [44] where the class of an un-
known building material is determined using similarity measures. We consider that three
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building materials which are represented by the PHFSs P;(i = 1,2,3) in the space at-
tributes X = {x1,x2,x3,x4}. Let us consider the weight of z;(i = 1,2,3,4) be w =
(0.3,0.3,0.2,0.2)”. Now suppose an unknown building material P whose class is to be
determined. For this purpose, the GHPHOWDM is used to identify the class of unknown
building material P. The stepwise calculations are as follows:

Step 1: Information of the building material in the form of PHFNs is provided in

Tablel.

Data P1 P2 P3 P
{0.2,0.1}, {0.4,0.5}, {0.7,0.6}, {0.3,0.2},

1 {0.3,0.4}, {0.3,0.3}, {0.1,0.1}, {0.3,0.3},
{0.4,0.4} {0.2,0.2} {0.1,0.1} {0.1,0.4}
{0.3,0.2}, {0.5,0.1}, {0.3,0.3}, {0.5,0.1},

2 {0.1,0.5}, {0.1,0.3}, {0.2,0.2}, {0.5,0.1},
{0.1,0.1} {0.2,0.1} {0.1,0.2} {0,0}
{0.5,0.1}, {0.1,0.1}, {0.1,0.3}, {0.3,0.3},

3 {0.3,0.3}, {0.2,0.2}, {0.3,0.11, {0.1,0.4},
{0.2,0.1} {0.3,0.3} {0.1,0.1} {0.2,0.1}
{0.3,0.2}, {0.3,0.3}, {0.1,0.1}, {0.3,0.5},

T4 {0.2,0.2}, {0.2,0.2}, {0.3,0.1}, {0.2,0.1},
{0.5,0.1} {0.1,0.1} {0.1,0.3} {0.3,0.3}

Tablel(Information of building materials in the environment of PHFNs)

Step 2: Step two involves the calculation of distance measures of unknown material
with the given materials. The values in T'able2 are obtained using GHPHOWDM between
P, (i =1,2,3) and P where value of 3bb is set as 2.

Data P 1 P 2 P. 3
Pyhphowam (P, P) 0.16 0.17 0.163

Table2(Distance measures of unknown building material with given materials)

Step 3: Step three involves the calculation of similarity measure of the unknown mate-
rial with known materials. The calculations are listed in T'able3.

Data P 1 P. 2 P 3
Pyhphowdm (Pi, P)  0.84 0.83 0.837

Table3(Similarity index of unknown building material with given materials)

In the above numerical results, clearly indicated that the unknown building material P
has a similarity index of 0.84 with building material P, which is the greatest among all
other similarity measures. Therefore, the unknown building material P is included to the
class of building material P;.

4.2. Multi Attributive Decision Making. In this subsection, we demonstrated the idea
of multi attributive decision making (MADM) using the distance measures of PHFS. In
such phenomenon, the selection of best candidates is carried out using distance measures
of PHFSs. The detailed algorithm of the method is described below.

4.2.1. Algorithm. Step 1: Obtain information about some alternatives P;(i = 1,2,3,...,n)
under the attributes C; (¢ = 1,2, ..., n) is the form of PHFNs and decision matrix is formal.
Step 2: In step two, we normalize the decision matrix exist any criteria of cost type.
Step 3: For an ideal alternative P* define PHFN for each criterion as C = ({1}, {0}, {0}).
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Step 4: The distance of information provided in T'able4 are evaluated with ideal value
of ({1}, {0}, {0}).

Step 5: The similarity value of information in step 4 is calculated.

Step 6: Rank the similarity measures to get the best alternative.

Example 2: This example is adopted from [44], where the selection of a best strategy
is carried out by a multinational company. The company need to select a strategy for its
upcoming financial strategy. The company has possibly four strategies { Py, P>, Ps, Py}
needs to be evaluated under four attributes {C4, Co, C3, C4} wich are:

P;: Investments in rural areas.

P5: Investments in urban areas.

Pj5: Investments in national markets.

P,: Investments in international markets.

C1,C9,C5 and Cy are defined as growth analysis, risk analysis, political impact and
social impact respectively. The weight vector of strategies is w = (0.3,0.3,0.2,0.2)7.

The step wise calculation are as follows:
Step 1: Formation of decision matrix

Data C; Cy Cs Cy
{0.2,0.4}, {0.2,0.2}, {0.4,0.1}, {0.1,0.1},
Py {0.1,0.3}, {0.1,0.1}, {0.1,0.4}, {0.2,0.2},
{0.3,0.1} {0.6,0.7} {0.2,0.2) {0.7,0.7}
{0.1,0.1}, {0.3,0.1}, {0.1,0.3}, {0.5,0.51,
P, {0.3,0.4}, {0.1,0.3), {0.4,0.4), {0.1,0.3},
{0.2,0.5} {0.2,0.2} {0.3,0.3} {0.2,0.2}
{0.3,0.3}, {0.3,0.3}, {0.1,0.2}, {0.1,0.3},
Ps {0.2,0.2}7 {0.4,0.4}, {0.2,0.1}, {0.5,0.1},
{0.1,0.1} {0.1,0.3} {0.7,0.7} {0.2,0.1}
{0.1,0.1}, {0.6,0.51, {0.1,0.11, {0.4,0.5},
P, {0.3,0.11, {0.3,0.11, {0.3,0.51, {0.3,0.31,
{0.6,0.5} {0.1,0.1} {0.4,0.4} {0.1,0.2}

Table4(matrix table of the data analysis)
Step 2: Normalization of data provided in T'able4 for maximum profits

Data 4 Cy Cs Cy
{0.3,0.1}, {0.2,0.2), {0.4,0.1}, {0.1,0.1},
P, {0.1,0.3}, {0.1,0.1}, {0.1,0.4}, {0.2,0.2},
{0.2,0.4} {0.6,0.7} {0.2,0.2} {0.7,0.7}
{0.2,0.5}, {0.3,0.1}, {0.1,0.3}, {0.5,0.5},
Py {0.3,0.4}, {0.1,0.3}, {0.4,0.4}, {0.1,0.3},
{0.1,0.1} {0.2,0.2} {0.3,0.3} {0.2,0.2)
{0.1,0.1}, {0.3,0.3}, {0.1,0.2}, {0.1,0.3},
Py {0.2,0.2}, {0.4,0.4), {0.2,0.11, {0.5,0.1},
{0.3,0.3} {0.1,0.3} (0.7,0.7} {0.2,0.1}
{0.6,0.5}, {0.6,0.51, {0.1,0.11, {0.4,0.5},
P, {0.3,0.11, {0.3,0.11, {0.3,0.51, {0.3,0.31,
{0.1,0.1} {0.1,0.1} {0.4,0.4} {0.1,0.2}

Tableb(using the step 1, update the matrix table of the data analysis)
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Step 3: The ideal value of criterion is C} = ({1}, {0}, {0})
Step 4: The distance of the information in step 2 is determined with P* and C} =
({1,1},{0,0},{0,0}) as follows

dgphowdm (P1, P*) 0.42

dgphowdm (P2, P*) = 0.34

dgphowdm (P3, P*) = 0.312
dgphowdm (P1, P*) = 0.215

Step 5: The similarity measures of the data provided in step 4 as determined as follows

( ) 1—-0.42 =0.58
Sgphowdm (P2, P*) = 1—0.34=0.66
Sgphowdm (P3, P*) = 1—0.312 = 0.688

) = 1-0.215=0.785

*
gphowdm P17 P

Sgphowdm (P47

Steps 6: The similarity measures are ranked to get the best strategy and the ranking is
as follows.

P1<P2<P3<P4

The ranking shows that the similarity of P, and P* has a greater value so it is the best
policy. Comparative Study and Advantages: In this work, we studied some distance
measures for PHFSs. These distance measures are the generalizations of distance mea-
sures proposed for HFSs in [29]. As PHFSs is a generalization of both PFSs and HFSs
and could deal effectively in real life phenomena’s. In Remarks (1-7) it is demonstrated
under which conditions, the proposed distance measures become hamming and Euclidean
distance measures. It is also discussed in Remarks (1-7) that the proposed work shifted
to the environment of IHFSs if we assume j = 0 showing the worth of our work. By
assuming J = K = 0 all the proposed work shifted to environment of HFSs proposed in
[29]. However, keeping in mind the effectiveness of PHFSs the proposed work csould be
more efficient in problems of engineering and other sciences. Now to show the superiority
of our proposed work, we consider some information in the existing environments and the
way how proposed work deal with them. First, consider the information in Table 6 in the
form of IHFSs. The proposed DMs can handle this type of information by taking J = 0.

P

Data P1 P2 P3

. {0.2,0.1}, {0.4,0.5}, {0.7,0.6}, {0.3,0.2},
{0.4,0.4} {0.2,0.2} {0.1,0.1} {0.1,0.4}

. {0.3,0.2}, {0.5,0.1}, {0.3,0.3}, {0.5,0.1},
{0.1,0.1} {0.2,0.1} {0.1,0.2} {0,0}

. {0.5,0.1}, {0.1,0.1}, {0.1,0.3}, {0.3,0.3},
{0.2,0.1} {0.3,0.3} {0.1,0.1} {0.2,0.1}

. {0.3,0.2}, {0.3,0.3}, {0.1,0.1}, {0.3,0.5},

{0.5,0.1} {0.1,0.1} {0.1,0.3} {0.3,0.3}
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Table6(Intuitionistic Hesitant Fuzzy Set) Now, if the information provided are in the
form of HFSs as in T'able7. Then the proposed DMs can handle this type of data by taking
J=K=0.

Data P1 Pg P3 P

1 {0.2,0.1} {0.4,0.5} {0.7,0.6} {0.3,0.2}
T2 {0.3,0.2} {0.5,0.1} {0.3,0.3} {0.5,0.1}
x3 {0.5,0.1} {0.1,0.1} {0.1,0.3} {0.3,0.3}
T4 {0.3,0.2} {0.3,0.3} {0.1,0.1} {0.3,0.5}

Table7(Hesitant Fuzzy Set)

If the information provided are in the form of PFSs as shown in Table 8. Then the pro-
posed DMs can handle this type of data where every membership grade can be considered
as HFN.

Data P1 P2 P3 P

1 {0.2,0.1,0.3} {0.4,0.5,0.1} {0.7,0.6,0.1} {0.3,0.2,0.4}

T2 {0.3,0.2,0.1} {0.5,0.1,0.3} {0.3,0.3,0.4} {0.5,0.1,0.4}

x3 {0.5,0.1,0.4} {0.1,0.1,0.7} {0.1,0.3,0.5} {0.3,0.3,0.1}

T4 {0.3,0.2,0.3} {0.3,0.3,0.3} {0.1,0.1,0.8} {0.3,0.5,0.1}
Table8(Picture Fuzzy sets)

5. CONCLUSION

This article is based on several distance measures for PHFSs. First, we described some
basic notions along with the concept of PHFS. Then some DMs are developed for PHFSs
including generalized picture hesitant distance measures (GPHDMs), generalized picture
hesitant normalizer distance measures (GPHNDMs) and their extended forms. We also
discussed the Euclidean, hamming and Hausdorff DMs in the environment of PHFSs. With
the help of several remarks, it is discussed how the proposed work the work done proposed
in the environments of IFSs and IHFSs etc. Further, the proposed work is applied to a
pattern recognition and a MADM problem and the results are discussed. A comparative
study is also established with existing concepts and the advantages of the proposed work
are studied..
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