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Abstract. In this work, we give four new soft matrix operations called soft
difference product, soft restricted difference product, soft extended differ-
ence product and soft weak-extended difference product and obtain their
related properties. We then define soft max-row function, positive differ-
ence max-row soft matrix and negative difference max-row soft matrix.
Using these, we construct novel efficient decision making method which
determines both the optimal choice and the unlikely choice. We applied
to the decision making problems based on benchmarking in order to show
that our method performs well with uncertainties.
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1. INTRODUCTION

There are many mathematical tools such that the fuzzy set [32], the vague set [14], the
rough set [25] and the interval mathematics [16] in order to describe uncertainty. Since

these theories require the pre-specification of some parameters, Molodtsov [24] proposed
the soft set theory to model uncertain, fuzzy, not clearly defined structures in 1999. There
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are no limited conditions to the depiction of objects in soft set theory, therefore the re-
searchers can choose the parameters in any form they need. This situation simplifies the
process of decision making and also makes more efficient in the partial lack of information.
Since introduction of the operations of soft sets [22], a rich literature on the properties and
practice of the soft set theory was developed [3, 17, 21, 26, 28, 31]. The algebraic and
topological structures of soft set theory were studied in details [1, 2, 4, 6, 12, 19, 27, 29].
Many authors developed decision making methods by utilizing the soft sets and also ap-
plied them to the decision making problems in several fields. Maji et al. [23] studied the
soft sets based on the decision making. In [10, 20], they presented the reduction of soft
set parametrization and the algorithm of parameter reduction, which can be used in various
decision making. G@man and Enginjlu [8] described the products of soft sets and the
function of uni — int decision. They presentechai — int decision making procedure,
which obtain a set of optimal objects from the alternatives. Feng et al. [13] constructed
novel decision making methods which is calledi — int*, uni — int! andint™ — int"
decision making. In[15, 30], the notions of bijective soft set and exclusive disjunctive soft
set were introduced. Then, these structures were applied to the decision making and the
information systems. Cetkin et al. [11] introduced the inverse soft sets, and also they
showed that this notion is quite efficient in the decision process. Soft matrices and their
related operations were defined for the first time in [9]. Subsequently, they utilize these
soft structures to construct novel decision making methods. In [5], the products defined in
[9] were generalized for soft matrices in different types. Kamaci et al. [18] introduced the
row-products of soft matrices. With the help of the generalized products and row-products,
novel decision algorithms was created. Basu et al. [7] published a study on the addition
and subtraction of soft matrices.

In [8], the soft difference operation of two soft sets was defined. In this paper, we first
define the operations of soft difference product, soft restricted difference product, soft ex-
tended difference product and soft weak-extended difference product for the soft matrices.
These operations have several advantages in solving various decision making problems.
We define soft max-row function, positive difference max-row soft matrix and negative dif-
ference max-row soft matrix. Then, we propose a new decision making model called “Soft
Difference Max-Row Decision Making” using these concepts. Finally, we give three ex-
amples that one of them is a decision making problem and the others are the benchmarking
problems with respect to the focused partner and topic.

2. PRELIMINARIES
Molodtsov [24] introduced the idea of soft set in the following manner:

Definition 2.1. ([24]) LetU be an initial universal setP(U) be the power set of the &t
E be a set of parameters anti C E. A soft se( F, A) is a set of ordered pairs given by
Fy={(z,F(z)):xz € E,F(z) € P(U)}
whereF' : E — P(U) such thatr ¢ A = F(z) = 0.

A soft se( F, A) can also be represented &3, .

Definition 2.2. [8] Let F4 and G be two soft sets over the universe et Then,soft
unionof F4, andG g denoted by, UG 5 = Hp is a soft set defined by
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H(z)=F(z) UG(z)
forall z € E.
Definition 2.3. [8] Let 4 and G be two soft sets over the universe &et Then,soft
intersectiorof Fy andG g denoted by'sNGp = Hg is a soft set defined by
H(z)=F(z)NG(z)
forall z € E.

Definition 2.4. [8] Let F4 and G§ be two soft sets over the universe BetThen,F'4 is a
soft subsebf G g, denoted by, CG'p, if

F(r) C G(x)
forall x € E.
Definition 2.5. ([9]) Let F'4 be a soft sets over the universe EetThen, the set
Ra={(u,e):e€ A,ue F(e)}
is said to be a relation form of 4. The characteristic function a® 4 is described as

1, (u,e) € Ra

XRA;UXEH{Oal}’XRA(u’e){ 0 (u 6)¢RA~

If U = {uy,us,...,un}t, E = {e1,e,...,e,} and A C F, thenR4 can be represented as
a table in the following form:

Ra el e S en

U1 Xra(u1,e1)  Xra(ui,e2) . . . Xgra(ui,en)
Uz XRa (U2> 61) XRa (U27 62) -+ + XRa (U2, €n)
Um | XRa (umvel) XRa (um762) -« + XRa (um76n)

If a;j = xR, (Ui, €;), the matrix

a1 a2 - . . Qin

any ago . . . aon,
[aij]mx n =

am1 Am2 - Amn

is said to be ann x n soft matrix of the soft sdt, overU.

The set of allm x n soft matrices over the universe détwill be denoted asSM,,, .
From now onJa;;] € SM,,x, means thafa;;] is anm x n soft matrix.

By the notion of soft matrix, a soft sét4 is uniquely characterized as the maitfix;].
This means that a soft set is formally equal to its corresponding soft matrix.

Example 2.6. LetU = {uy, us,us, us, us} be a universal set and = {ey,eq,e3,e4}
a parameter set. IfA = {ej,e3} and F : A — P(U), F(e1) = {u1,usz}, F(es) =
{ua, us, uq}, then we write a soft set
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Fa = {(e1,{u1,u2}), (e3, {uz,us,us})}
Also, the relation form of4 is

Ry = {(u1,e1), (uz,e1), (uz,es), (us, es), (us, e3)}.
Therefore, the soft matrij; ;] € SMs.4 Of Fs is

[aij] =

OO O ==
o O o oo
O = == O
SO O o oo

Definition 2.7. ([9]) Let[a;;] € SMyxn.
(1) If a;; = 0 for all 4, §, then the soft matrixe;;] is called a zero soft matrix and this
is denoted a§0].
(2) If a;; = 1forall 4, j, then the soft matria,;] is called a universal soft matrix and
this is denoted afl].
(3) Ifa;j =1forall iandj € I4 = {j : ¢; € A}, then the soft matrife,;] is called
an A-universal soft matrix and this is denoted [dg ].

Definition 2.8. ([9]) Let[a;;], [bi;] € SMpxr. Then,
(1) [as4] is a soft submatrix ofb;;] if a;; < b;; for all 4,j. This is denoted as
[aij ]S [bij].
(2) the soft matriXc;;] is said to be a union dfu;;] and [b;;] if ¢;; = max{a;;,b;;}
for all i, j. This is denoted a;;] = [a;;]U[b;;].
(3) the soft matrixc;;] is said to be aintersection ¢f;,;] and[b;,] if ¢;; = min{a;;, bi;}
for all i, j. This is denoted a;;] = [a;;]N[b;;].

3. COMPLEMENTS AND DIFFERENCEPRODUCTS OFSOFT MATRICES

Before we introduce difference products in four different types, we defiwemplement
of a soft matrix which will allow us to benefit.

From now on, the soft matrix correspondingfa which is a soft set ovel/ will be de-
noted by[F4] = [a;;].

Complements of Soft Matrices

In this section, we introduce two type complements of soft matrices and their concerned
properties.

Definition 3.1. [8] Let F4 = (fa, F) be a soft set ovet/. Then the soft sef’{ =
(fa,E) = (f5, E) is called acomplemenbf F4, wheref§ : E — P(U) is a mapping
such thatf§(z) =U \ fa(x)forall z € E.

Definition 3.2. LetF)y = (fa, E) be asoft setovdy. Thenthe softsdty* = (fa, £)** =
(f3*, E) is called aA-complemenbf F 4, wheref3* : E — P(U) is a mapping such that
D(@)=U\ fa(x)forallz € A. (x ¢ A= fi*(z) = 0).
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Example 3.3. Assume that the set of alternativedlis= {u1,us,us,us} and the set of
parameters isF = {e1,es,€e3,e4,€5,e6}. Let A = {e1, e3, eq, 5}, and then the soft set
Fy = {(e1,{uz,us,us}), (e3,0), (e, {u1}), (es,U)}. So, we obtain the complement of
this soft set a§7A = {(61, {ul}) (62, ) (63, U), (647 {Ug, us, U4}), (65, @), (66, U)} and
the A-complement of this soft set &§* = {(e1,{u1}), (e3,U), (ea, {uz, us, us}), (e5,0)}.

Definition 3.4. [9] Let [F4] = [ai;] € SMyxn. The soft matriXc;;] is said to be a
complement ofa,;] if ¢;; =1 —a;; forall j € 1,2,...,n. Itis denoted byc;;] = [a;;]°.
Definition 3.5. Let AC E ={e; : 1 < j <n},Ia = {j:e; € A} and[Fa] = [a;5] €
SMpyscn. If
o 1—aij, iijIA

‘= o if jé I
then the soft matrixc;;] is said to be and-complement ofa;;]. It is denoted byc;;] =
[a;;]°
Example 3.6. Consider soft set’s given in Example 3.3. The soft matrix corresponding
to Fy is

00 0 1 1 0
Fd=lsl= 1 5 5 0 1 o
1 0 00 1 0
Then we obtain
1 11 0 0 1
o —iegr=| 1110 ]
01 1 1 0 1
1 01 0 0 O
S IR
0O 011 00
Proposition 3.7. [9] Let[F4] € SM,x»n and[Gg] € SM,,xn. Then
) ([Fa]©)® = [Fa]
i) [0]° = [1]
iii) [Fa]N[Fa]® = [0]
iV)[ AJU[FA]° = [1]
V) ([Fa]U[GB])® = [Fa]N[GB]°
Vi) ([FAlN[GB))° = [FalU[G Bl

Proposition 3.8. Let[F4] € SM,x @and[Gp| € SM,;,x». Then
) ([Fa]e4)es = [Fa]

i) 0] = [1a]

i) [Fa)Q[Fa]*t = [0]

'V) [FAlO[Fa]* =[1a]
FA}CAO[GB] = ([Falu[Gp])*2n®

V) [
VI) [FA ¢ Q[FA}
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Proof. Considel|F'a] = [ai;] € SMyxn and[Gg| = [b;;] € SMyxn.
i) Let([Fa]®*)°4 = [c;;]. From Definition 3.5, we write

_ { 1—(1—ay), if j€la

€ij 0, if j ¢ Ix
N gy if jely
B 0, if j¢1a

forall 1 < i < m. Thereforec;;] = [Fa].
ii) Let[0]°4 = [c;;]. From Definition 3.5, we write
[ 1-0, if jeIn
“i = 3o, if ¢ I,
forall 1 < i < m. Thereforelc;;] = [14] from Definition 2.7.
iii) Let[F4]N[Fa]°4 = [¢;;]. From Definitions 2.8 and 3.5, we write

o min{ai;, 1 —a;;}, if j€la
G =\ min{a,0}, if j¢ls
o fo0, ifjely
T ¢l
= 0

for all ¢ andj. Thereforelc;;] = [0].
V) Let[F4]U[F4]4 = [c;;]. From Definitions 2.8 and 3.5, we write

o maz{a;j, 1 —a;;}, if jela
. max{0,0}, if j¢1a
1, ifjels
= o0, if ¢l

forall 1 < i < m. Thereforec;;] = [14] from Definition 2.7.
V) Let [F4]°4N[Gp]°E = [ci;] and([Fa]U[Gg])¢4nE = [d;;]. From Definitions 2.8 and

3.5, we write
min{l —a;j,1 —b;;}, if j€ Isnp
B min{l — a;;,0}, if j€lag
i = min{0,1 by},  if j€Ipa
0, if j¢Iaun
min{l —a;;,1 —b;;}, if j € Isnp
{ 0, if ¢ Lang
3. 1)
and
4. - { 1 —max{a;j, bij}, if j€lan
t 0, if j¢ Ianp
B min{l —a;j,1 —b;;}, if j € Ianp
= { 0, if jd Ianp

3. 2)
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forall 1 < ¢ < m. Thereforec;;] = [d;;] from (3. 1) and (3. 2).
vi) Let[Fa]°4 = [¢;;] and[F4]¢ = [d;;]. From Definitions 3.4 and 3.5, we write
o 1—aij, iijIA
“i =1 o, if j¢ Iy
andd;; =1 —aqy; forall1 < j < n. Hereifj ¢ I4, thenc;; = 0 andd;; = 1 since
a;; = 0. Therefor€lc;;]C|d;;] from Definition 2.8.

Difference Products of Soft Matrices

In this section, four new soft matrix operations called soft difference product, soft restricted
difference product, soft extended difference product and soft weak-extended difference
product are defined.

Definition 3.9. [8] LetF4 anciGB be soft sets over the universe BetThen, soft difference
of F4 andG g denoted by'4,\G = Hg is a soft set defined as

H(z) = F(z) \ G(x)
forall z € F.
Proposition 3.10. [8] Let F/4 and G be soft sets over the universe &etThen,
FA\Gp = FANGS,.
Definition 3.11. Let[F4] = [a;;], [GB] = [bij] € SM,xn. Softdifference product ¢F 4]
and|[G ] denoted b)['FA]\[ B| = [¢i;j] € SMp, %y, is defined ag;; = min{a;j,1 — b;;}.

A soft setF, is uniquely characterized by the soft matfiX4] and vice versa. The fol-
lowing theorem shows that this is valid for the difference operation of soft sets and the
difference product of soft matrices.
Theorem 3.12. Let F4, andG g be two soft sets on the universe BetThen,
[Fa\[GB] = [Hc] < Ho = Fa\Gp.
Proof. Let [F4] = [as5], [G] = [bi;]. By Definition 3.11,[aij]§[bij«] = [c;;] where
Cij = min{aij,l — b”} It is clear that[a”]ﬁ[b”]c = [cij}- Then, we haV@HC] =
[cij] & He = FANG$ = F4\Gp by Proposition 3.10.

Theorem 3.13. Let F)4, G and H¢ be three soft sets on the universeBefThen,
) [Fal\[Fa] = [0]

i) [Fa]\[0] = [Fa]

i) [Fa]\[1] = [0]

V) [L\[Fa] = [Fa]®

V) [0)\[Fa] = [0]

Vi) [Fa\[Fal® = [Fa]_

vii) [FAN[G 5] = [GBI\[Fa] & [Fa] = [G]

viii) ([FaNGB)AHe] = (FaIAHE)\ (G IR [He))
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ix) [FAIR((Ga]\[He]) = (FARIGB)\(IFalN[Ho))
X) (Fa\[Ga)\[He] = ((Fa\[HD\(G B\ [He))

Proof. Let [FA] = [aij} [GB] = [b7j] and[ ] [CZJ]

i) Let [F4]\[Fa] = [di;]. Then,d;; = min{a;;,1 — ay;} = 0 for all i, j. Therefore
[dij] = [0].

ii) Let[Fa]\[0] = [di]. Then,d;; = min{a;;,1} = a,; for all 4, j. Thereforeld;;] =
[Fal.

i) Let[F ]\[1} = [d;;]. Then,d,;; = min{a;;,0} = 0 for all ¢, j. Therefordd;;] = [0].
iv) Let[l ]\[FA] [di;]. Then,d;; = min{l,1 —a;;} = 1 — a;; for all ¢, j. Therefore

[dw] —JFA} :

v) Let [0]\[F4] = [di;]. Then,d;; = min{0,1 — a;;} = 0 for all 4,j. Therefore
[dij] = [0].

vi) Let [Fa]\[Fal]® = [di;]. Then,d;; = min{a;j,a;;} = a;; for all 4,;. Therefore
[dij] = [Fal.

VII) =: Let [d”] = [FA]Y[GB] = [GB]\V[FA] = [eij]. Then,dij = min{aij, 1-— b”} =
min{b;;,1 — a;;} = e;; for all ¢ andj. Thereforea;; = b;; for all + and j, so

[Fa] = [Gs].
<: Itis clear. N
viiiy Let ([F4]\[Gg])[Hc] = [di;] and([FAlA[Ho)\([GIA[HE]) = [e4].
For alli, j
dij = main{min{a;;j,1 —b;}, ci;}

= min{min{a;, c;;},1 — min{b;j,c;;}}
= e’ij

Thereforeld;;] = [e;;].
ix) The proof can be proved similarly to proof of (viii).

X) Let ((FANGB)\[He] = [dij] and((Fa\[HOD\((GEN\[He]) = [ei]

For alli, j
di; = min{min{a;;,1 —b;;},1—ci;}
= min{min{a;;,1 —c;;},1 —min{bi;,1 — c;;}}
= 62']'
Therefore[d;;] = [ei;].

Definition 3.14. Let F4 andGpg be soit sets on the universe $&t Then, soft restricted
difference off’4 andG  denoted by'4\, .G = Hp is a soft set defined as

H(x){ Fx)n(U\G(z)), if z€B

if ¢ B
Proposition 3.15. Let F/4 and G be soft sets on the universe §&tThen,
Fa\,Gp = FANGS.

)
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Proof. Let FAKTG g = Hg. Then, we can write

F)n(U\G(x)), if z€B
H(:”)_{(Z), if ¢ B

Also, IetFAﬁGCBB = Ig. From Definition 3.2, we can write

[ F(z)n(U\G(x)), if z€B
I(:):)—{@’ if ¢ B

ThereforeH (x) = I(z) forall z € E.

Definition 3.16. Let[Fa] = [ai;], [GB] = [bij] € SM,,xn and letip = {j : e¢; € B}.
Soft restricted difference product 4] and [Gg] denoted by[Fa|\,[GB] = [cj] €
SM,,«n is defined as

—_f min{a;;, 1 —by}, if jelp
“i= o, if j¢lIp

Theorem 3.17.Let F4, andG g be two soft sets on the universe EetThen,
[Fa\[Gs] = [He] & He = Fa\,Gp,

Proof. Using Definition 3.14, Proposition 3.15 and Definition 3.16, it can be proved similar
to Theorem 3.12.

Theorem 3.18. Let F4, Gg and H be three soft sets on the universeBefrhen,

) [Fal\.[Fa] = [0]
i) [Fa]\,[1a] = [0]
i) 1)\, [Fa] = [Fa]*
iv) [0]\,.[Fa] = [0]
V) [Fa]\,[Fa]d = [F4]
Vi) [Fa]\,[GB] = [GB]\,[Fa] & [Fa] = [GB]
H,

Proof. Let [F4] = [asj], [Gg] = [bi;] and[H¢| = [ci;]-

i) Let[Fal]\,[Fa] = [di;]. Then, from Definition 3.16 we write
g min{ai;, 1 —a;;}, if j€la
v 0, if j¢la
= 0

for all ; andj. Thereforeld;;] = [0].
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i) Let[F4]\,[14] = [d;;]. Then, from Definition 3.16 we write

d: = min{aij,l—l}, if jEIA
T o, if ¢ Ia
(o0, ifjels
= 0, if j¢ls

= 0

for all ; andj. Therefored;;] = [0].
iii) Let [1]\,[F4] = [di;]. Then,

dij

{ min{l,1 —a;;}, if j€ly

0, if ¢ Ia
B 1—aij, iijIA
= 1o, if ¢ Ia

forall 1 < i < m. Therefored;;] = [Fa]°*.

iv) Let[0]\,[Fa] = [di;]. Then,

d. = min{O,l—aij}, if YRR
W =\ o, if ¢ 1
= 0

for all ¢ andj. Thereforeld;;] = [0].

V) Let [F4]\,[Fa]®* = [di;]. Then,

A min{aij, aij}, if j € la
i = 9\ o, if ¢ Ia
. Qjjs if ] S IA
T\, ifj¢la

forall1 <i < m. Thereforeld;;] = [Fa].
vi) =:Let[di;] = [Fa]\,[GB] = [GB]\,[Fa] = [e;]. Then,

g = [ ominfag1=bgY, i jels _ [ min{l —ai;,by}, i € ls
CE if j¢Ip — |0, if j¢Ia

= ejj

forall forall1 < ¢ < m. Itis possible iff4 = Ip anda;; = b;; for all 4, j, so

[Fa] = [GB].
«: Itis clear.
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vii) Let ([Fa]\,[GB])N[He] = [dij] and([Fa]N[H)\, ([GIN[HE]) = [es;]-
Foralll <i<m,

min{min{a;j,1 —b;;},ci;}, if j € Ipnc

min{min{a;;, 1 —b;;},0}, if j€ Ip¢

dij = min{0, ¢}, if j€lng
0, if j¢ Ipuc
_ { min{min{a;;,1 —b;;},ci;}, if j € Ipnc
o 0, if j¢ Ipnc
{ min{min{a;;,c;; },1 —min{b;j,c;i;}}, if j € Ipnc
0, if j¢ Ipnc
(3.3)
and
_ min{min{a;j, c;;},1 — min{b;j,c;;}}, if j € Ipnc
G = { 0, if jé Ipnc
(3. 4)

We obtain[d,;] = [ei;] from (3.3 )and (3. 4). _
viii) Let [FAJN([GB]\,[Hc]) = [di;] and ([FAIN[G )\, ([FalN[Hc]) = [ei;]. For all

1<i<m,
d. = min{aij7min{bij, 1-— Cij}}; if J € Ic
A 0, if j¢l1c
_ min{min{a;;, b;; }, min{a;;,1 —¢;;}}, if j€lc
o 0, if j¢lIc
o min{min{aij, bij}, 1-— min{aij, Cij}}, if jelec
o 0, if j¢lIc
(3.5)
and
o min{min{a;;, b;; },1 — min{a;j,c;;}}, if j € Ilc
“T o, if j¢lo
(3. 6)

We obtain[d,;] = [e;;] from (3. 5)and (3. 6).
iX) Let [F4]\,[GB] = [di;] and[F4]\[GR| = [e;;]. Thenforalll <i < m,
d. = min{aij,l—bij}, if J € Ip
i 0, if j¢lp
ande;; = min{a;;,1 — b;;} forall j. If j ¢ I, thend;; = 0 bute;; = 1 in case of

a;; = 1. Thereforeld,;]C[e;;] from Definition 2.8.

Definition 3.19. Let 4 and G be so~ft sets on the universe $ét Then, soft extended
difference off 4 andG g denoted by'4\ G = Hp is a soft set defined as

H(z) = F(z) U (U\ G(z))
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forall z € E.

Proposition 3.20. Let F/4, and G be two soft sets on the universe EetThen,
FA\.Gp = FAUGS,.

Proof. Let FAXGB = Hp. Then, we can write

H(z) = F(z) U(U\ G(z))
Also, IetFADGfBB = I. From Definition 3.2, we can write

I(z) = F(z) U(U\ G())
ThereforeH () = I(z) forall z € E.
Definition 3.21. Let [F4] = [ai;], [GB] = [bi;] € SMuxn. Soft extended difference
product of[F4] and [G g| denoted byF 4|\ . [Gg| = [ci;| where[c;;] € SM,, ., is defined
asc;; = max{ai;, 1 — b;;}.
Theorem 3.22. Let F4, andG g be two soft sets on the universe BetThen,

[Fal\.[GB] = [Hc] & Ho = Fa\.Gp.

Proof. Using Definition 3.19, Proposition 3.20 and Definition 3.21, it can be proved similar

to Theorem 3.12.

Theorem 3.23. Let F4, G and H¢ be three soft sets on the universeBefThen,

i) [F] ]\ [Fa] = [1]
if) [FA]le[O] = [1]
i) [Fa]\[1] = [Fa
V) [1\[Fa] =[1]
V) [0\ [Fa] = [Fa]°

Vi) ([Fa]\[GB])® = [GB]\[Fa]

viily [Fa]\ [GB] = [GB]\.[Fa] < [Fa] = [GB]

X) ([Fa)\.[GB])U[Hc] = ([Fa]U [Hc])\ ([GB]U[HC))
X) [FAlO(GB)\ [Hc]) = ([Fa]0 [GB])\ ([Fa]0[HC))

xi) ([Fal\[GB)\[He] = ([Fal\[HoD\.(IGp]\[He])
Proof. The proof can be seen similarly to proof of the Theorem 3.13.

Definition 3.24. Let Iy, and G be soft sets on the universe €&t Then, soft weak-
extended difference @4 andG g denoted by's\ ,Gp = Hp is a soft set defined as

Fz)U(U\G(x)), if z€B
H(“’):{ Fz), it ¢ B

Proposition 3.25. Let 4 and G g be two soft sets on the universe EetThen,
Fa\,Gp = FAUGS2.

Proof. Using Definitions 3.2 and 3.24 , it can be proved similar to Proposition 3.15.
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Definition 3.26. Let [F4] = [a;5], [GB] = [ i;] € SM,xn. SOft weak-extended difference
product of[F4] and [G g] denoted b)[au]\w [bij] = [cij] € SMpxn is defined as

o maa:{aq;j,lqu;j}, lf jGIB
Cij = Qg if J ¢ IB
Theorem 3.27.Let F4, andG g be two soft sets on the universe EetThen,
[Fal\,,|GB] = [Hc] & He = Fa\,,GB.

Proof. Using Definition 3.24, Proposition 3.25 and Definition 3.26, it can be proved similar
to Theorems 3.12.

Theorem 3.28. Let F4, Gg and H be three soft sets on the universeBefrhen,
) [Fa]\,[Fa] = [14]

i) [Fal\,,[La] = [Fa]
i) [1]\ [Fa] = [1]
IV) 0]\, p[Fa] = [Fa]™
[FA]\ [Fa]®t = [Fa]
vi) [FA]\ [G] = [GB)\,,[Fa] & [Fa] = [GE]
vii) ([Fa ]\w[GB])G[HC]:([ }U[Hc])\w([ BlU[Hc))
vili) [Fa]0([G 5]\ [H c)) = ([FAIOIG B)\ ([FalO[H))
ix) [Fal\,[GBIC[Fa]\[GB)

Proof. The proof can be seen similarly to proof of the Theorems 3.13 and 3.18.

4. SOFT DIFFERENCEMAX-Row DECISION MAKING

To construct an effective decision making method, firstly we need to define max-row func-
tion and max-row matrix for a soft matrix.

Definition 4.1. Let[a;;] € SM,,«, be a soft matrix. Theroft max-row functionl/,. is
defined as below:

M'r : SMan — SMlev Mr([aij]) = [fil]
where

i1 = ma. Qi5 (-
fa je{1,27.>.(.,m}{ il

The soft matrix\/,([a;;]) is called amax-row soft matrixof the soft matriXa;;].

Example 4.2. Consider the soft matrija;;] in Example 2.6, max-row soft matrix fof; ;]
is

M, (lai;]) =

— = e

0

By the following definitions, we introduce favorable soft matrix, unfavorable soft matrix,
decision soft matrices and then optimum set, suboptimum set and non-optimum set.
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Definition 4.3. Let[a;;] € SM,x» be a soft matrix. Thefu;;] is called

(1) favorable soft matrix itz;; = 1 implies that the alternative;; satisfies the para-
metere;,

(2) unfavorable soft matrix if;; = 1 implies that the alternative, doesn't satisfy the
parametere;.

Definition 4.4. Let|c;;] € SM,,x, be intersection or union of the favorable soft matrices
and[d;;] € SM,,x, be intersection or union of the unfavorable soft matrices. Then,

1) [ea] = MT([cij]Y[d i/]) is called positive difference max-row soft matrix ayfid] =

M ([di;]\[ci;]) is called negative difference max-row soft matrix.
Here, it can be takeNr \e and\ instead of\

(@) [gi1] = [eil]i[fil] is called positive decision soft matrix affg;;] = [fﬂ]\[e“]
called negative decision soft matrix.

Definition 4.5. Let [g;1] € SM,,«1 be the positive decision soft matrix affl;] €
SM,, 1 be the negative decision soft matrix. Then, the set
(1) opt(U) = {u; : u; € U, g;1 = 1} is said to be an optimum set bf.
(2) sub—opt(U) = {u; : u; € U, g;1 = h;; = 0} is said to be a suboptimum set of
U.
(3) non — opt(U) = {u; : u; € U, hy; = 1} is said to be non-optimum set Gt

Soft difference max-row decision making method selects both optimum alternative(s) and
unlikely alternative(s) from the set of all alternatives. This method is organized as in the
following algorithm:

Step 1: Determine feasible subsets from the parameter set.

Step 2: Create the soft matrix for each of parameter subsets.

Step 3: Using one of the convenient operations suchas U according to the prob-
lem, find favorable soft matrices and unfavorable soft matrices, if possible.

Step 4: Using one of the convenient operations sucl’\é@ \ or\ according to
the problem, find positive difference max-row soft matrix and negative difference
max-row soft matrix.

Step 5: Find positive decision soft matrix and negative decision soft matrix.

Step 6: Obtain an optimum set dff (suboptimum set ot/ if the optimum set is
empty) and non-optimum set 6f.

Now, we apply this algorithm for a decision problem by using the soft weak-extended
difference product,.

Example 4.6. Assume that there are six candidates who apply for the empty position of
a company. And there are two business partner of this company who are decision mak-
ers. Let the set of candidates be= {u1, us, us, u4, us, ug } Which is characterized by a

set of parameter® = {e1, es,e3,¢4,€5}. Fori = 1,2,3,4,5, the parameterg; stand

for “young age”, “experience”, “having good references”, “computer knowledge” and
“knowing foreign languages”.

The first decision marker investigates eligible candidates and the second one investigates
noneligible candidates.
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When each partner selects the parameters from the parametérl, se¢ can apply the soft
difference max-row decision making algorithm as follows:

Step 1:To evaluate the candidates, the partners consider set of paraméterge,, es, e, e4}
and B = {es, e3,e4}, respectively. The partners generate the following soft sets over the
universe set/ with respect to their parameters, respectively.

Fa = {(e1,{uz,us,ue}), (e2, {ur,us, ug}), (€3, {ua, us, ue}), (ea, {uz, ua, ue})},

Gp = {(e2,{u2, u3,us,us}), (es, {ur, us}), (es, {ur, us, us})}.

Step 2:For the soft setd’y andG g, the following soft matrices are created respectively.

01 0 0 O 00 1 1 0
1 01 1 0 01 0 0 O
0O 01 0 O 01 0 1 0
[Fal=lagl=1 ¢ 1 o 1 o |@9dGel=0bsl=1(y 1 o o 0
1 0 0 0 O 01 1 1 0
1 1 1 1 0 00 0 0 O

Step 3:The matrix of the first decision makgr;;] is a favorable soft matrix and the ma-

trix of the second decision maki;] is an unfavorable soft matrix since the first decision
marker investigates eligible candidates and the second one investigates noneligible candi-
dates.

Step 4: Using the soft weak-extended difference product, we find the positive difference
max-row soft matrix and the negative difference max-row soft matrix as

1 1
1 1
N 1 N 1
[ein] = My (laiz]\, [bi]) = | | | and[fa] = M ([bi]\, laig)) = | |
0 1
| 1] 0
Step 5:We obtain the positive decision soft matrix and the negative decision soft matrix as
[0 ] 0
0 0
< 0 < 0
[9i1] = [ea]\[fi] = 0 and[hi] = [fiu]\[ea] = 0
0 1
1| 0

Step 6:Now we can find an optim_um set and a non-optimum s&t of
opt(U) = {ue}
whichug is an optimum candidate for the empty position of the company. Also,
non — opt(U) = {us}
whichus is an unlikely candidate for the empty position of the company.
In this example, if we use soft restricted difference product instead of soft weak-extended

difference product, then we obtaipt(U) = {us,us}. This doesn't give a definite result,
because only one candidate will be preferred.
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5. APPLICATIONS ONBENCHMARKING PROBLEM

Benchmarking means that a company ,in order to increase competitive power, examines
other companies that have superior performance and these companies’ techniques of doing
business, as well as compares their own techniques and applies in their own companies the
knowledge gained from this comparison. The benchmarking agreement is also an agree-
ment to ensure the continuation of this benchmarking. Thus, the benchmarking companies
can constantly monitor developments in the topic of benchmarking in other companies.

In order to better understanding of the following examples, let us first give the benchmark-
ing types and their benchmarking processes.

] Benchmarking Types \

(i) Benchmarking according to the focusedii) Benchmarking according to the fg
partner(s) cused topic(s)

Benchmarking Process: Bechmarking Process:

1. Determine partner(s) for benchmarkingl. Determine topic(s) of benchmarking
2. Construct benchmarking team by speck. Construct benchmarking team by speci-
fying tasks fying tasks
3. Determine topic(s) of benchmarking | 3. Determine partner(s) for benchmarking
4. Obtain necessary data and analyze | 4. Obtain necessary data and analyze
5. Apply method and evaluate results | 5. Apply method and evaluate results

5.1. An example on benchmarking problem according to the focused partner

Assume that a comparly operates in six different business areas. The set of these business
areas idJ = {uy, us, us, ug, us, ug , Whereu,; (1 < i < 6) stand for “textile raw material

LIS "o

production”, “electricity distribution services”, “designing of safety systems”, “automo-
tive spare parts production”, “manufacture of cleaning articles” and “production of elec-
trical household appliances”, respectively. Another companywhich operates in the
same business areas, appoints three benchmarker to make benchmarking agreement with
the companyy”.

First benchmarker investigatpssitiveaspects in terms of production of compariy

Second benchmarker investigapesitiveaspects in terms of staff of compahy

Third benchmarker investigates all of thegativeaspects of company .

For this case, leff = {ej,eq,...,e24} be a set of all parameters which is determined
by benchmarkers. These parametegs;raw material coste,=raw material procurement,
ez=advertising revenues of produet,=profitability, es=inventory controleg=collection,
er=optimum number of stafgg=relationship between objectives and resuls;staff mo-
tivation, e;g=market shareg;;=production ratee;,=product designg;z=storage con-
trol, e;4=production coste;s=production of multiple choice ¢;g=quality management,
er7=management style;s=amount of daily productiorg;g=customer delightg,o=distri
bution of productsgs; =technology systemssys =internal control mechanisms,s=positive
competition of staffe,,=staff efficiency.

When each benchmarker selects the parameters from the paraméiewseatan apply the
soft difference max-row decision making algorithm as follows:

Step 1: The benchmarkers determine the parameter subsets as follows, respectively
A= {61,82763,64,65,66,67768,610,611,612,615,618761976207621},

B = {e4,e7,€3,¢€9,€11, €14, €16, €17, €19, €21, €24 } and



Difference Operations of Soft Matrices with Applications in Decision Making 17

C= {61762,63,65,66,67,69,610,611,612,614,616,617,6187619,620,621,623,624}-

As a result of research, they obtain their soft sets as follows:

Py = {(61, {ul,ug,m—,,u@}), (627 {UQ,US,U4,U57U6}), (63, {u5vu6})7 (64, {U17U3,U5}),
(65, {u27 us, us, uﬁ})a (667 {u17 Uy, uﬁ})a (677 {ula us, uq, U5}), (687 {u2a Ug}),

(€10, {u1, u2, ug, us, ug}), (€11, {uz, ua, us}), (e12, {u1, us, us}), (15, {ur, us, us, ug}),
(6187 {U1,U4,U6}), (619, {u17u2,u5,uﬁ}), (620, {1437U57U6}), (621, {Ul,u4})},

GB - {(64, {ula U2, ’LL5})7 (673 {ulv Ugq,Us, uﬁ})a (687 {u27 Ug}), (697 {ula U2, Ug, uﬁ})a
(6117 {U1,U4,u5}), (6147 {U17U2,U4;U6})7 (6167 U)> (6177 {U1,U27U4,U5})7

(€197 {ula U2, Uy, u5})7 (6217 {’LLQ, U4})(€24, {Ul, u5})}1

HC = {(617 {uQa Uy, 'LL5}), (627 {ula u6})}, (633 {u27 ’U,3}), (647 {UZ, us, Uﬁ}),

(65; {U], Uy, u6})7 (667 {’UQ, usz, Uyq, U5}), (677 {u27 us, Uyq, ’U,5}), (69, {’U,h Ug}),

<6107 {ula u3})a (6117 {U'17 Uq, U5}), (6127 {ula Uy, u5})7 (6147 {U5, uﬁ})a (elﬁa {u27 UG}),
(6177 {U2,U3,U5})a (6187 {u1>u37U6})a (619a {u17U27U4,U57U6})a (620a {u17u4}),

(€21, {u1,us, us}), (€23,0), (€24, {ur, us, ue})}.

Step 2: For the soft set$'4, G and H¢, the following soft matrices are created respec-
tively.

Pl = [ai]= 3
100101 1001010WO0OT1O0O0T1T1TUO0OT1O0TO00O0
110 010 0101 10O0OO0OO0OO0OUO0OO0OT1IUO0TGO0O0OTO0OTUO
0101 10110O0O0O01O0O0T1TO0SO0TO0TO0OT1TTO0O0TGO0OTO0
0100011001 10O0O0T1O0O0T1O0O0T1TQO0TQO0O0%
11111 010O0O011O0O0OTO0OO0OO0OO0OO0ODI1IT1TO0O0OTGO0ODODO
111011 0O0O0O01O01W0O0OT1O0OO0OT1T1T1TO0TGO0OTO0OTUO0

Ks] = [bi;]= 3
o o0o010010101o001O01 10100001
000100O0O1100O0O0T1IO0T1T1SQO0OT1TSO0T1QO0OTUO0O0
o 0o oo o0 0010 00O0O0O0O0OO0O11TO0O0O0OO0OO0OUO0OTUO0OTO
o oo0oo0o00101010©01H0T1T1W01O01000%
00010O010O0OO0OT1QO0O0OO0OSO0OT110T1O00UO0TUO01
o 0o oo 001010000101 0 00 0 0 000

and

Plc] = [cij]= 3
01001000111 10O0O0O0O0O0O0DT1T1T11U001
101101 100O0O0O0O0O0OO0ODT1T1QO0T1QO0TU0TGO0TUO0O0
o 01 o011o01100O0O0O0O0O0O01TT1TQO0TO0T1UO0TGU0SFTUO0
1P 00011 100O011O0O0O0O0O0O0OO0O0DI1T1TT1O001
100101 100O0T1T1QO0T1O0O0T1TSQO0T1TUO0OUO0O0TO0O0
0101 10O0O0OO0OOO0OO0OSO0ODL1TO0T1TO0T1TT1TO0OTG0LUOO0OTI1

Step 3: Using the soft intersection, we obtain the favorable soft matrix

il = lai;]@[bi;]= 3
o 0o o1 001 00 0O0O0OOO0OO0OO0OOOOGOT1TO0OTO0OUOTGOTOQO
o 0o oo ooo 100O0O0OO0O0OO0O0O0OO0OO0ODOT11TO0OTGO0OO0OTGO0OTO0
0 00O0OO0OOOT1O0O0OUO0OUOO®OO0OO0O0OOOO0OO0O0O0 0
o 0o oo 001 o001 00 0O0OO0OO0ODO0OOO0OT1TTUO0OTUGO0OSTO
o 0010010 O0O0O1O0O0O0O0OO0OO0OO0OT1UO0O0O0UO0TO0
0 00O0OOOOOO0OOUOUOO®OO0OO0UO0UO0OO0TO0O0O0O0 0

and the unfavorable soft matrix
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i]=

& o1 001o0OWO0OT11T11T1T0O0O0WO0OO0DT11TT1TT1TTI1TOo0U01 3
1 011011 0 OO OOOOOT1TT1O0OT1O0UO0UO0TUO0OSFO0
o o1 o o011 011 00O0OO0OO0OO0OI11TT1TOWDO0OTGO0OTI1TTUO0OTO0OSFUO0
1 0 0o 061 11200011 00O0O0OO0ODO0ODI11TT1TT1TU001
1 0 061 061 10 0O0O1 1 01 0O0OT1TO0OT1O00UO0 00
o1 01 1 0 O0OOOOUOOOI11TUO0OTI1TSO0OT1T1TO0O0UO0O0 1

Step 4: Using the soft restricted difference product, we find the positive difference max-
row soft matrix and the negative difference max-row soft matrix as

1

0

leir] = M, ([di]\, [eij]) = M, ([dij)Pleis]°) = 8
0

0

and

1

1

[fir] = My ([ei;)\, [dig]) = M (eij]Adij)ea0) = 1
0

1

Step 5: We obtain the positive decision soft matrix and the negative decision soft matrix
as, respectively

[9i1] = [ea]\[fa] =

and ] = [fi]\[ein] =

OO O oo
— O )k = O

o

Step 6: Since the optimum set df is opt(U) = (), we take suboptimum set &f instead
of the optimum set of/. Then, we obtain

sub — opt(U) = {u1, us}

which v; andus are optimum business areas that can make benchmarking agreement of
the companies andY'.

Benchmarking Process:

1. Determine partner for benchmarking: the company Y

2. Construct benchmarking team by specifying tasks: three benchmarkers

3. Determine topics of benchmarking: the business areas;, us, w4, us andug

4. Obtain necessary data and analyze: the softfsets’ gz and He

5. Apply method and evaluate results: soft difference max-row decision making method
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5.2. An example on benchmarking problem according to the focused topic

Suppose that a company X, which manufactures electronic devices, wants to benchmark
company'’s latest version computer with the latest version computers of five companies
which are sold cheapell = {u1, us, us, us, us } is the set of the latest version computers

of five companies. The company determines the set of benchmarking paramefiees as

{e1 = quality of material,ea = product design,es = product advertising,eqs =
technological specifications,es = service facilities,eq = product distribution}.

Also, the company appoints four benchmarkers to make benchmarking agreement with one
of these companies.

First and second benchmarkers investigate the latest version computers of five companies
that have featuresetterthan the latest version computer of compaty

Third and fourth benchmarkers investigate the latest version computers of five companies
that have featuresorsethan the latest version computer of company

When each benchmarker selects the parameters from the paramétewseatan apply the

soft difference max-row decision making algorithm as follows:

Step 1: The benchmarkers determine the parameter subsetsasB = C = D =
{e1,e2,e3,¢e4, €5, €6}, respectively. As a result of research, they obtain the soft sets as
Fy= {(617 {u27 U3}), (62’ {uh ’LL5}), (637 {u27 U4, US})’ (647 {uh us, U4})7

(es,{u1,us, us}), (€6, {uz, ua})},

Gp = {(617 {UQ’ U3}), (62, {ula us, u5})7 (63’ {u17 U2, U5}), (847 {u17 usz, U4}),

(es, {u1,uz, us}), (es, {uz, us})},

He = {(617 {ul’ U4, U5}), (627 {U3}), (637 {Uh ’LL3}), (64’ {u27 Ug, u5})v (657 {u37 U4})7

(66, {uh U5})},

Ip = {(e1,{ur,ua,us}), (e2, {uz, ua}), (€3, {ur, ua}), (e, {uz, ua}), (es, {us, us}),

(eg, {u1,us})}.

Step 2: For the soft set$'y, G, He, Ip, the soft matrices are obtained respectively.

010110 01 1 110
1010 0 1 10100 1
[Fal=lag]=| 1 0 0 1 1 0 [,[Gel=1]by]=| 1 1 0 1 1 0
001101 000100
0110 10| 011011
10 1 0 0 1] 10100 1
000100 01 0100
[He]=lcyl=| 0 1 1 0 1 0 |,[Ip]=1[dij]=| 0 0 0 0 1 0
100110 111110
10010 1] 10000 1

Step 3: Using the soft intersection, we obtain the favorable soft matrix and the unfavorable
soft matrix as follows, respectively.

01 0110 1 01 0 0 1
1 01 0 0 1 00 0 1 00
[aij]ﬁ[bij]: 1 0 01 1 0 and[cij}ﬁ[dij]: 0 0 0 0 1 0
00 0 0 O0O0 1 0 01 1 0
011010 1 0 0 0 0 1
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Step 4: Using the soft difference product, we find the positive and negative difference
max-row soft matrices as

1
1
lein] = Mi(([ai;]N[bis])\([ci5]N[dis))) = é ;
| 1
and
1
N _ _ 1
[fir] = My (([ei5]N[dis])\([aij]N[biz])) = | O
1
|1
Step 5: We obtain the positive decision soft matrix and the negative decision soft matrix as
0 0
_ 0 _ 0
9] = [ea\[fir] = | 1 | and[hi] = [fu]\lea] = | O
0 1
0 0

Step 6: Consequently, we have an optimum set and a non-optimum $étsffollows:
opt(U) = {us}
whichug is an optimum company that can be made benchmarking agreement.
non — opt(U) = {us}

whichu, is an unlikely company that should not be made benchmarking agreement.
Benchmarking Process:

1. Determine topic of benchmarking: the latest version computer

2. Construct benchmarking team by specifying tasks: assigned four benchmarkers

3. Determine partners for benchmarking: the compamnies,, us, uy andus

4. Obtain necessary data and analyze: the softiseté’ 5, Ho andip

5. Apply method and evaluate results: soft difference max-row decision making method

6. CONCLUSION

Soft set theoretical structures are made more practical and efficient through the soft matri-
ces. This shows itself in applications, as well. Relatedly, we introduced novel soft matrix
operations called soft difference product, soft restricted difference product, soft extended
difference product and soft weak-extended difference product. We constructed a practical
novel decision making algorithm via these soft operations. Then, we applied this algorithm
to solve three different problems. In the first example, a company determines a candidate
which is an optimal for empty position, the other examples are benchmarking problems
according to the focused partner and topic. Eventually, our method can successfully be
applied to solve problems involving uncertainties.
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