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Abstract. This paper is concerned with the application of Euler poly-
nomials in solving a system of nonlinear fractional differential equations
(SNFDE). For this purpose, an operational matrix of fractional integration
is designed for Euler polynomials. Together with collocation method, this
matrix simplifies the main problem to a set of algebraic equations. Error
analysis is also investigated. Numerical examples illustrate the impression
of the method.
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1. INTRODUCTION

Due to the connection of fractional calculus with the systems involving memory and after-
effects, a lot of natural phenomena are formulated by SNFDE. Some topics related to this
fact are fractional model for Hepatitis C virus infection [2], fractional chaotic system [3],
fractional SIR epidemic model [6], fractional HIV infection model [7], fractional predator-
prey model [12], fractional financial system [22], unsteady rotational flow of a second
grade fluid [29], and also rotational motions of fractional Oldroyd-B fluids between circu-
lar cylinders [32].

One should mention that the available methods in the literature which focus on the solu-
tions of SNFDE are listed as: Homotopy perturbation method [1, 21], Multi-stage Bernstein
polynomials method [4], fractional generalized Laguerre functions method [9], Legendre
wavelets method [10], differential transform method [15], Laplace transform method [16],
variational iteration method [17], Adomian decomposition method [19], Chebyshev ap-
proach and fractional finite difference [20], Haar wavelets approach [27], and fractional
natural decomposition method [28].

71



72 Haman Deilami Azodi

In this study, we consider the general form of a SNFDE as follows





Dν1∗ y1(t) = f1 (t, y1(t), . . . , yd(t)) ,

Dν2∗ y2(t) = f2 (t, y1(t), . . . , yd(t)) ,

...
...

...

Dνd∗ yd(t) = fd (t, y1(t), . . . , yd(t)) ,

(1. 1)

with the initial conditions

y
(j)
l (0) = λlj , (1. 2)

in which Dνl∗ (·) are the Caputo’s type derivative of orderνl > 0; λlj are given real con-
stants;fl denote the known real functions;yl(t) are the unknown functions;l = 1, 2, . . . , d;
j = 0, 1, . . . , pl − 1; pl − 1 < νl ≤ pl; pl, d ∈ N.

Euler polynomials are a family of non-orthogonal polynomials with various utilizations
in number and combinational theories [25, 30, 34]. They also appear in the statistical
physics as well as in semi-classical approximations to the quantum probability distribu-
tions [8]. Lately, Euler polynomials have been applied successfully for the numerical solu-
tions of generalized pantograph equations [18], systems of linear Volterra integral equations
with the variable coefficients [23], and also systems of linear Fredholm integro-differential
equations [24]. This paper proceeds two main aims:

(i) Constructing the operational matrix of fractional integration for Euler polynomials.
(ii) Providing an instrumental approach by this operational matrix and collocation

technique to obtain the solution of (1. 1 ) under the initial conditions (1. 2 ).

Although Euler polynomials do not constitute orthogonal basis, but they possess opera-
tional matrices of derivation and integration. Here, we construct the operational matrix of
fractional integration of these polynomials explicitly. To the best of our knowledge, this
operational matrix is new. The proposed method considersDνl∗ yl(t) for l = 1, 2, . . . , d as
the elements of Euler polynomials with unknown coefficients. By using the constructed
operational matrix of fractional integration, it converts the problem to a nonlinear system
of algebraic equations. After solving the new system, the solution of ( 1. 1 ) is identified.

The remainder of this paper is organized as follows: In Section 2, basic definitions and
concepts used further in this work are given. In Section 3, Euler expansion of a real func-
tion is described and operational matrix of fractional integration of Euler polynomials is
formed. Section 4 is devoted to the implementation of numerical method. Also, the er-
ror analysis of suggested method is investigated. The validity of method is demonstrated
through some examples in Section 5. At the end, a conclusion is drawn in Section 6.

2. PRELIMINARIES

For the convenience of the reader, we repeat some relevant materials of the fractional cal-
culus [13, 26] and Euler polynomials [5, 11, 14, 31].
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Definition 2.1. The Riemann-Liouville’s fractional-order integration for the functiong on
L1[a, b] is defined as follows

Iνg(t) =

{
1

Γ(ν)

∫ t

0
(t− τ)ν−1g(τ)dτ, ν > 0,

g(t), ν = 0.
(2. 3)

For ν > 0, ( 2. 3 ) can also be written as

Iνg(t) =
1

Γ(ν)
tν−1 ? g(t),

wheretν−1 ? g(t) is the convolution product oftν−1 andg(t).

Remark 2.2. For the Riemann-Liouville fractional integral, we get

Iνtk =
Γ(k + 1)

Γ(ν + k + 1)
tν+k, k > −1. (2. 4)

Definition 2.3. The Caputo’s type derivative of orderν > 0 is defined in the following

Dν
∗g(t) =

1
Γ(n− α)

∫ t

0

(t− τ)n−ν−1g(n)(τ)dτ, n− 1 ≤ ν < n,

wheret > 0 andn is an integer.

Remark 2.4. Caputo’s integral operator forg ∈ L1[a, b] has the useful property below

IνDν
∗g(t) = g(t)−

n−1∑

i=0

g(i)
(
0+

) ti

i!
, n− 1 ≤ ν < n. (2. 5)

Definition 2.5. The Euler polynomialsEm(t) are defined form ∈ N0 = N ∪ {0} by the
following generating function

2ext

ex + 1
=

∞∑
m=0

Em(t)
xm

m!
.

Remark 2.6. The Euler polynomials satisfy in the identity below

Em(t) =
1

m + 1

m+1∑

k=1

(2− 2k+1)
(

m + 1
k

)
Bk(0)tm+1−k, (2. 6)

in whichBk(t) are the Bernoulli polynomials of degreek specified by

m∑

k=0

(
m + 1

k

)
Bk(t) = (m + 1)tm.

In addition, form,m′ ∈ N0, we have
∫ 1

0

Em(t)Em′(t)dt =
4(−1)m(2m+m′+2 − 1)m!m′!

(m + m′ + 2)!
Bm+m′+2(0). (2. 7)
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3. APPROXIMATION AND OPERATIONAL MATRIX

Function approximation. Assume thatE(t) = [E0(t), E1(t), . . . , EM (t)]T , in which for
0 ≤ j ≤ M , Ej(t) allude to the Euler polynomials of degreej, and

E = span{E0(t), E1(t), . . . , EM (t)} ⊂ L2[0, 1]. (3. 8)

Consider thatg(t) be an arbitrary element inL2[0, 1]. SinceE is a finite dimensional vector
space,g(t) has the best approximation such asgb(t) ∈ E, namely

∀z(t) ∈ E : ‖g(t)− gb(t)‖2 ≤ ‖g(t)− z(t)‖2.
Because ofgb(t) ∈ E, there exist the unique coefficientsak such that

g(t) ≈ gb(t) =
M∑

k=0

akEk(t) = AT E(t), (3. 9)

whereA = [a0, a1, . . . , aM ]T .
In order to determine the coefficientsak, assume that

gj =
∫ 1

0

g(t)Ej(t)dt; j = 0, 1, . . . ,M. (3. 10)

From ( 3. 9 ) and ( 3. 10 ),

gj =
M∑

k=0

ak

∫ 1

0

Ek(t)Ej(t)dt =
M∑

k=0

akθk,j , (3. 11)

whereθk,j =
∫ 1

0
Ek(t)Ej(t)dt can be uncovered by ( 2. 7 ). In this way, matrix represen-

tation of ( 3. 11 ) is

G = ΘT A,

G =




g0

g1

...
gM


 , Θ =




θ0,0 θ0,1 . . . θ0,M

θ1,0 θ1,1 . . . θ1,M

...
...

.. .
...

θM,0 θM,1 . . . θM,M


 , A =




a0

a1

...
aM


 .

Subsequently,

A = (ΘT )−1G.

Operational matrix of fractional integration. The fractional integration ofE(t) may be
approximated as

IνE(t) ≈ Q(ν)E(t), (3. 12)

whereQ(ν) is the operational matrix of Riemann-Liouville’s fractional integration. The
size of this matrix is(M + 1)× (M + 1).
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By applying ( 2. 4 ) and ( 2. 6 ), one can write for everym = 0, 1, . . . ,M,

IνEm(t) =
1

m + 1

m+1∑

k=1

(2− 2k+1)
(

m + 1
k

)
Bk(0)Iνtm+1−k

=
1

m + 1

m+1∑

k=1

(2− 2k+1)
(

m + 1
k

)
Bk(0)

Γ(m− k + 2)tm−k+ν+1

Γ(m− k + ν + 2)
.

Summarily,

IνEm(t) =
m+1∑

k=1

ω
(ν)
m,ktm−k+ν+1, (3. 13)

where

ω
(ν)
m,k =

m!(2− 2k+1)Bk(0)
k!Γ(m− k + ν + 2)

.

Besides this, lettm−k+ν+1 be expanded into(M + 1) terms of Euler polynomials as

tm−k+ν+1 ≈
M∑

j=0

rk,jEj(t). (3. 14)

The procedure of obtainingrk,j has been explained in the previous subsection. Placing
(3. 14 ) into (3. 13 ), one gains

IνEm(t) ≈
m+1∑

k=1

ω
(ν)
m,k

M∑

j=0

rk,jEj(t)

=
M∑

j=0

(
m+1∑

k=1

γ
(ν)
m,j,k

)
Ej(t),

(3. 15)

so thatγ(ν)
m,j,k = ω

(ν)
m,krk,j . Obviously, form = 0, 1, . . . ,M, ( 3. 15 ) can be rewritten in

the form of

IνEm(t) ≈
[

m+1∑

k=1

γ
(ν)
m,0,k,

m+1∑

k=1

γ
(ν)
m,1,k, . . . ,

m+1∑

k=1

γ
(ν)
m,M,k

]
E(t).

Consequently,

Q(ν) =




γ
(ν)
0,0,1 γ

(ν)
0,1,1 . . . γ

(ν)
0,M,1∑2

k=1 γ
(ν)
1,0,k

∑2
k=1 γ

(ν)
1,1,k . . .

∑2
k=1 γ

(ν)
1,M,k

...
...

. . .
...∑M+1

k=1 γ
(ν)
M,0,k

∑M+1
k=1 γ

(ν)
M,1,k . . .

∑M+1
k=1 γ

(ν)
M,M,k




.
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4. METHOD OF SOLUTION ANDERROR ANALYSIS

Method of solution. For the implementation of method, we first expanded the fractional
derivative terms of ( 1. 1 ) as a linear combination ofE(t) entries. That is,

Dνl∗ yl(t) ≈ CT
l E(t), (4. 16)

in whichCT
l = [cl0, cl1, . . . , clM ] for everyl = 1, 2, . . . , d.

Integrating both sides of ( 4. 16 ) and considering ( 2. 5 ) and ( 3. 13 ),

yl(t) ≈ CT
l Q(νl)E(t) +

pl−1∑

j=0

λlj

tj

j!
. (4. 17)

Substituting ( 4. 16 ) and ( 4. 17 ) into ( 1. 1 ) and collocating the resulting system at the

pointst ∈ { i

M
: i = 0, 1, . . . , M}, a nonlinear system ofd× (M +1) algebraic equations

with d× (M +1) unknowns is obtained. We solve this algebraic system byfsolvefunction
of MATLAB software with the initial guessCT

l = [0, 0, . . . , 0]1×(M+1) for l = 1, . . . , d.

After CT
l are designated, the solution of ( 1. 1 ) with the initial conditions ( 1. 2 ) can be

assigned by ( 4. 17 ).

Error analysis. Before saying main result, we need two lemmas.

Lemma 4.1. Let the functiong : [t0, 1] → R beM + 1 times continuously differentiable
for 0 ≤ t0 < 1, g ∈ CM+1[t0, 1], andE be in the form of(3. 8 ). If gb(t) introduced in
(3. 9 )be the best approximation tog, then the error bound is declared as follows:

‖g(t)− gb(t)‖2 ≤
√

2NT
2M+3

2

(M + 1)!
√

2M + 3
, (4. 18)

in whichN = maxt∈[t0,1]

∣∣g(M+1)(t)
∣∣ andT = max{1− t0, t0}.

Proof. Suppose that̃g(t) is an arbitrary approximation ofg(t). We select this approxima-
tion in the form of Taylor series ofg(t). Clearly,

g̃(t) = g(t0) + g′(t0)(t− t0) + g′′(t0)
(t− t0)2

2!
+ · · ·+ g(M)(t0)

(t− t0)M

M !
.

Therefore, there exists anη ∈ (t0, 1) such that

|g(t)− g̃(t)| =
∣∣∣g(M+1)(η)

(t− t0)(M+1)

(M + 1)!

∣∣∣.
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Sincegb(t) is the best approximation ofg,

‖g(t)− gb(t)‖22 ≤ ‖g(t)− g̃(t)‖22 =
∫ 1

0

|g(t)− g̃(t)|2dt

=
∫ 1

0

∣∣∣g(M+1)(η)
(t− t0)(M+1)

(M + 1)!

∣∣∣
2

dt

≤ N2

((M + 1)!)2

∫ 1

0

(t− t0)(2M+2)dt

≤ 2N2T 2M+3

((M + 1)!)2(2M + 3)
.

¤

A result of ( 4. 18 ) is that ifM →∞ thengb(t) → g(t) in L2[0, 1].

Lemma 4.2. [33] (Young’s convolution inequality) Assume thatg is in Lp(Rn) andh is in
Lq(Rn) and

1
p

+
1
q

=
1
r

+ 1,

with 1 ≤ p, q, r < ∞. Then,

‖g ? h‖r ≤ ‖g‖p‖h‖q, (4. 19)

in which? denotes convolution of two functions,Lp is Lebesgue space, and‖ · ‖p refers to
the usualLp norm.

It is notable that an important outcome of ( 4. 19 ) is

‖g ? h‖2 ≤ ‖g‖1‖h‖2. (4. 20)

Recall ( 1. 1 ) with conditions ( 1. 2 ). For everyl = 1, . . . , d, suppose that̂yl(t) be
approximate solution ofyl(t) with a givenM. Moreover, let us define the residual error
functions as

res(yl(t)) = Dνl∗ ŷl(t)− fl (t, ŷ1(t), . . . , ŷd(t)) . (4. 21)

We state the main result of error analysis in the theorem below.

Theorem 4.3. For l = 1, . . . , d, consideryl(t) and ŷl(t) are the exact and approximate
solutions of ( 1. 1 ) with the conditions ( 1. 2 ), respectively. Also, letDνl∗ yl(t) : [t0, 1] → R
beM + 1 times continuously differentiable for0 ≤ t0 < 1, Dνl∗ yl(t) ∈ CM+1[t0, 1]. Fur-
thermore, let the functionsfl satisfy in the Lipschitz condition with the Lipschitz constants
µl. Then,

‖res(yl(t))‖2 ≤
√

2NlT
2M+3

2

(M + 1)!
√

2M + 3
+

(
d∑

l=1

√
2µlNl

Γ(νl + 1)

)
T

2M+3
2

(M + 1)!
√

2M + 3
,

whereT = max{1− t0, t0} andNl = maxt∈[t0,1]

∣∣Dνl+M+1
∗ yl(t)

∣∣ for eachl = 1, . . . , d.
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Proof. Using ( 4. 21 ) and ( 1. 1 ),

‖res(yl(t))‖2
= ‖Dνl∗ ŷl(t)− fl (t, ŷ1(t), . . . , ŷd(t))−Dνl∗ yl(t) + fl (t, y1(t), . . . , yd(t)) ‖2
≤ ‖Dνl∗ yl(t)−Dνl∗ ŷl(t)‖2
+ ‖fl (t, y1(t), . . . , yd(t))− fl (t, ŷ1(t), . . . , ŷd(t)) ‖2.

Sincefl satisfy in the Lipschitz conditions with Lipschitz constantsµl,

‖res(yl(t))‖2 ≤ ‖Dνl∗ yl(t)−Dνl∗ ŷl(t)‖2 +
d∑

l=1

µl‖yl(t)− ŷl(t)‖2. (4. 22)

Now, employing ( 4. 16 ) and ( 4. 18 ) entails

‖Dνl∗ yl(t)−Dνl∗ ŷl(t)‖2 ≤
√

2NlT
2M+3

2

(M + 1)!
√

2M + 3
. (4. 23)

On the other hand,

‖yl(t)− ŷl(t)‖2 = ‖Iνl (Dνl∗ yl(t)−Dνl∗ ŷl(t))‖2
=

∥∥∥∥
1

Γ(νl)
t(νl−1) ? (Dνl∗ yl(t)−Dνl∗ ŷl(t))

∥∥∥∥
2

.
(4. 24)

Now, by applying ( 4. 20 ) for ( 4. 24 ), we conclude

‖yl(t)− ŷl(t)‖2 ≤ 1
Γ(νl)

∥∥∥t(νl−1)
∥∥∥

1
‖Dνl∗ yl(t)−Dνl∗ ŷl(t)‖2 . (4. 25)

Also,

∥∥∥t(νl−1)
∥∥∥

1
=

∫ 1

0

∣∣∣t(νl−1)
∣∣∣ dt =

∫ 1

0

t(νl−1)dt =
tνl

νl
≤ 1

νl
. (4. 26)

Based on ( 4. 25 ) and ( 4. 26 ),

‖yl(t)− ŷl(t)‖2 ≤ 1
Γ(νl + 1)

‖Dνl∗ yl(t)−Dνl∗ ŷl(t)‖2 . (4. 27)

From ( 4. 23 ) and ( 4. 27 ), it is obvious that

‖yl(t)− ŷl(t)‖2 ≤
√

2NlT
2M+3

2

Γ(νl + 1)(M + 1)!
√

2M + 3
. (4. 28)

Ultimately, utilizing ( 4. 22 ), ( 4. 23 ) and ( 4. 28 ) completes the proof. ¤

According to Theorem 4.3, one can imply thatres(yl(t)) → 0 in L2[0, 1] asM → ∞.
In the other word, the accuracy of approximation is improvable by increasing sufficiently
control parameterM.
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5. NUMERICAL EXAMPLES

In this section, we evaluate three examples to indicate the efficiency of the proposed method.
The computations are performed by computer programs written in MATLAB R2015a soft-
ware on a 64-bit PC with 2.20 GHz processor and 8 GB memory. We report the results of
applying the present method through several tables and figures.

Example 5.1. [15] Consider the following SNFDE{
D1.3
∗ y1(t) = y1(t) + (y2(t))

2
,

D2.4
∗ y2(t) = y1(t) + 5y2(t),

(5. 29)

under the initial conditions

y1(0) = 0, y′1(0) = 1, y2(0) = 0, y′2(0) = 1, y′′2 (0) = 1.

The exact solution of ( 5. 29 ) is unknown.

We implement the present method forM = 4. Figure 1 compares the graph of the
present method with 4-terms of differential transform method (DTM) [15]. The calcula-
tions of two methods at some points are given in Table 1. Since the exact solution is not
available, residual error function defined in ( 4. 21 ) is a good criterion to test the correct-
ness of our method. Figure 2 demonstrates absolute residual errors of ( 5. 29 ) forM = 4,
M = 8, andM = 12. The important point to mention here is that in order to get the best
approximate solution of the equation, the truncation limitM must be chosen large enough.
According to Figure 2, residual error forM = 8 is better than that forM = 12. This can
be because of the effect of rounding errors or may be caused by an error in the experimental
measure of the data. Another reason is that the example is more simple, and for smaller
value ofM , enables one to achieve an acceptable accuracy. This cannot completely repre-
sent the ability of presented method.

This is nice to compare the solutions of Euler polynomials with those of Legendre poly-
nomials and Chebyshev polynomials. Table 2 represents

L∞(y1(t)) = max
0≤t≤1

{|res(y1(t))|},
L∞(y2(t)) = max

0≤t≤1
{|res(y2(t))|},

for aforesaid values ofM .

Table 1: Numerical results of Example 5.1

t
y1(t) y2(t)

DTM [15] Present method DTM [15] Present method
0.1 0.102009 0.101160 0.105240 0.105234
0.3 0.329645 0.326609 0.355483 0.355413
0.5 0.614437 0.615760 0.686917 0.687835
0.7 0.996385 1.026678 1.146959 1.155808
0.9 1.529196 1.695088 1.797642 1.839826
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t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1
(t

)

0

0.5

1

1.5

2

2.5
Solution of y

1
(t)

Our method
DTM

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 2
(t

)

0

0.5

1

1.5

2

2.5
Solution of y

2
(t)

Our method
DTM

Figure 1: Our method (M = 4) and 4-terms of DTM [15] for Example 5.1

Table 2: A comparison with orthogonal polynomials for Example 5.1

Polynomial
L∞(y1(t)) L∞(y2(t))

M = 4 M = 8 M = 12 M = 4 M = 8 M = 12
Legendre 0.048837 5.57× 10−5 9.02× 10−6 0.013052 8.87× 10−6 9.93× 10−6

Chebyshev0.048825 5.78× 10−5 2.03× 10−4 0.013055 6.44× 10−6 2.17× 10−4

Euler 0.048828 6.21× 10−5 5.17× 10−4 0.013049 1.11× 10−5 1.52× 10−4

Example 5.2. [28] Consider the SNFDE in the form of



Dα
∗ y1(t) = y1(t),

Dβ
∗ y2(t) = 2 (y1(t))

2
,

Dγ
∗y3(t) = 3y1(t)y2(t),

(5. 30)

subject to the initial conditions

y1(0) = 1, y2(0) = 1, y3(0) = 0,

so that0 < α, β, γ ≤ 1. The exact solutions of ( 5. 30 ) whenα = β = γ = 1 are
y1(t) = et, y2(t) = e2t andy3(t) = e3t − 1.

Assume thatα = β = γ, andM = 6. Table 3 compares the results of computations (for
M = 6) with those of fractional natural decomposition method (forn = 6) [28] and exact
solution in the case ofα = β = γ = 1. Significantly, the present method is in a better
agreement with the exact solution than method of [28].

Figure 3 reveals that solution of fractional-order system (0 < α, β, γ < 1) closes to
the solution of integer-order system (α = β = γ = 1) wheneverα = β = γ → 1. It
also exposes that our method is well-adapted with exact solution of integer order system.
The graph of absolute error in integer-order is seen in Figure 4 forM = 4, M = 8 and
M = 12. In the case of integer order derivative, a comparison between absoluter errors
of Euler polynomials and those of orthogonal polynomials (Legendre and Chebyshev) is
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Figure 2: Absolute residual errors of ( 5. 29 ) for variousM

presented through Figure 5 forM = 4, M = 8 andM = 12.
We do not access to exact solution when the order of derivative is less than1. Hence,

the computation of residual error will be helpful. Figure 6 illustrates the absolute residual
errors forM = 6 andM = 9 when order of derivative is0.75. Also, Figure 7 portrays the
absolute residual errors forM = 6 andM = 9 when order is0.95. From Theorem 4.3,
value ofM and order of derivative can both affect residual error function. Figures 6 and 7
also affirm this fact.

In Example 5.1 and Example 5.2, exact solution was not available for fractional deriva-
tives. So, we decided to utilize residual error functions for those cases. In the next example,
we assess suggested method by a fractional system whose exact solution is known.

Example 5.3. Let us consider SNFDE as follows
{

D0.4
∗ y1(t) + y1(t)y2(t) = f1(t),

D0.6
∗ y2(t) + y1(t)y2(t) = f2(t),

(5. 31)

with initial conditions

y1(0) = 0, y2(0) = 0,
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Figure 3: The numerical behaviour of Example 5.2 forM = 6

Table 3: Numerical results ofα = β = γ = 1 for Example 5.2

t
y1(t) y2(t) y3(t)

[28] Ours Exact [28] Ours Exact [28] Ours Exact
0.2 1.22141.2214031.2214031.49171.4914221.4918250.82140.8099230.822119
0.4 1.49171.4918221.4918252.22242.2251482.2255412.29442.3080032.320117
0.6 1.82141.8221161.8221193.29443.3197183.3201174.82945.0371095.049647
0.8 2.22242.2255372.2255414.83574.9526224.9530328.966410.0100010.02318
1.0 2.70832.7182772.7182827.00007.3886597.38905615.37519.0724819.08554

where




f1(t) = t8 − t2 + 24t3.6

Γ(4.6) − t0.6

Γ(1.6) ,

f2(t) = t8 − t2 + 24t3.4

Γ(4.4) + t0.4

Γ(1.4) .

The exact solution of ( 5. 31 ) isy1(t) = t4 − t andy2(t) = t4 + t.



Euler Polynomials Approach to the System of Nonlinear Fractional Differential Equations 83

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
Absolute  Error for M=4

|err(y
1
(t))|

|err(y
2
(t))|

|err(y
3
(t))|

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×10-6

0

1

2

3

4

5

6

7

8
Absolute  Error for M=8

|err(y
1
(t))|

|err(y
2
(t))|

|err(y
3
(t))|

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×10-4

0

0.2

0.4

0.6

0.8

1

1.2
Absolute  Error for M=12

|err(y
1
(t))|

|err(y
2
(t))|

|err(y
3
(t))|

Figure 4: Absolute error of Example 5.2 for differentM

Table 4 compares maximum values of absolute error forM = 4. Figure 8 demonstrates
absolute error of ( 5. 31 ) forM = 4 andM = 10. One can see that the solutions for
M = 10 provide more accurate results than those forM = 4.

Table 4: A comparison forM = 4 corresponding to Example 5.3

Polynomial max |error(y1)| max |error(y2)|
Legendre 0.018791786 0.037283818

Chebyshev 0.018792741 0.037285112
Euler 0.018792298 0.037283562

6. CONCLUSION

The results of presented method disclosed that this method is very contributory. One of the
advantages of the method was that the Euler coefficients of the solution can be found by
using a computer code written in MATLAB. As it was seen, in some cases, Euler polyno-
mials produced a bit better results than orthogonal polynomials (Legendre and Chebyshev).
We also observed that for problems which their exact solutions are unknown, by evaluating
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Figure 5: The maximum values of absolute errors for Example 5.2
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Figure 6: The absolute residual error of Example 5.2 whenα = β = γ = 0.75

residual error functions, one can control the error and choose a suitable value forM .
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Figure 7: The absolute residual error of Example 5.2 whenα = β = γ = 0.95
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Figure 8: The absolute error of Example 5.3 forM = 4 andM = 10

This is to announce that the discussed method may also be developed to a system of non-
linear fractional integro-differential equations, but some modifications must be executed.
This can be a subject for future research.
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