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Abstract. This paper is concerned with the application of Euler poly-
nomials in solving a system of nonlinear fractional differential equations
(SNFDE). For this purpose, an operational matrix of fractional integration
is designed for Euler polynomials. Together with collocation method, this
matrix simplifies the main problem to a set of algebraic equations. Error
analysis is also investigated. Numerical examples illustrate the impression
of the method.

AMS (MOS) Subject Classification Codes: 26A33; 11B68; 65N35
Key Words: Fractional integration, System of nonlinear fractional differential equations,
Euler operational matrix, Collocation method.

1. INTRODUCTION

Due to the connection of fractional calculus with the systems involving memory and after-
effects, a lot of natural phenomena are formulated by SNFDE. Some topics related to this
fact are fractional model for Hepatitis C virus infection [2], fractional chaotic system [3],
fractional SIR epidemic model [6], fractional HIV infection model [7], fractional predator-
prey model [12], fractional financial system [22], unsteady rotational flow of a second
grade fluid [29], and also rotational motions of fractional Oldroyd-B fluids between circu-
lar cylinders [32].

One should mention that the available methods in the literature which focus on the solu-
tions of SNFDE are listed as: Homotopy perturbation method [1, 21], Multi-stage Bernstein
polynomials method [4], fractional generalized Laguerre functions method [9], Legendre
wavelets method [10], differential transform method [15], Laplace transform method [16],
variational iteration method [17], Adomian decomposition method [19], Chebyshev ap-
proach and fractional finite difference [20], Haar wavelets approach [27], and fractional
natural decomposition method [28].
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In this study, we consider the general form of a SNFDE as follows

Dglyl(t) = fl (tayl(t)7 e 7yd(t))7

DZZyQ(f) = f2 (tayl(t)7 e 7yd(t)) ’
1. 1)

Ditya(t) = fa (t,yi(t), ... ya(t)),

with the initial conditions
7 (0) = Ny, (L. 2)

in which D} (-) are the Caputo’s type derivative of order> 0; \;; are given real con-
stants;f; denote the known real functiong;(t) are the unknown function$;= 1,2, ... ,d;
1=0,1,....;0 —Lipp—1<v; <p;;p,d €N

Euler polynomials are a family of non-orthogonal polynomials with various utilizations
in number and combinational theories [25, 30, 34]. They also appear in the statistical
physics as well as in semi-classical approximations to the quantum probability distribu-
tions [8]. Lately, Euler polynomials have been applied successfully for the numerical solu-
tions of generalized pantograph equations [18], systems of linear Volterra integral equations
with the variable coefficients [23], and also systems of linear Fredholm integro-differential
equations [24]. This paper proceeds two main aims:

(i) Constructing the operational matrix of fractional integration for Euler polynomials.
(i) Providing an instrumental approach by this operational matrix and collocation
technique to obtain the solution of (1. 1) under the initial conditions (1. 2).

Although Euler polynomials do not constitute orthogonal basis, but they possess opera-
tional matrices of derivation and integration. Here, we construct the operational matrix of
fractional integration of these polynomials explicitly. To the best of our knowledge, this
operational matrix is new. The proposed method consifiérg, (¢) forl = 1,2,...,d as
the elements of Euler polynomials with unknown coefficients. By using the constructed
operational matrix of fractional integration, it converts the problem to a nonlinear system
of algebraic equations. After solving the new system, the solution of ( 1. 1) is identified.
The remainder of this paper is organized as follows: In Section 2, basic definitions and
concepts used further in this work are given. In Section 3, Euler expansion of a real func-
tion is described and operational matrix of fractional integration of Euler polynomials is
formed. Section 4 is devoted to the implementation of humerical method. Also, the er-
ror analysis of suggested method is investigated. The validity of method is demonstrated
through some examples in Section 5. At the end, a conclusion is drawn in Section 6.

2. PRELIMINARIES

For the convenience of the reader, we repeat some relevant materials of the fractional cal-
culus [13, 26] and Euler polynomials [5, 11, 14, 31].
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Definition 2.1. The Riemann-Liouville’s fractional-order integration for the functipon
L'[a,b] is defined as follows

1 t v—1
= [ (t — d 0
Il/g(t) — T'(v) fO ( T) g(T) 7, v > ) (2 3)
g(t), v=0.
Forv > 0, (2. 3) can also be written as
v _ 1 v—1
I9(t) = g5t 9(0)

wheret”~! x g(t) is the convolution product a¢f ! andg(t).

Remark 2.2. For the Riemann-Liouville fractional integral, we get

I'(k+1)
F'v+k+1)

Definition 2.3. The Caputo’s type derivative of order> 0 is defined in the following

Itk = R k> —1. (2. 4)

1 t
Dlg(t) = F(n—oz)/o (t— T)"iV*lg(”)(T)dT, n—1<v<n,
wheret > 0 andn is an integer.

Remark 2.4. Caputo’s integral operator foy € L'[a, b] has the useful property below

n—1 i

. t
1"Dlg(t) = g(t) = Y g™ (07) pon-l<v<n (2. 5)
1=0
Definition 2.5. The Euler polynomial€,, (¢) are defined forn € Ny = N U {0} by the
following generating function

m

2%t > x
— N B, 1)
er +1 mZ:o ( )m!

Remark 2.6. The Euler polynomials satisfy in the identity below

Rass m+1
E - 2 _ 2k‘+1 B m+1—k 2
w0 = g e (Mmoot e
in which By, (t) are the Bernoulli polynomials of degréespecified by

m

> <m;r 1> By(t) = (m + 1)t™.

k=0
In addition, form, m’ € Ny, we have

4(=1)m(2m ™ +2 _ 1)ymlm/)

(m v 1 9)1 By ymi+2(0). 2.7

/ B () B (1)t =
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3. APPROXIMATION AND OPERATIONAL MATRIX

Function approximation. Assume thaE(t) = [Ey(t), E1(t),. .., Ear(t)]T, in which for
0 <j < M, E;(t) allude to the Euler polynomials of degrg¢eand

E = span{Ey(t), B1(t),..., Ex(t)} C L?[0,1]. (3.8)

Consider thay(t) be an arbitrary element ib?[0, 1]. Since€ is a finite dimensional vector
spaceg(t) has the best approximation suchg@é&) € £, namely

Va(t) € € : [lg(t) — go (D)2 < llg(t) — 2(D)]]2-

Because ofy,(t) € &, there exist the unique coefficients such that
M
g(t) ~ go(t) =Y arBi(t) = ATE(#), (3.9)
k=0

whereA = [ag, a1, ..., an]".
In order to determine the coefficients, assume that

1
gj:/ g(O)E;(H)dt; j=0,1,.... M. (3. 10)
0
From (3.9)and (3. 10),

M 1 M
9i = Zak/ Ey(t)E;(t)dt = Z arb,;j, (3.11)
k=0 0 k=0

wherefy, ; = fol Ei(t)E;(t)dt can be uncovered by (2. 7). In this way, matrix represen-
tationof (3. 11)is

G =0TA,
90 Ooo B0 ... Oom ag
g1 Oio 611 ... Oim ai
G- o= " JA =
IM Omo Omp oo Onm ay
Subsequently,
A=(©7)'G.

Operational matrix of fractional integration. The fractional integration dE(¢) may be
approximated as

I'E(t) ~ QWE(t), (3. 12)

where @) is the operational matrix of Riemann-Liouville's fractional integration. The
size of this matrix igM + 1) x (M +1).
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By applying (2. 4) and ( 2. 6 ), one can write for eveny= 0,1, ..., M,

1 mtl m+1
IYE,,(t) = —— 2 — oktl By (0)IV¢m Tk
m (1) p—— k;( ) i k(0)
m+l m—k+v+1
1 m+1 T'(m—k+2)t
= 2 — oktl B (0 )
m+ 1 ;( )( k ) +(0) T(m —k+v+2)
Summarily,
m—+1
IYEp(t) = 3wl gm=htrst, (3. 13)
k=1
where

wy _ mi(2—=25T1)By(0)

“mk = ET(m—k+v+2)

Besides this, let™~*+*+1 be expanded intoM + 1) terms of Euler polynomials as

M

gmktrtl o Zrk7jEj(t)- (3. 14)
=0

The procedure of obtainingy, ; has been explained in the previous subsection. Placing
(8. 14)into (3. 13), one gains

m—41

m § wmkE rk,]

M /m+1 (3. 15)
-3 (z 2, )
SO thaty(”) k= =uwl )krk ;. Obviously, form = 0,1,..., M, (3. 15) can be rewritten in
the form of
m+1 m+1 m+1

CIORY D ORE T ST SEEIN 0

Consequently,
V(SVO) 1 ) 2’7(()1,/1),1( ) oo ’Y(()VJ)VI(1)
oW — Zk 1 71 D=1 Nk e Zk:1 71,M,k
JW-‘rl (v) M+1. (v) - M+1 (v)

k=1 TM,0,k k=1 M1k --- k=1 YM,M,k
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4. METHOD OF SOLUTION ANDERROR ANALYSIS

Method of solution. For the implementation of method, we first expanded the fractional
derivative terms of (1. 1) as a linear combinatiorEif) entries. That is,

DYy (t) ~ CTE(t), (4. 16)

inwhichCl" = [0, ci1,. .., cuur] foreveryl = 1,2,...,d.
Integrating both sides of (4. 16 ) and considering (2. 5) and ( 3. 13),

pi—1

tI
u(t) ~ CTQME®) + Y Ny
7=0 '

— 4.17)
J
Substituting (4. 16 ) and (4. 17 ) into (1. 1) and collocating the resulting system at the
pointst € {ﬁ :1=0,1,..., M}, anonlinear system af x (M + 1) algebraic equations
with d x (M + 1) unknowns is obtained. We solve this algebraic systerfsblyefunction

of MATLAB software with the initial gues<? = (0,0, ... Olix gy fori=1,...,d.

After C{ are designated, the solution of ( 1. 1) with the initial conditions (1. 2) can be
assigned by (4. 17).

Error analysis. Before saying main result, we need two lemmas.

Lemma 4.1. Let the functiory : [to, 1] — R be M + 1 times continuously differentiable
for0 <ty < 1,9 € CM*1[ty, 1], and € be in the form of(3. 8). If g,(¢) introduced in
(3. 9)be the best approximation tg then the error bound is declared as follows:

2M+3

V2NT
lo(®) = au(®)le < o7 s

(4. 18)

inwhich N = max;c, 1] ’g(M‘H)(t)’ andT = max{1 — ¢o,t0}.

Proof. Suppose thajg(t) is an arbitrary approximation gf(t). We select this approxima-
tion in the form of Taylor series agf(¢). Clearly,

(t — to)?
2!

(t —to)™

+"'+g(M)(to) Vi

g(t) = g(to) + ¢'(to)(t — to) + ¢" (to)
Therefore, there exists anc (¢, 1) such that

(t — to)(M'H)

l9(t) = g(t)| = |9 () (M + 1)
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Sincegy () is the best approximation gf

la(t) — g ()12 < llg () — 5(0)]12 = / l9(t) — §(6) Pt
/ ‘g(M+1 t_tO)(M+1)’ dt
M +1)!

o o (2M+2)
<((M+1).) /O(t to) M2 gt

2N2T2]\/I+3
T (M +1))2(2M +3)

Aresult of (4. 18)is that if\/ — oo theng,(t) — g(¢) in L2[0, 1].
Lemma 4.2. [33] (Young’s convolution inequality) Assume thas in L?(R™) andh is in
Li(R™) and
7+7 7+1
with1 < p,q,r < co. Then,
lg % hllr < llgllpllhllg; (4. 19)

in whichx denotes convolution of two functiorns, is Lebesgue space, afid ||, refers to
the usualL” norm.

It is notable that an important outcome of (4. 19) is
lg Rl < llgllalinll2- (4. 20)

Recall ( 1. 1) with conditions ( 1. 2 ). For evety= 1,...,d, suppose thaf;(t) be
approximate solution of;(¢) with a given M. Moreover, let us define the residual error
functions as

res(yi(t)) = DL gi(t) — fi (8,91 (2), -, 9a(t)) - (4. 21)
We state the main result of error analysis in the theorem below.

Theorem 4.3. For [ = 1,...,d, considery;(t) and ¢,(¢) are the exact and approximate
solutions of ( 1. 1) with the condltlons (1. 2), respectively. AlsdDtey; (¢) : [to, 1] — R
be M + 1 times continuously differentiable for< ¢, < 1, D%y, (t) € CM*1[ty, 1]. Fur-
thermore, let the functiong satisfy in the Lipschitz condition with the Lipschitz constants
. Then,

)

t <
W%@UWLWM+DWﬁﬂT T(vi+1) | (M +1)V2M +3

whereT' = max{1 — to,to} and N; = maxey, 1) | D2+ +1y,(t)| foreachl = 1,... . d.

VENTHE (Z \fulNl> rige
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Proof. Using (4. 21)and (1. 1),

[res(yi(t)) ]2
= DX (@) = fu(t,91(8), - - Ga(t)) — DLy (t) + fi (Ep1(E), -5 yalt)) |12
< [I1DYyi(t) — D () ]l2

o0, wa(t) = fi (691(@), -, Ga (D)) [lo-

Since f; satisfy in the Lipschitz conditions with Lipschitz constants

d
Ires(u(®)ll2 < DX yu() = DL g2+ Y sllya(t) = Gu(t)lo. (4. 22)
=1

Now, employing (4. 16 ) and (4. 18) entails

le 21\4+3
DYy (t) — DY 4.23
On the other hand,
19:(8) = G (@) l2 = 1" (Do (t) — DL Gu(t))ll,
1 (4. 24)
= || ==t~ % (D%y(t) — D (¢
ot = 0t - Do)
Now, by applying (4. 20) for (4. 24), we conclude
1 — v |2
@) = 5Ol < g [0 1Pz - Dl @ 29)
Also,
1 1 1%
‘t(”l*UH :/ t(”l’l)ldtz/ g = o L (4. 26)
1 0 0 vy 17
Based on (4. 25) and (4. 26),
1
— 4 < ——— ||D¥ — D"y : .
I = 30l < 15 1P 0) = Do), (4. 27)
From (4. 23) and (4. 27), itis obvious that
t)— ()2 < . 4.28
v (t) = 2u(@)]]2 < Tt (M + DV T3 (4. 28)
Ultimately, utilizing (4. 22), (4. 23) and ( 4. 28 ) completes the proof. O

According to Theorem 4.3, one can imply that(y;(¢)) — 0in L?[0,1] asM — oo.
In the other word, the accuracy of approximation is improvable by increasing sufficiently
control parametei/.
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5. NUMERICAL EXAMPLES

In this section, we evaluate three examples to indicate the efficiency of the proposed method.
The computations are performed by computer programs written in MATLAB R2015a soft-
ware on a 64-bit PC with 2.20 GHz processor and 8 GB memory. We report the results of
applying the present method through several tables and figures.

Example 5.1. [15] Consider the following SNFDE

{ Dyu(t) = yi(t) + (92(1),

5.29
D245 (t) = y1(t) + 5ya(t), ( )

under the initial conditions

y1(0) =0, ¥1(0) =1, 32(0) = 0, y5(0) =1, y5(0) = 1.
The exact solution of (5. 29) is unknown.

We implement the present method fdf = 4. Figure 1 compares the graph of the
present method with 4-terms of differential transform method (DTM) [15]. The calcula-
tions of two methods at some points are given in Table 1. Since the exact solution is not
available, residual error function defined in (4. 21) is a good criterion to test the correct-
ness of our method. Figure 2 demonstrates absolute residual errors of ( 5. 29 }of,

M = 8, andM = 12. The important point to mention here is that in order to get the best
approximate solution of the equation, the truncation litfdilmust be chosen large enough.
According to Figure 2, residual error fad = 8 is better than that folM = 12. This can

be because of the effect of rounding errors or may be caused by an error in the experimental
measure of the data. Another reason is that the example is more simple, and for smaller
value of M, enables one to achieve an acceptable accuracy. This cannot completely repre-
sent the ability of presented method.

This is nice to compare the solutions of Euler polynomials with those of Legendre poly-
nomials and Chebyshev polynomials. Table 2 represents

L= (yi(t) = Orgtagl{lreS(yl(t))lh
L>=(ya(t)) = Orgggl{lr%(yz(t))l},

for aforesaid values af/.

Table 1: Numerical results of Example 5.1

: A0 0]

DTM[15] | Present method DTM [15] | Present method
0.1 | 0.102009 0.101160 0.105240 0.105234
0.3 | 0.329645 0.326609 0.355483 0.355413
0.5 | 0.614437 0.615760 0.686917 0.687835
0.7 | 0.996385 1.026678 1.146959 1.155808
0.9 | 1.529196 1.695088 1.797642 1.839826
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Solution of y, (t) Solution of y,(t)

2.5

Our method
DTM

Our method
DTM

15

¥,

05

[
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

t t

Figure 1: Our methodX/ = 4) and 4-terms of DTM [15] for Example 5.1

Table 2: A comparison with orthogonal polynomials for Example 5.1

- L>®(y1 (1)) L>(y2(1))
Polynomial—— e T =1 T =4 M=8 | M=12
Legendre|0.048837(5.57 x 107°(9.02 x 1079/0.0130528.87 x 1076[9.93 x 10~
Chebyshey0.048825(5.78 x 107°|2.03 x 1074|0.013055(6.44 x 1076{2.17 x 10~*
Euler [0.048828(6.21 x 107°|5.17 x 1074|0.013049(1.11 x 1075(1.52 x 10~*
Example 5.2. [28] Consider the SNFDE in the form of
D¢y (t) = yi(t),
Dlys(t) =2 (1 (1)*, (5. 30)

Dlys(t) = 3y1(t)y2(t),
subject to the initial conditions

y1(0) =1, y2(0) =1, y3(0) =0,
so that0 < «, 3,7 < 1. The exact solutions of (5. 30 ) when= g = v = 1 are
y1(t) = et, y2(t) = e* andys(t) = 3t — 1.

Assume thatv = § = v, andM = 6. Table 3 compares the results of computations (for
M = 6) with those of fractional natural decomposition method (for 6) [28] and exact
solution in the case ok = 3 = v = 1. Significantly, the present method is in a better
agreement with the exact solution than method of [28].

Figure 3 reveals that solution of fractional-order systémx(«, 3, < 1) closes to

the solution of integer-order system < 3 = v = 1) whenevera = § = v — 1. It
also exposes that our method is well-adapted with exact solution of integer order system.
The graph of absolute error in integer-order is seen in Figure 4fo+ 4, M = 8 and
M = 12. In the case of integer order derivative, a comparison between absoluter errors
of Euler polynomials and those of orthogonal polynomials (Legendre and Chebyshev) is
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Absolute Residual Error for M=4 | 2109 Absolute Residual Error for M=8

Iresiy, ()] ] Iresty, ()]
Iresiy, )] 8 Iresty, ()]

0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t

6 %10 Absolute Residual Error for M=12

Ires(y, ()]
Ires(y, 0)]

0 01 02 03 04 05 06 07 08 09 1
t

Figure 2: Absolute residual errors of (5. 29 ) for variaus

presented through Figure 5 fof = 4, M = 8 andM = 12.

We do not access to exact solution when the order of derivative is lesd thHdence,
the computation of residual error will be helpful. Figure 6 illustrates the absolute residual
errors forM = 6 andM = 9 when order of derivative i8.75. Also, Figure 7 portrays the
absolute residual errors fd = 6 and M = 9 when order i9.95. From Theorem 4.3,
value of M and order of derivative can both affect residual error function. Figures 6 and 7
also affirm this fact.

In Example 5.1 and Example 5.2, exact solution was not available for fractional deriva-
tives. So, we decided to utilize residual error functions for those cases. In the next example,
we assess suggested method by a fractional system whose exact solution is known.

Example 5.3. Let us consider SNFDE as follows

DY0ys(8) + g1 (Oalt) = falt), -3

with initial conditions

y1(0) =0, y2(0) =0,
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Solutions of y, (t) Solutions of y,(t)

¥,

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t

Solutions of y3(t)

90

—1=0.65
80

5=085
70 =095
—— 4=1.00

0

10 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
t

Figure 3: The numerical behaviour of Example 5.2 fér= 6

Table 3: Numerical results of = 3 = v = 1 for Example 5.2

. (D) y2(0) ys(0)

[28] | Ours | Exact | [28] | Ours | Exact | [28] | Ours | Exact
0.2/1.22141.2214031.2214031.49171.4914221.49182%0.82140.8099230.822114
0.4{1.49171.4918221.4918252.22242.225148.2255412.29442.3080082.32011]
0.61.82141.8221161.8221193.2944 3.31971%3.32011‘74.8294 5.03710%95.0496417

0.82.22242.2255372.2255414.83574.9526224.9530328.966410.0100(10.0231§
1.012.70832.7182772.7182827.00007.3886597.38905615.37519.0724819.08554

=000

where

_ 48 2 | 24t36 06
fl(t) =t°—t° 4+ T'(4.6) - m7

t0'4

3.4
fo(t) =t =2+ T5 + v

The exact solution of (5. 31)ig (t) = t* — t andy(t) = t* + ¢.
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Absolute Error for M=4 10 Absolute Error for M=8

0.018

Jerrty, ()] lerrty, )1
o016 ferrty, )] T lerry, )]

Jerr(y, ) , lerrty, )

0.014

0.012

0.008
0.006

0.004

0.002 1 /

—

R

0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t

L10 Absolute Error for M=12

e
. X
Jerrty, O ]

/7

0.8

0.6

0.4

02

0
0 01 02 03 04 05 06 07 08 09 1

t

Figure 4: Absolute error of Example 5.2 for differeht

Table 4 compares maximum values of absolute errotfor 4. Figure 8 demonstrates
absolute error of (5. 31) foMd = 4 andM = 10. One can see that the solutions for
M = 10 provide more accurate results than thoselbr 4.

Table 4: A comparison foM = 4 corresponding to Example 5.3

Polynomial max |error(yy)| max |error(yz)|
Legendre 0.018791786 0.037283818
Chebyshev 0.018792741 0.037285112
Euler 0.018792298 0.037283562

6. CONCLUSION

The results of presented method disclosed that this method is very contributory. One of the
advantages of the method was that the Euler coefficients of the solution can be found by
using a computer code written in MATLAB. As it was seen, in some cases, Euler polyno-

mials produced a bit better results than orthogonal polynomials (Legendre and Chebyshev).
We also observed that for problems which their exact solutions are unknown, by evaluating
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Maximum of Absolute Error fory,

Maximum of Absolute Error fory

10 103
ger
—&— Chebyshev
#
10° 104
10 F 10°
107 10
10 107
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
M M
Maximum of Absolute Error for Vs
10
—%— Euler
—&— Legendre
k. ——&— Chebyshev
102
102
10 ¥
10°
10 -
4 5 6 7 8 9 10 11 12
M
Figure 5: The maximum values of absolute errors for Example 5.2
Absolute Residual Error for M=6 Absolute Residual Error for M=9
012 T T T T T T T 005 T . T T T T T
Ires(y, )l 005 Ires(y, )l
o1 fresty, | | Ires(y,)I
Jresty)l 004t Ires(y,)I
0.08
0.06
0.04
0.02
0 /\

Figure 6: The absolute residual error of Example 5.2 whena 3 =~ = 0.75

residual error functions, one can control the error and choose a suitable valde for
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oota Absolute Residual Error for M=6 103 Absolute Residual Error for M=9
1. T T T T T T T 45 T T T T T T T T
Ires(y, )| Al Ires(y,)l
res res
001 Ires(y,)l | | Ires(y,)l
resy)l ash Ires(y,)l
0.008 1 3
25
0.006
2
0.004 1 15
1
0.002 q
05 N
, /—\ , L LN
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

t t

Figure 7: The absolute residual error of Example 5.2 whea 5 =~ = 0.95

Absolute Error for M=4 Absolute Error for M=10
0.04 0.012

lerrty,)l
lerrty,)l | 1

lerr(y,)I
lerr(y,)I

0.008

0.006 {

0.004

0.002

Figure 8: The absolute error of Example 5.3 fdr= 4 and M = 10

This is to announce that the discussed method may also be developed to a system of non-
linear fractional integro-differential equations, but some modifications must be executed.
This can be a subject for future research.
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