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1. INTRODUCTION

It is elementary that associated to any map f : X → Y between sets, there exist in-
duced maps Imf : ℘(X) → ℘(Y ) known as the image map and f−1 : ℘(Y ) → ℘(X)
known as the inverse image map. In [3], Arkhangel’skii has also used another induced
map defined with the help of fibers namely, f ] : ℘(X) → ℘(Y ), given by f ](A) = {y ∈
Y : f−1(y) ⊂ A}. In [2], Al-shami discuss some properties of a somewhere dense set on
topological spaces and in [1], Abbas et. al. discuss the concepts of fuzzy upper and fuzzy
lower contra-continuous, contra-irresolute and contra semi-continuous multifunctions. In
[9], the second author and Bala made extensive use of this induced map to give new char-
acterizations of open, closed and continuous mappings. It is important to investigate in
detail the relationships between these induced maps. Following MacLane [8] and his slo-
gan that ”Adjoint Functors Are Everywhere”, Cicogna in [6] has given many interesting
applications of functor adjunctions.

In this paper, we use categorical concepts and especially the concept of functor adjunc-
tions to illuminate the nature and relationship of the above induced maps. In this paper, we
(i) show that there is mapping between adjunctions involving the induced maps f(−), f−1
and f ] (Theorem 2.1 below), (ii) prove the existence of functor ] which results in the in-
duced map f ] (Theorem 2.2 below), (iii) illuminate the categorical meaning of some results
in [9] involving the induced map f ] (Remark 2.3 below), (iv) obtain triangle identity char-
acterizations of the adjunctions f(−) a f−1 a f ], giving useful factorizations of these
maps (Lemma 2.1 below), (v) give more comprehensive characterizations of the monicity
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of f(−) map (Theorem 2.3 below) and epicity of f(−) (Theorem 2.4 below). Further,
we have defined saturated sets and have given the new characterization of Theorems 2.3
and 2.4 using these sets (Theorems 2.5 and 2.6 below). The importance of these results lie
in the fact that they provide us with accurate and complete interrelationship between the in-
duced maps and their interdependence. The aim of this paper is not just to find new results
but also to bring out the clarity in the results with the application of categorical methods
and to see how the properties of these induced maps are categorical in nature at the deeper
level.

For the sake of completeness and readability we recall that a category C [4] has two
collections C0 of objects and C1 of arrows such that (i) for all f ∈ C1, there exist two
objects in C0, one is called dom(f) and the other is called cod(f), (ii) it is closed under
composition of arrows and (iii) it has identity arrow for each object. Also associative law
and unit law should be satisfied by it. A Functor [4] F : C → D is a mapping of objects to
objects and arrows to arrows, preserving identity, domains and codomains and respecting
composition.
Some other basic definitions can be found from Steve Awodey [4] viz. ”Arrow category”,
”Pullback”, ”Natural Transformation” , ”Full Functor” and ”Faithful Functor” etc.

Definition 1.1. [4] An adjunction consists of functors, G : C′ � D′ : G′ and a natural
transformation η′ : 1C′ ⇒ G′ ◦G (written G a G′) such that
For any h : C ′ → G′(D′) in C′ there exists unique k : G(C ′) → D′ such that h =
G′(k) ◦ η′C′ i.e.

C ′

G′G(C ′) G′(D′)

η′
C′

h

G′(k)

is commutative.
Here η′ is known as the unit of adjunction.

Equivalently, we have

Definition 1.2. [4] An adjunction consists of functors, G : C′ � D′ : G′ and a natural
transformation ε′ : G ◦G′ ⇒ 1D′ (written G a G′) such that
For any h : G(C ′)→ D′ inD′ there exists unique k : C ′ → G′(D′) such that ε′D′ ◦G(k) =
h i.e.

G(C ′) GG′(D′)

D′

G(k)

h
ε′
D′

is commutative.
Here ε′ is known as the counit of adjunction.
In particular, if the counit of adjunction is identity i.e. G ◦ G′ = 1D′ then G is known as
left-adjoint left inverse [8] of G′.

Also G a G′ if and only if HomC′(C ′, G′D′) ∼= HomD′(GC
′, D′), where the isomor-

phism is natural in C ′ and D′.
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Definition 1.3. [4] An arrow f : X → Y in a category C is said to be

(1) epi, if for any two arrows g, h : Y → Z whenever g ◦ f = h ◦ f i.e. whenever the
following is commutative:

X Y Z
f g

h

then g=h.
(2) monic, if for any two arrows g, h : Z → X whenever f ◦ g = f ◦ h i.e. whenever

the following is commutative:

Z X Y
g

h

f

then g=h.

For our work we shall need a better understanding of:

Subobjects: For a category C and for any object X in it, consider a category having as
objects monic morphisms of C with codomain X and arrow between any two objects say
m1 :M → X , m2 : N → X is an arrow from M to N in C such that

M N

X

m1
m2

is commutative.
We will denote this category by SubC(X). Here SubC(X) is a preorder category with rela-
tion≺ given bym1 ≺ m2 if and only if there is an arrow fromm1 tom2 in SubC(X). Also
by giving the equivalence relation R (where m1Rm2 if and only if there is an arrow from
m1 to m2 and m2 to m1 in SubC(X)) on it gives a partial order category. We will denote
this category by SubC [X] having as objects the equivalence classes [m1] corresponding to
an object m1 : M → X of SubC(X) with relation say ≤ (where [m1] ≤ [m2] if and only
if there is an arrow m1 → m2 in SubC(X)).

Remark 1.1. [4] In particular, for the category C = Sets and for any object X in Sets i.e.
for any set X , φ : SubSets[X] ∼= ℘(X) : ψ where φ : SubSets[X] → ℘(X) is given by
φ([m] : M → X) = m(M) and ψ : ℘(X)→ SubSets[X] is given as ψ(A) = [iA] where
iA : A→ X is the inclusion arrow. In further results for category Sets and any set X in it
, we will denote SubSets[X] by ℘(X).

Definition 1.4. [7]

(1) Inverse image of an object: Let C be a category with pullbacks. Then pullbacks
preserve monics implies there exists functor f−1 : SubC [Y ] → SubC [X], which
is the restriction of the pullback functor to SubC [Y ] corresponding to morphism
f : X → Y of C. Therefore, for an object [n1] of SubC [Y ]; f−1 is given by the
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following pullback square:

f−1(N) N

X Y

f−1[n1] [n1]

f

So for any object [n1] : N → Y in SubC [Y ], the inverse image of [n1] is f−1[n1]
given by the above pullback square. Also f−1[n1] = [f−1(n1)].

(2) Image of an object: The image functor denoted by f(−) is given as the left adjoint
of f−1 if the left adjoint exists. So

f(−) : SubC [X]→ SubC [Y ]

and for an object [m1] : M → X in SubC [X], image f(−)[m1] is given by the
property [m1] ≤ f−1[n1] if and only if f(−)[m1] ≤ [n1]. Also f(−)[m1] =
[f(m1)].

Remark 1.2. [4] Since the category Sets has all pullbacks and for morphism f : X → Y
in Sets, inverse image-functor f−1 : ℘(Y ) → ℘(X) has both left adjoint f(−) which
(will be denoted by Imf in Sets) as well as right adjoint which here will be denoted by
f ] : ℘(X)→ ℘(Y ). Therefore, Imf a f−1 a f ] holds in Sets.

Theorem 1.1. [5] LetG : X � D : K withG a K and α : 1X ⇒ K◦G , β : G◦K ⇒ 1D
be corresponding unit, counit of adjunction respectively. Then following are equivalent:

(a) K(G) is full and faithful.
(b) The counit(unit) of adjunction β(α) is iso.

Theorem 1.2. [5] If G : X → D has both left adjoint K and right adjoint H . Then K is
full and faithful if and only if H is full and faithful.

Theorem 1.3. [4] If G : X � D : H , γ : 1X ⇒ H ◦G and δ : G ◦H ⇒ 1D
Then G a H with unit γ and counit δ if and only if following diagrams are commutative:

H

H ◦G ◦H H

γH
1H

H(δ)

G

G ◦H ◦G G

Gγ
1G

δG

These diagrams are known as triangle identities.
i.e. for any objectX ∈ X andD ∈ D , we haveH(δD)◦γHD = 1HD and δGX ◦G(γX) =
1GX .

Theorem 1.4. [5] Let G : X � D : H with X and D partial order categories and G a H
then G ◦H ◦G = G and H ◦G ◦H = H .

In our further results, for the category C, we will assume that like Sets, C has all
pullbacks and for a morphism f : X → Y of C, there exists string of adjoints
f(−) a f−1 a f ] where f ] : SubC [X]→SubC [Y ] is the right adjoint of f−1. Also
η : 1SubC [X]⇒ f−1 ◦ f(−), ε : f(−) ◦ f−1 ⇒ 1SubC [Y ] will denote the unit and counit of
adjunction f(−) a f−1 respectively and α : 1SubC [Y ] ⇒ f ]◦f−1, β : f−1◦f ] ⇒ 1SubC [X]

will denote the unit and counit of adjunction f−1 a f ] respectively.
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2. RESULTS

As our first result we prove that there is a mapping between adjunctions f(−)af−1 and
f−1af ]. Before this we will give some useful factorizations of f−1, f(−) and f ].

Lemma 2.1. (Triangle identities for f(−) a f−1 a f ]): For a morphism f : X → Y of
C, following holds:

(i) f−1 ◦ f(−) ◦ f−1 = f−1 , f(−) ◦ f−1 ◦ f(−) = f(−).
(ii) f−1 ◦ f ] ◦ f−1 = f−1 , f ] ◦ f−1 ◦ f ] = f ].

Proof. Proof follows from the fact that SubC [X] and SubC [Y ] are partial order categories
and by Theorem 1.4. �

In particular, for Sets category, we have f−1 ◦ Imf ◦f−1 = f−1 and Imf ◦f−1 ◦ Imf =
Imf .

Theorem 2.1. Let f : X → Y be a morphism in the category C. For the adjunctions
f(−)af−1 with η, ε as the unit and counit of adjunction resp. and f−1af ] with α, β as
the unit and counit of adjunction resp., there is a functor L : SubC [X]→SubC [Y ] such that
following squares become commutative.

SubC [X] SubC [Y ] SubC [X]

SubC [Y ] SubC [X] SubC [Y ]

f(−)

L

f−1

f−1 L

f−1 f]

and L(η[m]) = αL([m]) , βf−1([n]) = f−1(ε[n]) for objects [m] of SubC [X] and [n] of
SubC [Y ].

Proof. Firstly, we define L : SubC [X]→SubC [Y ] as L = f ] ◦f−1 ◦f(−). Since composi-
tion of functors is also a functor, soL is a functor. Further f−1◦L = f−1◦f ]◦f−1◦f(−) =
f−1◦f(−) using triangle identity of Lemma 2.1(ii) and L◦f−1 = f ]◦f−1◦f(−)◦f−1 =
f ] ◦ f−1 using triangle identity of Lemma 2.1(i). Therefore, f−1 ◦ L = f−1 ◦ f(−) and
L ◦ f−1 = f ] ◦ f−1, proving that both the squares are commutative. Also for any object
[m] of SubC [X], η[m] : [m]→f−1(f([m])), so L(η[m]) : L([m])→L(f−1(f([m]))) and
αL([m]): L([m])→f ](f−1(L([m]))). But from commutativity of above squares, we get
L(f−1(f([m]))) = f ](f−1(f([m]))) = f ](f−1( L([m]))) for any object [m] of SubC [X].

So
L([m]) L(f−1(f([m])))

L(η[m])

αL([m]) are a pair of parallel arrows.
As SubC [X] and SubC [Y ] are partial order categories and in partial order categories

there can be at most one arrow between any two objects. So L(η[m]) = αL([m]) for any
object [m] of SubC [X]. Similarly we can check βf−1([n]) = f−1(ε[n]) for any object [n] of
SubC [Y ]. �

The above theorem is an instance of the following

Definition 2.1. (Mapping of adjunction)[8]: Let < F,G, η, ε >: X→D means FaG with
η, ε are the unit and counit of adjunctions resp. and < U, V, α, β >: P→Q with α, β are
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the unit and counit of adjunctions resp. A pair of functors L : X→P and K : D→Q is
called a mapping between these adjunctions if the following squares are commutative:

X D X

P Q P

F

L

G

K L

U V

and L(ηX) = αL(X), βK(B) = K(εB) for any object X of X and B of D.
We may denote this by (L,K) : F a G→ U a V .

Remark 2.1. With the definition 2.1 above, we have the following restatement of Theo-
rem 2.1:
For a morphism f : X → Y in C, there exists a functor L : SubC [X]→SubC [Y ] such that
(L, f−1) : f(−) a f−1 → f−1 a f ].

Corollary 2.1. For any map f : X→Y in Sets, there exists a functor L : ℘(X)→℘(Y )
such that
(L, f−1) : Im(f) a f−1 → f−1 a f ].

For our next results we need the following definition and Remark 2.2:

Definition 2.2. (Arrow Category)[4]: Let C be any category. Define the arrow category
−→
C

with objects as all arrows of category C and for any two objects f : X → Y and g :W → Z
an arrow from f → g is a pair (h, k) such that the following square is commutative:

X W

Y Z

h

f g

k

(2. 1)

The composition in
−→
C is given componentwise.

Remark 2.2. Let C andD be two partial order categories and F,G : C → D be two functors
such that F ∼= G i.e. F is iso to G then F = G.

Proof. Let F,G : C → D be two iso functors then there exist natural transformation
η : F ⇒ G and natural transformation β : G ⇒ F such that η ◦ β = 1G and β ◦ η = 1F .
This implies that for each object C ∈ C, there exist ηC : FC → GC and βC : GC → FC
i.e.

FC GC
ηC

βC

But D is a partial order category. Therefore, FC = GC for each object C ∈ C and
F (f) = G(f) for all arrows of C, since there exist at most one arrow between any two
objects of partial order category. Hence F = G. �

Since in Sets, for any map f : X → Y , f ] : ℘(X)→ ℘(Y ) is given by f#(A) = {y ∈
Y : f−1(y) ⊆ A} for any subset A of X [3]. We now show that in general for a category
C, f ] is obtained by defining a functor ] :

−→
C →
−−→
Pos.
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Theorem 2.2. For a morphism f : X → Y of category C there exists a functor ] :
−→
C →
−−→
Pos

which takes f in
−→
C to f ] in

−−→
Pos or ](f : X → Y ) = f ] : SubC [X]→SubC [Y ] on objects.

Proof. The functor f ] gives us the definition of ] on objects f of
−→
C . We need to extend

this on arrows of
−→
C . For this let us define ]((h, k) : f → g)= (h], k]) on arrows. First

we will prove that it is well defined. (h, k) : f→g means that the above square 2. 1 is
commutative i.e. goh = kof , so (goh)] = (kof)], where (goh)] : SubC [X]→ SubC [Z].
Now for an arrow g :W → Z, there is an adjunction< g−1 : SubC [Z] � SubC [W ] : g] >
i.e. g−1 a g] and for an arrow h : X → W , there is an adjunction < h−1 : SubC [W ] �
SubC [X] : h] > i.e. h−1 a h]. Also for an arrow g ◦ h : X → Z, there is an adjunction
< (g ◦ h)−1 : SubC [Z] � SubC [X] : (g ◦ h)] > i.e. (g ◦ h)−1 a (g ◦ h)]. Therefore, we
have the following adjunctions:

SubC [Z] SubC [W ]
g−1

g] ,
SubC [W ] SubC [X]

h−1

h]

and
SubC [Z] SubC [X]

(g ◦ h)−1

(g ◦ h)]

But composition of adjunctions is also an adjunction [8]. Therefore, h−1 ◦ g−1 a g] ◦ h].
Further, it is well known that (g ◦ h)−1 = h−1 ◦ g−1. So (g ◦ h)−1 has two right adjoints
namely (g ◦ h)] and g] ◦ h]. Therefore, (g ◦ h)] ∼= g] ◦ h], since adjoints are unique up to
isomorphism [4] and so by Remark 2.2 (g ◦ h)] = g] ◦ h]
proving that the following square is commutative:

SubC [X] SubC [W ]

SubC [Y ] SubC [Z]

h]

f] g]

k]

So (h], k]) : f ]→g] or (h, k) : f→g implies ](h, k) : ](f)→](g). So ] preserves domains
and codomains. Also for any (h, k) : f→g and (v, u) : g→n, ]((v, u)◦(h, k)) = ](v◦h, u◦
k) = ((v ◦h)], (u◦k)]) = (v] ◦h], u] ◦k]) = ((v], u])◦ (h], k])) = ](v, u)◦ ](h, k). So ]
respects composition. Also it can be easily seen that it preserves identity. Hence ] operator
is a functor. �

Corollary 2.2. In particular, for the category Sets, there exists a functor ]:
−−→
Sets→

−−→
Pos .

In [9], the second author and Bala proved the Lemma f#(T c) = (f(T ))c and so
f#(T ) = (f(T c))c and f(T ) = (f#(T c))c for any subset T of X , where T c denotes
the complement of a set T in X . Here we will give categorical version of this Lemma
using string of adjunction Imf a f−1 a f ]

Remark 2.3. Categorical Meaning of Lemma 2.3(vii) [9]:
f#(T c) = (f(T ))c and so f#(T ) = (f(T c))c and f(T ) = (f#(T c))c.

The real content of this relationship between Imf and f ] lies in the fact that adjoints
are unique up to isomorphism [4]. For this we note that taking complements is a functor.
Define the functor CX : ℘(X)→℘(X) by CX(S) = X − S = Sc and for any arrow
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S→T i.e. S⊆T in domain category ℘(X), CX(T )→CX(S) i.e. X − T→X − S in range
category ℘(X). So CX is a contravariant functor. We show CY ◦ f ] ◦ CX a f−1. In
view of equivalent condition of adjunction, we will prove that CY ◦ f ] ◦CX(T )⊆B if and
only if T⊆f−1(B) for any subsets T of X and B of Y . Let CY ◦ f ] ◦ CX(T )⊆B i.e.
Y − f ](X − T )⊆B. Then Y − B⊆f ](X − T ) and so f−1(Y − B)⊆f−1(f ](X − T )).
But f−1af ] , so counit of adjunction implies that X − f−1(B)⊆X − T i.e T⊆f−1(B).
Similarly the reverse condition holds. Therefore, f−1 has two left adjoints namely Imf
and CY ◦ f ] ◦ CX and so by uniqueness of adjoints Imf∼=CY ◦ f ] ◦ CX . It follows that
f(T ) = (f ](T c))c and so f(T c) = (f ](T ))c and (f(T c))c = f ](T ) for any subset T of
X .

By using Lemma 2.1 above and Theorems 1.1 and 1.2, we are now able to give various
characterizations of mono and epi nature of the image functor in our Theorems 2.3 and 2.4
below:

Theorem 2.3. For a morphism f : X→Y of category C, following conditions are equiva-
lent:

(a) f(−) is monic.
(b) f−1 is essentially surjective on objects.
(c) The unit of adjunction f(−)af−1 is iso.
(d) f(−) is full and faithful.
(e) f ] is full and faithful.
(f) The counit of adjunction f−1af ] is iso.
(g) f ] is monic.

Proof. (a)⇒(b): By Lemma 2.1(i), we have f(−) ◦ f−1 ◦ f(−) = f(−) or

SubC [X] SubC [X] SubC [Y ]
f−1 ◦ f(−)

1SubC [X]

f(-)

is commutative.
But f(−) is monic implies f−1 ◦ f(−) = 1SubC [X] and therefore [f−1(f(m))] = [m] for
any object [m] of SubC [X] . So for any object [m] of SubC [X], there is [f(m)] such that
f−1[f(m)] = [m]. Hence f−1 is essentially surjective on objects.
(b)⇒(c): Let [m] be any object of SubC [X] then f−1 is essentially surjective on objects
imply that there exist object [n1] of SubC [Y ] such that [f−1(n1)] = [m]. So f−1 ◦
f(−)[f−1(n1)] = f−1 ◦f(−)[m] i.e. [f−1 ◦f(−)◦f−1(n1)] = [f−1 ◦f(−)(m)] But trian-
gle identities above in Lemma 2.1(i) imply that [f−1(n1)] = [f−1 ◦ f(−)(m)]. So [m] =
[f−1 ◦ f(−)(m)] for any object [m] of SubC [X] . Therefore f−1 ◦ f(−) = 1SubC [X] and
so f−1 ◦ f(−) ∼= 1SubC [X] i.e. the identity natural transformation 1SubC [X] ⇒ f−1 ◦ f(−)
is iso. But f−1 ◦f(−) is defined on partial order category and there exist at most one arrow
in this category. Therefore the unit of adjunction η : 1SubC [X] ⇒ f−1 ◦ f(−) must be the
identity natural transformation. Hence unit of adjunction f(−)af−1 is iso.
(c)⇒(a): For proving f(−) to be monic consider the following commutative diagram
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Z SubC [X] SubC [Y ]
G

H

f(-)

where Z is any category and G, H are functors.
Therefore f(−) ◦ G = f(−) ◦ H and so f−1 ◦ f(−) ◦ G = f−1 ◦ f(−) ◦ H . But by
(c) the unit of adjunction is iso and so f−1 ◦ f(−) ∼= 1SubC [X]. Therefore by Remark 2.2,
f−1 ◦ f(−) = 1SubC [X]. Hence G = H and so f(−) is monic.
(c)⇔(d)⇔(e)⇔(f) follows using Theorems 1.1 and 1.2.
(f)⇒(g): The counit of adjunction is iso implies f ] is monic can be proved similarly as
(c)⇒(a) by using f ] in place of f(−) .
(g)⇒(f): Also follows from the triangle identity f ] ◦ f−1 ◦ f ] = f ]. �

Theorem 2.4. For a morphism f : X→Y of category C, following conditions are equiva-
lent:

(a) f(−) is epi.
(b) f(−) is essentially surjective on objects.
(c) Counit of adjunction f(−)af−1 is iso.
(d) f ][m] = f(−) ◦ f−1 ◦ f ][m] for any object [m] of SubC [X].
(e) f ] is essentially surjective on objects.
(f) f ] is epi.
(g) Unit of adjunction f−1af ] is iso.
(h) f−1 is full and faithful.

Proof. (a)⇒(b): By Lemma 2.1(i), we have f(−) ◦ f−1 ◦ f(−) = f(−) or

SubC [X] SubC [Y ] SubC [Y ]
f(−) f(−) ◦ f−1

1SubC [Y ]

is commutative.
Further proof is similar to (a)⇒(b) part of Theorem 2.3 and hence is omitted.
(b)⇒(c)⇒(a) : Proof is similar to (b)⇒(c)⇒(a) part of Theorem 2.3 and hence is omitted.

(c)⇒(d): Counit of adjunction f(−)af−1 is iso implies f(−) ◦ f−1[n1] = [n1] for any
object [n1] of SubC [Y ]. In particular, for [n1] = f ][m] we have f(−)◦f−1◦f ][m] = f ][m]
for any object [m] of SubC [X].
(d)⇒(e): Let [n1] be any object of SubC [Y ]. For [m] = f−1[n1] = [f−1(n1)] in (d)
implies f(−)◦f−1◦f ][f−1(n1)] = f ][f−1(n1)]. So f(−)◦f−1[n1] = f ]◦f−1[n1] using
Lemma 2.1(ii). Now counit of adjunction f(−)af−1 and unit of adjunction f−1af ] imply
that there is arrow f(−)◦f−1[n1]→[n1]→f ] ◦f−1[n1] i.e. [f(−)◦f−1(n1)]→[n1]→[f ] ◦
f−1(n1)] for any object [n1] of SubC [Y ]. So [f(−) ◦ f−1(n1)] = [f ] ◦ f−1(n1)] = [n1].
Hence f ] is essentially surjective on objects.
(e)⇔(f)⇔ (g) : It can be proved similarly as we have proved (a)⇔(b)⇔(c) by taking f ] in
place of f(−) and using the triangle identity f ] ◦ f−1 ◦ f ] = f ] .
Also using Theorem 1.1 and Theorem 1.2 it follows that (c)⇔ (g)⇔ (h). �

Remark 2.4. In particular in view of Remarks 1.1 and 1.2, for the category Sets, results
of Theorem 2.3 and Theorem 2.4 hold. Since in Sets f is one-one(onto) if and only if f is
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monic(epi) [4]. So in Sets all the conditions of Theorem 2.3 are equivalent to f is one-one
and of Theorem 2.4 are equivalent to f is onto.

Corollary 2.3. Let f(−) a f−1 corresponding to a morphism f : X → Y of C. Then
following are equivalent conditions:

(a) f(−) is epi.
(b) f(−) is left-adjoint left inverse of f−1.

Proof. (a)⇒(b): Firstly, let f(−) be epi. Then by the equivalence of (a) and (c) of Theo-
rem 2.4, it follows that counit of adjunction is iso i.e. ε : f(−) ◦ f−1 ⇒ 1SubC [Y ] is iso.
But SubC [Y ] is a partial order category. Therefore, f(−) ◦ f−1 = 1SubC [Y ] and so counit
of adjunction is identity. Hence f(−) is left-adjoint left-inverse of f−1.
(b)⇒(a): Let f(−) be left-adjoint left inverse of f−1 then counit of adjunction be identity.
Therefore, ε : f(−) ◦ f−1 ⇒ 1SubC [Y ] is an isomorphism. Hence f(−) is epi. �

Corollary 2.4. For the adjunction f−1 a f ] following are equivalent conditions:

(a) f(−) is monic or f ] is monic.
(b) f−1 is left-adjoint left-inverse of f ].

Proof. (a)⇒(b): Let f−1 a f ] and f(−) be monic or f ] be monic. Then by the equivalence
of (a) and (f) or by (f) and (g) of Theorem 2.3, it follows that counit of adjunction is iso
i.e. β : f−1 ◦ f ] ⇒ 1SubC [X] is iso. But SubC [X] is a partial order category. Therefore,
f−1 ◦ f ] = 1SubC [X] and so counit of adjunction is identity. Hence f−1 is left-adjoint left
inverse of f ].
(b)⇒(a): Let f−1 be left-adjoint left inverse of f ] and so counit of adjunction is identity.
Therefore, β : f−1 ◦ f ] ⇒ 1SubC [X] is an isomorphism. Hence f(−) as well as f ] is
monic. �

For our further results, firstly we will define saturated objects.

Definition 2.3. An object [m1] of SubC [X] is called saturated if f−1 is essentially sur-
jective on that object i.e. there exist object [n1] of SubC [Y ] such that f−1[n1] = [m1].

Theorem 2.5. For the adjunction < f−1, f ], α, β >: SubC [Y ]→ SubC [X] and an object
[m1] of SubC [X], following are equivalent conditions:

(a) [m1] is saturated.
(b) f−1 ◦ f ][m1] = [m1].

Proof. (a)⇒(b) : Firstly, let [m1] be saturated object of SubC [X]. Then f−1[n1] = [m1]
for some object [n1] of SubC [Y ]. Therefore, there exists 1[m1] : f

−1[n1] = [m1] → [m1]
in SubC [X].
Now, f−1 a f ] with counit of adjunction β : f−1 ◦ f ] ⇒ 1SubC [X] and so β[m1] :

f−1 ◦ f ][m1]→ [m1] is the natural component.
Therefore, for the objects [m1] of SubC [X] and [n1] of SubC [Y ] and an arrow 1[m1] :

f−1[n1] → [m1], basic properties of adjunction implies that there exists unique arrow



Categorical Characterizations of Some Results on Induced Mappings 25

[n1]→ f ][m1] such that the following triangle is commutative:

f−1[n1] f−1 ◦ f ][m1]

[m1]
1[m1]

β[m1]

and so there is an arrow f−1[n1] → f−1 ◦ f ][m1] i.e. there is an arrow [m1] → f−1 ◦
f ][m1].
Therefore, f−1 ◦ f ][m1] = [m1]. Hence (b) holds.

Conversely, let f−1 ◦ f ][m1] = [m1] then for the object [n1] = f ][m1] of SubC [Y ],
f−1[n1] = [m1] and so [m1] is saturated. Hence (a) holds. �

Theorem 2.6. For the adjunction < f(−), f−1, η, ε >: SubC [X] → SubC [Y ] and an
object [m1] of SubC [X], following are equivalent conditions:

(a) [m1] is saturated.
(b) f−1 ◦ f(−)[m1] = [m1].

Proof. Proof is similar to Theorem 2.5 and follows from the basic properties of adjunction
f(−) a f−1

[m1]

f−1 ◦ f(−)[m1] f−1[n1]

η[m1]

1[m1]

where f−1[n1] = [m1]. �
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