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Abstract. In the present paper, we study Legendre Wavelet Method (LWM)
and apply an algorithm based on this approach to solve systems of non-
linear differential equations. Differential equations of any degree can be
expanded as a series in Legendre polynomials. So depending on the kind
of problem, derivative or integral operational matrices appear, after sim-
plification the nonlinear ordinary system changed to an algebraic system
which includes the coefficients. In this step the suggested algorithm is ap-
proximated the system of coefficients by using an iterative method. For
comparison, this equation is solved by Moving Least Squares Method
(MLSM) and properties of LWM and MLSM approaches are expressed.
These two approaches are applied to solve an equation that shows effect
and transferring a kind of virus to a set of statistical society. Numerical
results and figures of applying LWM and MLSM are shown finally.
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1. INTRODUCTION

In recent years, there has been an increase usage among many scientists to apply wavelet 
technique to solve both linear and nonlinear problems. The main advantage of the wavelet 
technique is its ability to transform complex problems into a system of algebraic equa-
tions. The wavelet uses orthogonal bases in expansion and estimate solution of equations. 
With this description, the orthogonal functions include the following three classes, first: 
piecewise constant basis function, that it is locally constant in attached districts, second: 
orthogonal polynomials, and third : sets of sine cosine functions. The overview of this 
method can be found in [1, 6, 7, 14, 19, 22].
The essential properties of these three sets in use of multifold problems is converting them 
to a system of algebraic equations, thus the systems of differential equations are solved by
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converting to the simpler system.
In this work we apply the Legendre wavelets method to solve a system of nonlinear differ-
ential equation whose unknown function depends on spatial and temporal variables. But
the decomposition of this unknown function into Legendre wavelets basis will be done only
on the spatial variable. Obviously, the coefcients of this decomposition will depend on the
temporal variable. The shifted Legendre, among these orthogonal polynomials is defined
on the distance [0, α]. They are rather impressive because of in the shorter domain is de-
fined and integral operational matrix is tridiagonal with fixed and unit weight [8].
The wavelet approach has many helpful properties as orthogonality, compact support, ac-
curate exhibition and all of types of orthogonal constructor. Legendre polynomials are the
simplest type of polynomials with having the fixed weight function and the other weight
functions are the same with sine-cosine Fourier series or derivatives of polynomials and
other factors which may change [15, 20].
This paper is organized as follows. Section 1 includes the introduction. Section 2 intro-
duces formulation of LWM and MLSM with their features. Section 3 presents a model
contains a kind of virus transfer process and application of LWM and MLSM on the model
in their algorithm. In Section 4 numerical results are tabulated. Section 5 concludes.

2. APPROACHES

This section contains the preliminaries and some details of LWM and MLSM.

2.1. Legendre Wavelets and its properties. Structures of wavelets have arrived into many
different segments of sciences and technology. A wave is usually defined as an oscillating
function of time or space. Fourier analysis is wave analysis, it expands a signal or function
in term of sin cosine. A wavelet is a small wave, which has its energy concentrated in
time to give a tool for the analysis of transient, nonstationary, or time-varying phenomena.
Legendre wavelet method is one of the powerful tools in accuracy and speed of execution
in many fields of science to solve various differential equations [26]. Every wavelet needed
bases and a collection of functions that created from the mother wavelet matching to kind
of wavelet, which are made before [23].
Wavelet constitutes a family of functions constructed from dilation and transition of a sin-
gle function called the mother wavelet. When the dilation parameter x and the transition
parameter y vary continuously, we have the following family of continuous wavelets as [5].

ψx,y(t) = |x|−
1
2ψ(

t− y
x

), x, y ∈ R, x ̸= 0 (2. 1)

If we restrict the parameters x and y to the discrete values as x = x−k
0 , y = ny0x

−k
0 where

x0 = 2 and y0 = 1 and use of positive integer of n and k discrete wavelets have made in
L2(R) with orthogonal bases [13].

ψk,n(t) = |x0|−
k
2ψ(xk0t− ny0), (2. 2)

Legendre wavelet is adapted from Legendre polynomials which is made up of recursive
relation

(1− x)2L′′
n(x)− 2xL′

n(x) + n(n+ 1)Ln(x) = 0, n = 0, 1, 2, ...
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Where Ln(x) is Legendre polynomials. Every two Legendre polynomials with different
degrees and weight function of w(t) = 1, are orthogonal in interval [−1, 1].
Arguments that used in Legendre wavelets are k,m, n̂ and t which n̂ = 2n − 1, m =
1, 2, . . . , 2k−1, and positive integer of k and time of t. Structure of a Legendre wavelet by
dilation of x = 2−k and transiation of y = n̂2−k and combination of arguments on the
interval [0, 1) as

ψm,n(t) =

{√
(m+ 1

2 )2
k
2Lm(2kt− n̂) n̂−1

2k
≤ t ≤ n̂+1

2k

0 o.w
(2. 3)

2.2. Function Approximation. A function f(t) defined over [0, 1) can be expanded as

f(t) =
∞∑

n=1

∞∑
m=0

cnmψnm(t), (2. 4)

where c = ⟨f(t), ψnm(t) ⟩ and ⟨.⟩ is the inner product. After infinite series ( 2. 4 ) is
truncated it can be written as

f(t) =

2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CTΨ(t), (2. 5)

Where C and Ψ(t) are two vectors, having 2k−1M × 1 components [13],

C = [c10, c11, ..., c1M−1, c20, ..., c2M−1, ..., c2k−10, ..., c2k−1M−1]
T , (2. 6)

Ψ(t) = [Ψ10(t),Ψ11(t), ...,Ψ1M−1(t),Ψ20(t), ...,Ψ2M−1(t), ...,Ψ2k−10(t), ... (2. 7)

,Ψ2k−1M−1(t)]
T .

The integration of vector Ψ(t) defined in Eq.(5) is given by∫ t

0

Ψ(α)dα = PΨ(t), (2. 8)

Which P is a (2k−1M) × (2k−1M) operational matrix for integration and it is expressed
as follows [24].

P =
1

2k


L F F · · · F
0 L F · · · F
...

...
. . . . . .

...
0 0 0 · · · L

 , (2. 9)

Where F and L are M ×M sub matrices as follows

F =


2 0 0 · · · 0
0 0 0 · · · 0
...

...
. . . . . .

...
0 0 0 · · ·

 , L =


1 1√

3
0 · · · 0

−
√
3
3 0

√
3

3
√
5
· · · 0

...
...

. . . . . .
...

0 0 0 · · · 0

 .
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Theorem 2.3. A function f(x) defind on [0, 1) is with bounded second derivative, say
|f ′′(x)| ≤ M, can be expanded as an infinite sum of the Legendre wavelets and the series
converges uniformly to f(x) that is

f(x) =

∞∑
n=1

∞∑
m=0

cnmψnm(x), (2. 10)

where cnm = ⟨f(x), ψnm(x)⟩, and ⟨.⟩ is the inner product of f(x) and ψnm(x).

Proof: See [21].

Theorem 2.4. Any function f(x) defined on [0, 1) is with bounded first and second deriva-
tives |f ′(x)| ≤ M1 and |f ′′(x)| ≤ M2 can be expanded as an infinite sum of the extended
Legendre wavelets and the series converges uniformly to f(x) that is

f(x) =
∞∑

n=1

∞∑
m=0

cnmψnm(x), (2. 11)

Proof: Let f(x) be a function defined on [0, 1) the bounds M1 and M2 for the first and
second derivation respectively

cnm =

∫ 1

0

f(x)ψnm(x)dx =

∫ n

µk

n−1

µk

f(x)
√
2m+ 1µ

k
2Lm(µkx− 2n+ 1)dx, (2. 12)

Let n̂ = 2n− 1, then by the change of variable t = 2µkx− n, we have dx = dt
2µk so

cnm =
(2m+ 1)

1
2

2µ
k
2

∫ 1

−1

f(
n̂+ t

2µk
)Lm+1(t)dt, (2. 13)

=
1

2µ
k
2 (2m+ 1)

1
2

∫ 1

−1

f(
n̂+ t

2µk
)d(Lm+1(t)− Lm−1(t)),

Where the following property of the Legendre polynomial is used

(2m+ 1)Lm(t) = L′
m+1(t)− L′

m−1(t), (2. 14)

Integrating in Eq.( 2. 13 ), yields

cnm =
1

2µ
k
2 (2m+ 1)

1
2

{ 1

2µk
f ′(

n̂+ t

2µk
)d(Lm+1(t)− Lm−1(t))|1−1, (2. 15)

− 1

2µk

∫ 1

−1

f ′(
n̂+ t

2µk
)(Lm+1(t)− Lm−1(t))dt},

From Eq.( 2. 15 ) we have

cnm =
1

4µ
3k
2 (2m+ 1)

1
2

∫ 1

−1

f ′(
n̂+ t

2µk
)(Lm+1(t)− Lm−1(t))dt, (2. 16)

Considering Eq.( 2. 14 )

cnm =
1

4µ
3k
2 (2m+ 1)

1
2

∫ 1

−1

f ′(
n̂+ t

2µk
)(
Lm+2(t)− Lm(t)

2m+ 3
− Lm(t)− Lm−2(t)

2m− 1
)dt,

(2. 17)
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Solving the equation similar to the previous step yields

cnm =
1

8µ
5k
2 (2m+ 1)

1
2

∫ 1

−1

f ′(
n̂+ t

2µk
)(
Lm+2(t)− Lm(t)

2m+ 3
− Lm(t)− Lm−2(t)

2m− 1
)dt,

(2. 18)
Now with

τm(t) = (2m− 1)Lm+2(2)− 2(2m+ 1)Lm(t) + (2m+ 3)Lm−2(t),

cnm =
1

8µ
5k
2 (2m+ 1)

1
2

1

(2m− 1)(2m+ 3)

∫ 1

−1

f”(
n̂+ t

2µk
)τm(t)dt, (2. 19)

And also

|cnm| ≤ Ω(µ, k,m)

∫ 1

−1

|f”( n̂+ t

2µk
)||τm(t)|dt, (2. 20)

Where

Ω(µ, k,m) =
1

8µ
5k
2 (2m+ 1)

1
2

1

(2m− 1)(2m+ 3)
,

It is showing that [15], ∫ 1

−1

|τm(t)dt ≤
√
24

2m+ 3√
2m− 3

, (2. 21)

Therefore since n ≤ µk for m > 1 we get

|cnm| ≤
√
6M2

2n
5
2 (2m− 3)2

, (2. 22)

Moreover for m = 1,

|cn1| ≤
M1√
3n

3
2

. (2. 23)

Hence the series
∞∑

n=1

∞∑
m=0

cnm

Is absolutely convergent. Form = 0, sequence {ψn0(x)}∞n=1 transforms into an orthogonal
system by the Haar function and thus

∑∞
n=1 cnmψn0(x) is convergent.Consequently, it

follows that the series
∞∑

n=1

∞∑
m=0

cnmψn0(x)

Converges to the function f(x) uniformly.
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2.5. Moving Least Squares Approximation. In real world many problems are modeled
by ordinary differential equations and partial or integral differential equations. Generally
such issues cannot be solved in analytical form. Hence development of numerical methods
has attached the attention of scientists. One of them is Meshless method due to flexibility
of method for solving various models. This numerical method dont need the whole domain
of problem and just can be used by select a few points of related domain [16, 27].
In applying of the MLSM letX = {x1, x2, ..., xn} ∈ Ω and at nodsX is used u = {uj}Nj=1

so that uj = u(xj), j = 1, 2, ..., n, and set of uh ∈ Cs(Rd) as the approximate values of
u in a weighted square sense, in fact the main objective of least square approximation in a
weighted square in domain of problem presents a method which just points nearby nodes
X have an effect in approximate function of u. For this purpose weight function is applied
to approximate function of u therefore the weighted function of moving least square is con-
sidered with the weight function of w.
The space of polynomials of degree m and dvariable is shown by P d

m and q = dim(P d
m)

Let {p0, p1, ..., pm} be each basis of P d
m then the prime approximation of u can be defined

as

uh(x) =
m∑
i=1

ϕi(x)pi(x) = PT (x)Φ(x), (2. 24)

Where P (x) is a matrix with components of {p0, p1, ..., pq} and Φ(x) = {ϕ1, ϕ2, ..., ϕm}
are shapes functions and they are made by applying nods of X and minimizing in space of
Ω as follows

minx[

n∑
i=1

(uh(x)− uj)2wj(x)], (2. 25)

That is wj(x) = w(x, xj) weight function and wj(x) > 0, uh(xj) ̸= uj , the matrix of W
is diagonal with diameter components of wj(x), j = 1, ..., n and the matrix of P as

P =

 p0(x1) · · · pm(x1)

· · ·
. . . · · ·

p0(x1) · · · pm(x1)


T

, (2. 26)

By derivative from the side of (25), and equal to zero, as following

[
n∑

j=1

wj(x)P (xj)P
T (xj)]Φ(x) = [w1(x)P (x1), w2(x)P (x2), ..., wn(x)P (xn)]u,

(2. 27)
So that by multiplying the sides (27), in the coefficients inversion Φ yields

Φ(x) = [
n∑

j=1

wj(x)P (xj)P
T (xj)]

T [w1(x)P (x1), w2(x)P (x2), ..., wn(x)P (xn)]u,

(2. 28)
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The approximate of uh from u as follows

uh(x) = ΦT (x)u. (2. 29)

In this paper the Gaussian weight function as follows [3, 11, 18, 29],

wj(x) =

{
exp[−(rj/α)

2−exp[(−hj/α)
2]

1−exp[(−hj/α)2
0 ≤ rj ≤ hj ,

0 rj ≥ hj
(2. 30)

Where rj = ∥x − xj∥ (the Euclidean space between x and xj) and α is a fixed shape of
the weight function wj and hj is the measure of the support domain.

3. THE MODEL AND METHODOLOGY

In this section, structure, variables and parameters of the model are defined and method-
ology of LWM and MLSM will investigate on the model.

3.1. Description of the Model. A theoretical model has been introduced based in nonlin-
ear ordinary differential equation to describe the dynamic of the population incidence of
the infected pregnant that may present fetal microcephaly induced by the ZIKA virus, the
variables and parameters of the model are as follows

• u1 :Average number of susceptible people
• u2 : Average number of ZIKV infected pregnant women that may induce fetal

microcephaly
• u3 :Average number of persons infected by ZIKV
• v1 : Average number of non-carrier mosquitoes
• v2 : Average number of virus-carrier mosquitoes

Parameters applied in the simulations are,
δ : constant flux of susceptible people, µ : the natural death rate, β : the virus transmission
probability from the virus-carrier mosquitoes to the susceptible people, σ : the virus trans-
mission probability from the infected pregnant women to the non-carrier mosquitoes, γ :
virus transmission probability from infected people to the non-carrier mosquitoes, ε : the
full mosquitoes death rate, θ : the recovery rate of the infected pregnant women, α : the
infected people recovery rate, f : the fraction of infected people, 1 − f : is the fraction of
pregnant women infected by ZIKV [4, 9, 12].
Let

U(t) = (u1(t), u2(t), u3(t), v1(t), v2(t)),

And

S1(v1(t), v2(t)) =
v1(t)

v1(t) + v2(t)
,

S2(u1(t), u2(t), u3(t), v1(t)) =
v1(t)

u1(t) + u2(t) + u3(t)
,

System of nonlinear differential equation is obtained

DUT = QUT +BT , (3. 31)
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Which D is first order linear differential operator and matrix of Q and the vector of B are
as follows

Q =


−µ− βS1 0 0 0 0
(1− f)β −(θ + µ) 0 0 0
−fβ 0 −(α+ µ) 0 0
−δS1γS2 0 0 −ε 0

0 δS2 −γS2 0 −ε

 , B =


δ
0
0
ρ
0


In the other words

∂u1(t)

∂t
= δ − β v2(t)

V (t)
u1(t)− µu1(t), (3. 32)

∂u2(t)

∂t
= (1− f)β v2(t)

V (t)
u1(t)− (θ + µ)u2(t),

∂u3(t)

∂t
= fβ

v2(t)

V (t)
u1(t)− (α+ µ)u3(t),

∂v1(t)

∂t
= ρ− σu2(t)

U(t)
v1(t)− γ

u3(t)

U(t)
v1(t)− ϵv1(t),

∂v2(t)

∂t
= σ

u2(t)

U(t)
v1(t) + γ

u3(t)

U(t)
v1(t)− ϵv2(t),

U(t), is the vector of unknown functions and

U0(t) = (u10(t), u20(t), u30(t), v10(t), v20(t)),

is the vector of initial conditions, and the parameters (δ, α, µ, θ, ρ) are positive and (β, γ, f, σ) ∈
(0, 1).

FIGURE 1. The relationship between variables in terms of virus
transmission
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3.2. LWM and MLSM methodology in model. In this section methodology of LWM
and MLS is explained in model

LWM:In this model suppose the rate variable X(t) can be expressed as

X(t) = CTΨ(t) (3. 33)

Where CT is transpose of C vector. Using Eq.( 2. 8 ), X(t) can be represented as

X(t) =

∫ t

0

X(α)dα+X(0) = CTPΨ(t), (3. 34)

Which t ∈ [0, 1] and also

U2(t) = CTPΨ(t)Ψ(t)TC, (3. 35)

Eq.( 2. 11 ), can be simplified by using the following property of the product of two Le-
gendre wavelet function vectors

CTPΨ(t)Ψ(t)T ≈ Ψ(t)T (Ĉ), (3. 36)

By applying relation Eq.(33) to Eq(36), in Eq.( 3. 31 ), the following

du1(t)

dt
= CT

1 Ψ(t), u1(t) = CT
1 PΨ(t) + u1(0), (3. 37)

du2(t)

dt
= CT

2 Ψ(t), u2(t) = CT
2 PΨ(t) + u2(0),

du3(t)

dt
= CT

3 Ψ(t), u3(t) = CT
3 PΨ(t) + u3(0),

dv1(t)

dt
= CT

4 Ψ(t), v1(t) = CT
4 PΨ(t) + v1(0),

dv2(t)

dt
= CT

5 Ψ(t), v2(t) = CT
5 PΨ(t) + v2(0),

In continue by using Eq.(33), in Eq.( 3. 31 ), we get the following

f1 : CT
1 − δ + (βg1 + µ)CT

1 P + u1(0) = 0, (3. 38)

f2 : CT
2 − (1− f)βg1(CT

1 P + u1(0)) + (θ + µ)(CT
2 P + u2(0)) = 0,

f3 : CT
3 − fβg1(CT

1 P + u1(0)) + (α+ µ)(CT
3 P + u3(0)) = 0,

f4 : CT
4 − ρ+ (σg2 + γg3 + ε)(CT

4 P + v1(0)) = 0,

f5 : CT
5 − (σg2 + γg3)(C

T
4 P + v1(0)) + ε(CT

5 P + v2(0)) = 0,

And note that {
1 = dTΨ(x)

x = eTΨ(x)
(3. 39)
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Where g1, g2 and g3 given as

g1 =
(CT

5 P + v2(0))

(C4 + C5)TP + v1(0) + v2(0)
, (3. 40)

g2 =
(CT

2 P + u2(0))

(C1 + C2 + C3)TP + u1(0) + u2(0) + u3(0)
,

g3 =
(CT

3 P + v2(0))

(C1 + C2 + C3)TP + u1(0) + u2(0) + u3(0)
.

On the other hand by derivative Eq.( 3. 41 ), to all of coefficients Ci the Jacobian of coef-
ficients matrix have calculated as following

|Z(i)| =


f
(i)
1C1

f
(i)
1C2

· · · f
(i)
1C5

f
(i)
2C1

f
(i)
2C2

· · · f
(i)
2C5

...
...

. . .
...

f
(i)
5C1

f
(i)
5C2

· · · f
(i)
5C5

 , (3. 41)

By applying the Jacobian iterative method, we solve following equation,

Z(i)C(i+1) = −F (i) + Z(i)C(i), (3. 42)

Where

C(i) = (C
(i)
1 , C

(i)
2 , C

(i)
3 , C

(i)
4 , C

(i)
5 ), (3. 43)

C(i+1) = (C
(i+1)
1 , C

(i+1)
2 , C

(i+1)
3 , C

(i+1)
4 , C

(i+1)
5 ),

F (i) = (F
(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
4 , F

(i)
5 ).

MLSM: The proposed method is applied to solve an ODE system. Consider the system
of Eq.( 3. 31 ), to apply the method assumed that Φ = {ϕ1, ϕ2, ..., ϕn} are the MLS shape
functions. So in order to solve the system of ZIKV, n nodal points ti are selected on the do-
main Ω which {tj}nj=1 are q-unisolver them, then instead of u1, u2, u3, v1 and v2, replaced
approximation value as the following [17, 30]

u
(h)
1 (t) =

n∑
j=1

ϕj(t)u1(tj), u
(h)
2 (t) =

n∑
j=1

ϕj(t)u2(tj), u
(h)
3 (t) =

n∑
j=1

ϕj(t)u3(tj),

(3. 44)

v
(h)
1 (t) =

n∑
j=1

ϕj(t)v1(ti), v
(h)
2 (t) =

n∑
j=1

ϕj(t)v2(tj),

If ϕj , j = 1, 2, ..., n, are sufficiently smooth, derivatives of u1, u2, u3 and v1, v2 are usually
approximated by derivative of u(h) and v(h)

Dui = Du
(h)
i =

n∑
j=1

Dϕj(t)ui(tj), i = 1, 2, 3, t ∈ Ω. (3. 45)
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Dvk = Dv
(h)
k =

n∑
j=1

Dϕj(t)vk(tj), k = 1, 2

So the system of Eq.( 3. 31 ), for i = 1, 2, 3 , k = 1, 2 becomes as fallows

F1(u
(h)
i , v

(h)
k , t) : Du

(h)
1 (t) + β

vh2 (t)

V h(t)
uh1 (t) + µuh1 (t) = δ + r1(t), (3. 46)

F2(u
(h)
i , v

(h)
k , t) : Du

(h)
2 (t)− (1− f)β v

h
2 (t)

V h(t)
uh1 (t) + (θ + µ)uh2 (t) = r2(t),

F3(u
(h)
i , v

(h)
k , t) : Du

(h)
3 (t)− fβ v

h
2 (t)

V h(t)
xh1 (t) + (α+ µ)uh3 (t) = r3(t),

F4(u
(h)
i , v

(h)
k , t) : Dv

(h)
1 (t) + σ

uh1 (t)

Uh(t)
vh1 (t) + γ

uh1 (t)

Uh(t)
vh1 (t) + εvh1 (t) = ρ+ r4(t),

F5(u
(h)
i , v

(h)
k , t) : Dv

(h)
2 (t)− σ u

h
2 (t)

Uh(t)
vh1 (t) + γ

uh3 (t)

Uh(t)
vh1 (t) + εvh2 (t) = r5(t).

Where rm(t),m = 1, 2, ..., 5, is residual error of function which vanishes to zero in collo-
cation points, thus by using these points

tr = 0, r = 1, ..., n,

So

Fi(u
(h)
1 , u

(h)
2 , u

(h)
3 , v

(h)
1 , v

(h)
2 , rm) = 0

hence by imposing the initial conditions at t = 0, and solving the nonlinear system of
Eq.( 3. 31 ) leads to finding quantities u(h)1 , u

(h)
2 , u

(h)
3 , v

(h)
1 , and v(h)2 . Then the values of

u
(h)
1 , u

(h)
2 , u

(h)
3 , v

(h)
1 , and v(h)2 , at any point of t ∈ Ω, can be approximated by following

equations.

ui(t) =

n∑
j=1

ϕj(t)u
h
i (tj), i = 1, 2, 3 (3. 47)

vk(t) =
n∑

j=1

ϕj(t)v
h
k (tj), k = 1, 2

3.3. Algorithm. In this subsection an efficient algorithm proposed for solving the nonlin-
ear system of Eq.( 3. 31 ). As we know in LWM the goal is to find the coefficients cnm
which introduced in Eq.(4). In order to find the coefficients one of the suitable approaches
using an iterative method as follows [28].
Algorithm of iterative nonlinear system of Eq.( 3. 31 )
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Algorithm 1
Require: (input; P, u1(0), u2(0), u2(0), u3(0), v1(0), v2(0))

1: Set:

g1 ← (CT
5 P + v2(0))

(C4 + C5)TP + v1(0) + v2(0)

g2 ← (CT
2 P + u2(0))

(C1 + C2 + C3)TP + u1(0) + u2(0) + u3(0)

g3 ← (CT
3 P + u3(0))

(C1 + C2 + C3)TP + u1(0) + u2(0) + u3(0)

f1 : CT
1 − δ + (βg1 + µ)CT

1 P + u1(0) = 0

f2 : CT
2 − (1− f)βg1(CT

1 P + u1(0)) + (θ + µ)(CT
2 P + u2(0)) = 0

f3 : CT
3 + fβg1(C

T
1 P + u1(0)) + (α+ µ)(CT

3 P + u3(0)) = 0

f4 : CT
4 − ρ+ (σg2 + γg3 + ε)CT

4 P + v1(0) = 0

f5 : CT
5 − (δg1 + γg3)(C

T
4 P + v1(0)) + ε(CT

5 P + v2(0)) = 0

2: procedure CALCULATING THE MATRIXOF Z AND SOLVE THE NON-LINEAR SYS-
TEM OF EQUATIONS

3: Z ← [jacobian of equations]
4: inv(Z)← Inv(Z) (Compute the inverse of the matrix jacobian)
5: C0 ← [C11(0), C12(0), ..., C15(0), C21(0), ..., C25(0), ..., Cn1(0), ...Cn5(0)](Those

are obtained by X0)
6: for i = 0 : n (n is the number of numerical itarative) do
7: C[i+ 1] = inv(Z[i])(−f [i] + Z[i]C[i])

8: end

4. NUMERICAL RESULTS

In this section the results of implementation of the proposed methods are presented. At
first we obtained the coefficients cnm, n = 5 and m = 2, for f = 0.6, and values of
parameters Table 1, by applying LWM. The results are shown in Table 2.

Then from Eq.(10), by using Table 2 the equations of solution ui, i = 1, 2, 3, can be

TABLE 1. The values of parameters

Parameter γ β σ ϵ α µ θ ρ η f
Value 0.773 0.7913 0.6 0.0352 0.14 0.0003 0.05 30 20 0.3, 0.6
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TABLE 2. Corresponding coefficients by LWM for f=0.6.

c1 c2 c3 c4 c5
0.1845 0.1590 0.1948 0.4815 0.3801
0.0824 0.0562 0.0829 0.6811 0.6050
0.1111 0.0456 0.0678 0.4554 0.7279
0.1336 0.0368 0.0549 0.3391 0.7353
0.1685 0.0229 0.0342 0.3393 0.7206
0.1865 0.0157 0.0235 0.3393 0.5953
0.2100 0.0063 0.0294 0.3393 0.4803
0.2165 0.0038 0.0056 0.3394 0.1935
0.2389 −0.0052 −0.0078 0.3394 0.1313
0.2290 −0.0012 −0.0018 0.3391 −0.3763

written as

u1 = 1408.513x9 − 6316.638x8 + 11844.788x7 − 12039.632x6 +

7188.203x5 − 2552.357x4 + 519.925x3 − 55.235x2 + 2.618x− 0.0263

u2 = −30.633x9 − 145.903x8 − 286.522x7 + 301.136x6 − 83.441x5 +

65.437x4 − 13.128x3 − 1.347x2 + 0.059x+ 0.00014

u3 = −46.067x9 − 219.263x8 − 430.319x7 + 452.005x6 − 275.187x5 +

8.107x4 − 19.670x3 + 2.017x2 + 0.047x− 0.0002

Also the equations of solution vj , j = 1, 2, can be approximated by

v1 = 2000.88x9 − 8940.693x8 + 16715.827x7 − 16952.516x6 + 10106.969x5 −
3587.307x4 + 731.959x3 − 78.0099x2 + 3.424x− 0.0389

v2 = 777.244x9 − 2607.122x8 + 3224.353x7 − 1514.351x6 − 217.151x5 +

514.801x4 − 207.352x3 − 35.342x2 − 2.3820x− 0.04317

By computing values of coefficients in f = 0.3 and f = 0.85, the other equations of solu-
tion are determined too.

In figures (2 − 4), conduct of the infected pregnant women,u2 and infected people,u3
are shown in the ZIKV. Also, it is noted that if f pick up the pregnant women people ar-
rives a major epidemic point by comparing the LWM by m = 10, and MLS at t ∈ [0, 1]
by various f and difference △x = 0.1, we see that figures of them are almost similar in
the same interval [0, 1]. In MLSM precision of solution depend on number of points and
parameters of weight function. In LWM as a spectral method a closed form of the solutions
are obtained and the accuracy of the method is related to degree of Legendre polynomials.
In other hands MLSM is a method without mesh and approximation of unknown functions
is based on points where they can be regularly or unregularly [2]. As we know according
to approximation theory, each continues function could be approximate with a sequence of
polynomial that is base of space. Therefore, in comparison between bases of two methods
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FIGURE 2. Results of applying LWM and MLS in f = 0.3 and
t ∈ [0, 1].

FIGURE 3. Results of applying LWM and MLS in f = 0.6 and
t ∈ [0, 1].

FIGURE 4. Results of applying LWM and MLS in f = 0.85 and
t ∈ [0, 1].

in LWM the bases are unknown and fixed but in MLSM the shape functions as the bases
are produced in each trial points [10, 25].
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5. CONCLUSION

Two methods of LWM and MLSM on the system of nonlinear differential equations are
implemented. To find the equation of the solution the coefficients of wavelet must be ob-
tained. Thus in this step we applied Jacobian iterative method in this algorithm. In theorem
2.2 we found an upper bond for coefficients and for the fraction infected people (f=0.6),
the coefficients are tabulated in Table 2. In this study while we didnt have exact solution
for Zika model and as it can see in the figures 2 to 4 the approximate solutions are similar
in these two approaches.
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