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Abstract. In this work, we give four new soft matrix operations called soft
difference product, soft restricted difference product, soft extended differ-
ence product and soft weak-extended difference product and obtain their
related properties. We then define soft max-row function, positive differ-
ence max-row soft matrix and negative difference max-row soft matrix.
Using these, we construct novel efficient decision making method which
determines both the optimal choice and the unlikely choice. We applied
to the decision making problems based on benchmarking in order to show
that our method performs well with uncertainties.
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1. INTRODUCTION

There are many mathematical tools such that the fuzzy set [32], the vague set [14], the
rough set [25] and the interval mathematics [16] in order to describe uncertainty. Since
these theories require the pre-specification of some parameters, Molodtsov [24] proposed
the soft set theory to model uncertain, fuzzy, not clearly defined structures in 1999. There
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are no limited conditions to the depiction of objects in soft set theory, therefore the re-
searchers can choose the parameters in any form they need. This situation simplifies the
process of decision making and also makes more efficient in the partial lack of information.
Since introduction of the operations of soft sets [22], a rich literature on the properties and
practice of the soft set theory was developed [3, 17, 21, 26, 28, 31]. The algebraic and
topological structures of soft set theory were studied in details [1, 2, 4, 6, 12, 19, 27, 29].
Many authors developed decision making methods by utilizing the soft sets and also ap-
plied them to the decision making problems in several fields. Maji et al. [23] studied the
soft sets based on the decision making. In [10, 20], they presented the reduction of soft
set parametrization and the algorithm of parameter reduction, which can be used in various
decision making. Çãgman and Enginõglu [8] described the products of soft sets and the
function ofuni − int decision. They presented auni − int decision making procedure,
which obtain a set of optimal objects from the alternatives. Feng et al. [13] constructed
novel decision making methods which is calleduni − intk, uni − intts andintm − intn

decision making. In[15, 30], the notions of bijective soft set and exclusive disjunctive soft
set were introduced. Then, these structures were applied to the decision making and the
information systems. Çetkin et al. [11] introduced the inverse soft sets, and also they
showed that this notion is quite efficient in the decision process. Soft matrices and their
related operations were defined for the first time in [9]. Subsequently, they utilize these
soft structures to construct novel decision making methods. In [5], the products defined in
[9] were generalized for soft matrices in different types. Kamacı et al. [18] introduced the
row-products of soft matrices. With the help of the generalized products and row-products,
novel decision algorithms was created. Basu et al. [7] published a study on the addition
and subtraction of soft matrices.
In [8], the soft difference operation of two soft sets was defined. In this paper, we first
define the operations of soft difference product, soft restricted difference product, soft ex-
tended difference product and soft weak-extended difference product for the soft matrices.
These operations have several advantages in solving various decision making problems.
We define soft max-row function, positive difference max-row soft matrix and negative dif-
ference max-row soft matrix. Then, we propose a new decision making model called “Soft
Difference Max-Row Decision Making” using these concepts. Finally, we give three ex-
amples that one of them is a decision making problem and the others are the benchmarking
problems with respect to the focused partner and topic.

2. PRELIMINARIES

Molodtsov [24] introduced the idea of soft set in the following manner:

Definition 2.1. ([24]) LetU be an initial universal set,P (U) be the power set of the setU ,
E be a set of parameters andA ⊆ E. A soft set(F, A) is a set of ordered pairs given by

FA = {(x, F (x)) : x ∈ E, F (x) ∈ P (U)}
whereF : E → P (U) such thatx /∈ A ⇒ F (x) = ∅.
A soft set(F,A) can also be represented asFA.

Definition 2.2. [8] Let FA and GB be two soft sets over the universe setU . Then,soft
unionof FA andGB denoted byFA∪̃GB = HE is a soft set defined by
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H(x) = F (x) ∪G(x)
for all x ∈ E.

Definition 2.3. [8] Let FA and GB be two soft sets over the universe setU . Then,soft
intersectionof FA andGB denoted byFA∩̃GB = HE is a soft set defined by

H(x) = F (x) ∩G(x)
for all x ∈ E.

Definition 2.4. [8] LetFA andGB be two soft sets over the universe setU . Then,FA is a
soft subsetof GB , denoted byFA⊆̃GB , if

F (x) ⊆ G(x)
for all x ∈ E.

Definition 2.5. ([9]) LetFA be a soft sets over the universe setU . Then, the set

RA = {(u, e) : e ∈ A, u ∈ F (e)}
is said to be a relation form ofFA. The characteristic function ofRA is described as

χRA
: U × E −→ {0, 1}, χRA

(u, e) =
{

1, (u, e) ∈ RA

0, (u, e) /∈ RA.

If U = {u1, u2, ..., um}, E = {e1, e2, ..., en} andA ⊆ E, thenRA can be represented as
a table in the following form:

RA e1 e2 . . . en

u1 χRA
(u1, e1) χRA

(u1, e2) . . . χRA
(u1, en)

u2 χRA
(u2, e1) χRA

(u2, e2) . . . χRA
(u2, en)

. . . . .

. . . . .

. . . . .
um χRA

(um, e1) χRA
(um, e2) . . . χRA

(um, en)
If aij = χRA

(ui, ej), the matrix

[aij ]m×n =




a11 a12 . . . a1n

a21 a22 . . . a2n

. . . .

. . . .

. . . .
am1 am2 . . . amn




.

is said to be anm× n soft matrix of the soft setFA overU .

The set of allm × n soft matrices over the universe setU will be denoted asSMm×n.
From now on,[aij ] ∈ SMm×n means that[aij ] is anm× n soft matrix.
By the notion of soft matrix, a soft setFA is uniquely characterized as the matrix[aij ].
This means that a soft set is formally equal to its corresponding soft matrix.

Example 2.6. Let U = {u1, u2, u3, u4, u5} be a universal set andE = {e1, e2, e3, e4}
a parameter set. IfA = {e1, e3} and F : A → P (U), F (e1) = {u1, u2}, F (e3) =
{u2, u3, u4}, then we write a soft set
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FA = {(e1, {u1, u2}), (e3, {u2, u3, u4})}
Also, the relation form ofFA is

RA = {(u1, e1), (u2, e1), (u2, e3), (u3, e3), (u4, e3)}.
Therefore, the soft matrix[aij ] ∈ SM5×4 of FA is

[aij ] =




1 0 0 0
1 0 1 0
0 0 1 0
0 0 1 0
0 0 0 0




.

Definition 2.7. ([9]) Let [aij ] ∈ SMm×n.

(1) If aij = 0 for all i, j, then the soft matrix[aij ] is called a zero soft matrix and this
is denoted as[0].

(2) If aij = 1 for all i, j, then the soft matrix[aij ] is called a universal soft matrix and
this is denoted as[1].

(3) If aij = 1 for all i andj ∈ IA = {j : ej ∈ A}, then the soft matrix[aij ] is called
anA-universal soft matrix and this is denoted as[1A].

Definition 2.8. ([9]) Let [aij ], [bij ] ∈ SMm×n. Then,

(1) [aij ] is a soft submatrix of[bij ] if aij ≤ bij for all i, j. This is denoted as
[aij ]⊆̃[bij ].

(2) the soft matrix[cij ] is said to be a union of[aij ] and [bij ] if cij = max{aij , bij}
for all i, j. This is denoted as[cij ] = [aij ]∪̃[bij ].

(3) the soft matrix[cij ] is said to be a intersection of[aij ] and[bij ] if cij = min{aij , bij}
for all i, j. This is denoted as[cij ] = [aij ]∩̃[bij ].

3. COMPLEMENTS AND DIFFERENCEPRODUCTS OFSOFT MATRICES

Before we introduce difference products in four different types, we defineA-complement
of a soft matrix which will allow us to benefit.
From now on, the soft matrix corresponding toFA which is a soft set overU will be de-
noted by[FA] = [aij ].

Complements of Soft Matrices

In this section, we introduce two type complements of soft matrices and their concerned
properties.

Definition 3.1. [8] Let FA = (fA, E) be a soft set overU . Then the soft setF c
A =

(fA, E)c = (f c
A, E) is called acomplementof FA, wheref c

A : E → P (U) is a mapping
such thatf c

A(x) = U \ fA(x) for all x ∈ E.

Definition 3.2. LetFA = (fA, E) be a soft set overU . Then the soft setF cA

A = (fA, E)cA =
(f cA

A , E) is called aA-complementof FA, wheref cA

A : E → P (U) is a mapping such that
f cA

A (x) = U \ fA(x) for all x ∈ A. (x /∈ A ⇒ fcA

A (x) = ∅).
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Example 3.3. Assume that the set of alternatives isU = {u1, u2, u3, u4} and the set of
parameters isE = {e1, e2, e3, e4, e5, e6}. Let A = {e1, e3, e4, e5}, and then the soft set
FA = {(e1, {u2, u3, u4}), (e3, ∅), (e4, {u1}), (e5, U)}. So, we obtain the complement of
this soft set asF c

A = {(e1, {u1}), (e2, U), (e3, U), (e4, {u2, u3, u4}), (e5, ∅), (e6, U)} and
theA-complement of this soft set asF cA

A = {(e1, {u1}), (e3, U), (e4, {u2, u3, u4}), (e5, ∅)}.
Definition 3.4. [9] Let [FA] = [aij ] ∈ SMm×n. The soft matrix[cij ] is said to be a
complement of[aij ] if cij = 1− aij for all j ∈ 1, 2, ..., n. It is denoted by[cij ] = [aij ]c.

Definition 3.5. Let A ⊆ E = {ej : 1 ≤ j ≤ n}, IA = {j : ej ∈ A} and [FA] = [aij ] ∈
SMm×n. If

cij =
{

1− aij , if j ∈ IA

0, if j /∈ IA

then the soft matrix[cij ] is said to be anA-complement of[aij ]. It is denoted by[cij ] =
[aij ]cA .

Example 3.6. Consider soft setFA given in Example 3.3. The soft matrix corresponding
to FA is

[FA] = [aij ] =




0 0 0 1 1 0
1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 1 0


 .

Then we obtain

[FA]c = [aij ]c =




1 1 1 0 0 1
0 1 1 1 0 1
0 1 1 1 0 1
0 1 1 1 0 1


,

[FA]cA = [aij ]cA =




1 0 1 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0


.

Proposition 3.7. [9] Let [FA] ∈ SMm×n and[GB ] ∈ SMm×n. Then

i) ([FA]c)c = [FA]
ii) [0]c = [1]

iii) [FA]∩̃[FA]c = [0]
iv) [FA]∪̃[FA]c = [1]
v) ([FA]∪̃[GB ])c = [FA]c∩̃[GB ]c

vi) ([FA]∩̃[GB ])c = [FA]c∪̃[GB ]c

Proposition 3.8. Let [FA] ∈ SMm×n and[GB ] ∈ SMm×n. Then

i) ([FA]cA)cA = [FA]
ii) [0]cA = [1A]

iii) [FA]∩̃[FA]cA = [0]
iv) [FA]∪̃[FA]cA = [1A]
v) [FA]cA∩̃[GB ]cB = ([FA]∪̃[GB ])cA∩B

vi) [FA]cA⊆̃[FA]c
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Proof. Consider[FA] = [aij ] ∈ SMm×n and[GB ] = [bij ] ∈ SMm×n.

i) Let ([FA]cA)cA = [cij ]. From Definition 3.5, we write

cij =
{

1− (1− aij), if j ∈ IA

0, if j /∈ IA

=
{

aij , if j ∈ IA

0, if j /∈ IA

for all 1 ≤ i ≤ m. Therefore[cij ] = [FA].
ii) Let [0]cA = [cij ]. From Definition 3.5, we write

cij =
{

1− 0, if j ∈ IA

0, if j /∈ IA

for all 1 ≤ i ≤ m. Therefore[cij ] = [1A] from Definition 2.7.
iii) Let [FA]∩̃[FA]cA = [cij ]. From Definitions 2.8 and 3.5, we write

cij =
{

min{aij , 1− aij}, if j ∈ IA

min{aij , 0}, if j /∈ IA

=
{

0, if j ∈ IA

0, if j /∈ IA

= 0

for all i andj. Therefore[cij ] = [0].
iv) Let [FA]∪̃[FA]cA = [cij ]. From Definitions 2.8 and 3.5, we write

cij =
{

max{aij , 1− aij}, if j ∈ IA

max{0, 0}, if j /∈ IA

=
{

1, if j ∈ IA

0, if j /∈ IA

for all 1 ≤ i ≤ m. Therefore[cij ] = [1A] from Definition 2.7.
v) Let [FA]cA ∩̃[GB ]cB = [cij ] and([FA]∪̃[GB ])cA∩B = [dij ]. From Definitions 2.8 and

3.5, we write

cij =





min{1− aij , 1− bij}, if j ∈ IA∩B

min{1− aij , 0}, if j ∈ IA\B
min{0, 1− bij}, if j ∈ IB\A

0, if j /∈ IA∪B

=
{

min{1− aij , 1− bij}, if j ∈ IA∩B

0, if j /∈ IA∩B

(3. 1)

and

dij =
{

1−max{aij , bij}, if j ∈ IA∩B

0, if j /∈ IA∩B

=
{

min{1− aij , 1− bij}, if j ∈ IA∩B

0, if j /∈ IA∩B

(3. 2)
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for all 1 ≤ i ≤ m. Therefore[cij ] = [dij ] from ( 3. 1 ) and ( 3. 2 ).
vi) Let [FA]cA = [cij ] and[FA]c = [dij ]. From Definitions 3.4 and 3.5, we write

cij =
{

1− aij , if j ∈ IA

0, if j /∈ IA

anddij = 1 − aij for all 1 ≤ j ≤ n. Here if j /∈ IA, thencij = 0 anddij = 1 since
aij = 0. Therefore[cij ]⊆̃[dij ] from Definition 2.8.

Difference Products of Soft Matrices

In this section, four new soft matrix operations called soft difference product, soft restricted
difference product, soft extended difference product and soft weak-extended difference
product are defined.

Definition 3.9. [8] LetFA andGB be soft sets over the universe setU . Then, soft difference
of FA andGB denoted byFA\̃GB = HE is a soft set defined as

H(x) = F (x) \G(x)
for all x ∈ E.

Proposition 3.10. [8] LetFA andGB be soft sets over the universe setU . Then,

FA\̃GB = FA∩̃Gc
B .

Definition 3.11. Let [FA] = [aij ], [GB ] = [bij ] ∈ SMm×n. Soft difference product of[FA]
and[GB ] denoted by[FA]\̃[GB ] = [cij ] ∈ SMm×n is defined ascij = min{aij , 1− bij}.
A soft setFA is uniquely characterized by the soft matrix[FA] and vice versa. The fol-
lowing theorem shows that this is valid for the difference operation of soft sets and the
difference product of soft matrices.

Theorem 3.12. LetFA andGB be two soft sets on the universe setU . Then,

[FA]\̃[GB ] = [HC ] ⇔ HC = FA\̃GB .

Proof. Let [FA] = [aij ], [GB ] = [bij ]. By Definition 3.11,[aij ]\̃[bij ] = [cij ] where
cij = min{aij , 1 − bij}. It is clear that[aij ]∩̃[bij ]c = [cij ]. Then, we have[HC ] =
[cij ] ⇔ HC = FA∩̃Gc

B = FA\̃GB by Proposition 3.10.

Theorem 3.13. LetFA, GB andHC be three soft sets on the universe setU . Then,

i) [FA]\̃[FA] = [0]
ii) [FA]\̃[0] = [FA]

iii) [FA]\̃[1] = [0]
iv) [1]\̃[FA] = [FA]c

v) [0]\̃[FA] = [0]
vi) [FA]\̃[FA]c = [FA]

vii) [FA]\̃[GB ] = [GB ]\̃[FA] ⇔ [FA] = [GB ]
viii) ([FA]\̃[GB ])∩̃[HC ] = ([FA]∩̃[HC ])\̃([GB ]∩̃[HC ])



8 Hüseyin Kamacı, Akın Osman Atagün, Emin Ayg̈un

ix) [FA]∩̃([GB ]\̃[HC ]) = ([FA]∩̃[GB ])\̃([FA]∩̃[HC ])
x) ([FA]\̃[GB ])\̃[HC ] = ([FA]\̃[HC ])\̃([GB ]\̃[HC ])

Proof. Let [FA] = [aij ], [GB ] = [bij ] and[HC ] = [cij ].

i) Let [FA]\̃[FA] = [dij ]. Then,dij = min{aij , 1 − aij} = 0 for all i, j. Therefore
[dij ] = [0].

ii) Let [FA]\̃[0] = [dij ]. Then,dij = min{aij , 1} = aij for all i, j. Therefore[dij ] =
[FA].

iii) Let [FA]\̃[1] = [dij ]. Then,dij = min{aij , 0} = 0 for all i, j. Therefore[dij ] = [0].
iv) Let [1]\̃[FA] = [dij ]. Then,dij = min{1, 1 − aij} = 1 − aij for all i, j. Therefore

[dij ] = [FA]c.

v) Let [0]\̃[FA] = [dij ]. Then,dij = min{0, 1 − aij} = 0 for all i, j. Therefore
[dij ] = [0].

vi) Let [FA]\̃[FA]c = [dij ]. Then,dij = min{aij , aij} = aij for all i, j. Therefore
[dij ] = [FA].

vii) ⇒: Let [dij ] = [FA]\̃[GB ] = [GB ]\̃[FA] = [eij ]. Then,dij = min{aij , 1 − bij} =
min{bij , 1 − aij} = eij for all i and j. Thereforeaij = bij for all i and j, so
[FA] = [GB ].
⇐: It is clear.

viii) Let ([FA]\̃[GB ])∩̃[HC ] = [dij ] and([FA]∩̃[HC ])\̃([GB ]∩̃[HC ]) = [eij ].
For all i, j

dij = min{min{aij , 1− bij}, cij}
= min{min{aij , cij}, 1−min{bij , cij}}
= eij

Therefore[dij ] = [eij ].
ix) The proof can be proved similarly to proof of (viii).
x) Let ([FA]\̃[GB ])\̃[HC ] = [dij ] and([FA]\̃[HC ])\̃([GB ]\̃[HC ]) = [eij ].

For all i, j

dij = min{min{aij , 1− bij}, 1− cij}
= min{min{aij , 1− cij}, 1−min{bij , 1− cij}}
= eij

Therefore,[dij ] = [eij ].

Definition 3.14. Let FA andGB be soft sets on the universe setU . Then, soft restricted
difference ofFA andGB denoted byFA\̃rGB = HE is a soft set defined as

H(x) =
{

F (x) ∩ (U \G(x)), if x ∈ B
∅, if x /∈ B

Proposition 3.15. LetFA andGB be soft sets on the universe setU . Then,

FA\̃rGB = FA∩̃GcB

B .
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Proof. Let FA\̃rGB = HE . Then, we can write

H(x) =
{

F (x) ∩ (U \G(x)), if x ∈ B
∅, if x /∈ B

Also, letFA∩̃GcB

B = IE . From Definition 3.2, we can write

I(x) =
{

F (x) ∩ (U \G(x)), if x ∈ B
∅, if x /∈ B

ThereforeH(x) = I(x) for all x ∈ E.

Definition 3.16. Let [FA] = [aij ], [GB ] = [bij ] ∈ SMm×n and letIB = {j : ej ∈ B}.
Soft restricted difference product of[FA] and [GB ] denoted by[FA]\̃r[GB ] = [cij ] ∈
SMm×n is defined as

cij =
{

min{aij , 1− bij}, if j ∈ IB

0, if j /∈ IB

Theorem 3.17. LetFA andGB be two soft sets on the universe setU . Then,

[FA]\̃r[GB ] = [HC ] ⇔ HC = FA\̃rGB .

Proof. Using Definition 3.14, Proposition 3.15 and Definition 3.16, it can be proved similar
to Theorem 3.12.

Theorem 3.18. LetFA, GB andHC be three soft sets on the universe setU . Then,

i) [FA]\̃r[FA] = [0]
ii) [FA]\̃r[1A] = [0]

iii) [1]\̃r[FA] = [FA]cA

iv) [0]\̃r[FA] = [0]
v) [FA]\̃r[FA]cA = [FA]
vi) [FA]\̃r[GB ] = [GB ]\̃r[FA] ⇔ [FA] = [GB ]

vii) ([FA]\̃r[GB ])∩̃[HC ] = ([FA]∩̃[HC ])\̃r([GB ]∩̃[HC ])
viii) [FA]∩̃([GB ]\̃r[HC ]) = ([FA]∩̃[GB ])\̃r([FA]∩̃[HC ])

ix) [FA]\̃r[GB ]⊆̃[FA]\̃[GB ]

Proof. Let [FA] = [aij ], [GB ] = [bij ] and[HC ] = [cij ].

i) Let [FA]\̃r[FA] = [dij ]. Then, from Definition 3.16 we write

dij =
{

min{aij , 1− aij}, if j ∈ IA

0, if j /∈ IA

= 0

for all i andj. Therefore[dij ] = [0].
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ii) Let [FA]\̃r[1A] = [dij ]. Then, from Definition 3.16 we write

dij =
{

min{aij , 1− 1}, if j ∈ IA

0, if j /∈ IA

=
{

0, if j ∈ IA

0, if j /∈ IA

= 0

for all i andj. Therefore[dij ] = [0].
iii) Let [1]\̃r[FA] = [dij ]. Then,

dij =
{

min{1, 1− aij}, if j ∈ IA

0, if j /∈ IA

=
{

1− aij , if j ∈ IA

0, if j /∈ IA

for all 1 ≤ i ≤ m. Therefore[dij ] = [FA]cA .

iv) Let [0]\̃r[FA] = [dij ]. Then,

dij =
{

min{0, 1− aij}, if j ∈ IA

0, if j /∈ IA

= 0

for all i andj. Therefore[dij ] = [0].
v) Let [FA]\̃r[FA]cA = [dij ]. Then,

dij =
{

min{aij , aij}, if j ∈ IA

0, if j /∈ IA

=
{

aij , if j ∈ IA

0, if j /∈ IA

for all 1 ≤ i ≤ m. Therefore[dij ] = [FA].
vi) ⇒: Let [dij ] = [FA]\̃r[GB ] = [GB ]\̃r[FA] = [eij ]. Then,

dij =
{

min{aij , 1− bij}, if j ∈ IB

0, if j /∈ IB
=

{
min{1− aij , bij}, if j ∈ IA

0, if j /∈ IA
= eij

for all for all 1 ≤ i ≤ m. It is possible ifIA = IB andaij = bij for all i, j, so
[FA] = [GB ].
⇐: It is clear.
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vii) Let ([FA]\̃r[GB ])∩̃[HC ] = [dij ] and([FA]∩̃[HC ])\̃r([GB ]∩̃[HC ]) = [eij ].
For all1 ≤ i ≤ m,

dij =





min{min{aij , 1− bij}, cij}, if j ∈ IB∩C

min{min{aij , 1− bij}, 0}, if j ∈ IB\C
min{0, cij}, if j ∈ IC\B
0, if j /∈ IB∪C

=
{

min{min{aij , 1− bij}, cij}, if j ∈ IB∩C

0, if j /∈ IB∩C

=
{

min{min{aij , cij}, 1−min{bij , cij}}, if j ∈ IB∩C

0, if j /∈ IB∩C

(3. 3)

and

eij =
{

min{min{aij , cij}, 1−min{bij , cij}}, if j ∈ IB∩C

0, if j /∈ IB∩C

(3. 4)

We obtain[dij ] = [eij ] from ( 3. 3 ) and ( 3. 4 ).

viii) Let [FA]∩̃([GB ]\̃r[HC ]) = [dij ] and ([FA]∩̃[GB ])\̃r([FA]∩̃[HC ]) = [eij ]. For all
1 ≤ i ≤ m,

dij =
{

min{aij ,min{bij , 1− cij}}, if j ∈ IC

0, if j /∈ IC

=
{

min{min{aij , bij},min{aij , 1− cij}}, if j ∈ IC

0, if j /∈ IC

=
{

min{min{aij , bij}, 1−min{aij , cij}}, if j ∈ IC

0, if j /∈ IC

(3. 5)

and

eij =
{

min{min{aij , bij}, 1−min{aij , cij}}, if j ∈ IC

0, if j /∈ IC

(3. 6)

We obtain[dij ] = [eij ] from ( 3. 5 ) and ( 3. 6 ).

ix) Let [FA]\̃r[GB ] = [dij ] and[FA]\̃[GB ] = [eij ]. Then for all1 ≤ i ≤ m,

dij =
{

min{aij , 1− bij}, if j ∈ IB

0, if j /∈ IB

andeij = min{aij , 1 − bij} for all j. If j /∈ IB , thendij = 0 but eij = 1 in case of
aij = 1. Therefore[dij ]⊆̃[eij ] from Definition 2.8.

Definition 3.19. Let FA andGB be soft sets on the universe setU . Then, soft extended
difference ofFA andGB denoted byFA\̃εGB = HE is a soft set defined as

H(x) = F (x) ∪ (U \G(x))
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for all x ∈ E.

Proposition 3.20. LetFA andGB be two soft sets on the universe setU . Then,

FA\̃εGB = FA∪̃Gc
B .

Proof. Let FA\̃εGB = HE . Then, we can write

H(x) = F (x) ∪ (U \G(x))
Also, letFA∪̃GcB

B = IE . From Definition 3.2, we can write

I(x) = F (x) ∪ (U \G(x))
ThereforeH(x) = I(x) for all x ∈ E.

Definition 3.21. Let [FA] = [aij ], [GB ] = [bij ] ∈ SMm×n. Soft extended difference

product of[FA] and[GB ] denoted by[FA]\̃ε[GB ] = [cij ] where[cij ] ∈ SMm×n is defined
ascij = max{aij , 1− bij}.
Theorem 3.22. LetFA andGB be two soft sets on the universe setU . Then,

[FA]\̃ε[GB ] = [HC ] ⇔ HC = FA\̃εGB .

Proof. Using Definition 3.19, Proposition 3.20 and Definition 3.21, it can be proved similar
to Theorem 3.12.

Theorem 3.23. LetFA, GB andHC be three soft sets on the universe setU . Then,

i) [FA]\̃ε[FA] = [1]
ii) [FA]\̃ε[0] = [1]

iii) [FA]\̃ε[1] = [FA]
iv) [1]\̃ε[FA] = [1]
v) [0]\̃ε[FA] = [FA]c

vi) [FA]\̃ε[FA]c = [FA]
vii) ([FA]\̃ε[GB ])c = [GB ]\̃[FA]

viii) [FA]\̃ε[GB ] = [GB ]\̃ε[FA] ⇔ [FA] = [GB ]
ix) ([FA]\̃ε[GB ])∪̃[HC ] = ([FA]∪̃[HC ])\̃ε([GB ]∪̃[HC ])
x) [FA]∪̃([GB ]\̃ε[HC ]) = ([FA]∪̃[GB ])\̃ε([FA]∪̃[HC ])
xi) ([FA]\̃ε[GB ])\̃ε[HC ] = ([FA]\̃ε[HC ])\̃ε([GB ]\̃ε[HC ])

Proof. The proof can be seen similarly to proof of the Theorem 3.13.

Definition 3.24. Let FA and GB be soft sets on the universe setU . Then, soft weak-
extended difference ofFA andGB denoted byFA\̃wGB = HE is a soft set defined as

H(x) =
{

F (x) ∪ (U \G(x)), if x ∈ B
F (x), if x /∈ B

Proposition 3.25. LetFA andGB be two soft sets on the universe setU . Then,

FA\̃wGB = FA∪̃GcB

B .

Proof. Using Definitions 3.2 and 3.24 , it can be proved similar to Proposition 3.15.
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Definition 3.26. Let [FA] = [aij ], [GB ] = [bij ] ∈ SMm×n. Soft weak-extended difference

product of[FA] and[GB ] denoted by[aij ]\̃w[bij ] = [cij ] ∈ SMm×n is defined as

cij =
{

max{aij , 1− bij}, if j ∈ IB

aij , if j /∈ IB

Theorem 3.27. LetFA andGB be two soft sets on the universe setU . Then,

[FA]\̃w[GB ] = [HC ] ⇔ HC = FA\̃wGB .

Proof. Using Definition 3.24, Proposition 3.25 and Definition 3.26, it can be proved similar
to Theorems 3.12.

Theorem 3.28. LetFA, GB andHC be three soft sets on the universe setU . Then,

i) [FA]\̃w[FA] = [1A]
ii) [FA]\̃w[1A] = [FA]

iii) [1]\̃w[FA] = [1]
iv) [0]\̃w[FA] = [FA]cA

v) [FA]\̃w[FA]cA = [FA]
vi) [FA]\̃w[GB ] = [GB ]\̃w[FA] ⇔ [FA] = [GB ]

vii) ([FA]\̃w[GB ])∪̃[HC ] = ([FA]∪̃[HC ])\̃w([GB ]∪̃[HC ])
viii) [FA]∪̃([GB ]\̃w[HC ]) = ([FA]∪̃[GB ])\̃w([FA]∪̃[HC ])

ix) [FA]\̃w[GB ]⊆̃[FA]\̃ε[GB ]

Proof. The proof can be seen similarly to proof of the Theorems 3.13 and 3.18.

4. SOFT DIFFERENCEMAX -ROW DECISION MAKING

To construct an effective decision making method, firstly we need to define max-row func-
tion and max-row matrix for a soft matrix.

Definition 4.1. Let [aij ] ∈ SMm×n be a soft matrix. Thensoft max-row functionMr is
defined as below:

Mr : SMm×n −→ SMm×1, Mr([aij ]) = [fi1]
where

fi1 = max
j∈{1,2,...,m}

{aij}.
The soft matrixMr([aij ]) is called amax-row soft matrixof the soft matrix[aij ].

Example 4.2. Consider the soft matrix[aij ] in Example 2.6, max-row soft matrix of[aij ]
is

Mr([aij ]) =




1
1
1
1
0




.

By the following definitions, we introduce favorable soft matrix, unfavorable soft matrix,
decision soft matrices and then optimum set, suboptimum set and non-optimum set.
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Definition 4.3. Let [aij ] ∈ SMm×n be a soft matrix. Then[aij ] is called

(1) favorable soft matrix ifaij = 1 implies that the alternativeui satisfies the para-
meterej ,

(2) unfavorable soft matrix ifaij = 1 implies that the alternativeui doesn’t satisfy the
parameterej .

Definition 4.4. Let [cij ] ∈ SMm×n be intersection or union of the favorable soft matrices
and[dij ] ∈ SMm×n be intersection or union of the unfavorable soft matrices. Then,

(1) [ei1] = Mr([cij ]\̃[dij ]) is called positive difference max-row soft matrix and[fi1] =
Mr([dij ]\̃[cij ]) is called negative difference max-row soft matrix.

Here, it can be takeñ\r, \̃ε and \̃w instead of̃\.
(2) [gi1] = [ei1]\̃[fi1] is called positive decision soft matrix and[hi1] = [fi1]\̃[ei1] is

called negative decision soft matrix.

Definition 4.5. Let [gi1] ∈ SMm×1 be the positive decision soft matrix and[fi1] ∈
SMm×1 be the negative decision soft matrix. Then, the set

(1) opt(U) = {ui : ui ∈ U, gi1 = 1} is said to be an optimum set ofU .
(2) sub − opt(U) = {ui : ui ∈ U, gi1 = hi1 = 0} is said to be a suboptimum set of

U .
(3) non− opt(U) = {ui : ui ∈ U, hi1 = 1} is said to be non-optimum set ofU .

Soft difference max-row decision making method selects both optimum alternative(s) and
unlikely alternative(s) from the set of all alternatives. This method is organized as in the
following algorithm:

Step 1: Determine feasible subsets from the parameter set.
Step 2: Create the soft matrix for each of parameter subsets.
Step 3: Using one of the convenient operations such as∩̃ or ∪̃ according to the prob-

lem, find favorable soft matrices and unfavorable soft matrices, if possible.
Step 4: Using one of the convenient operations such as\̃, \̃r, \̃ε or \̃w according to

the problem, find positive difference max-row soft matrix and negative difference
max-row soft matrix.

Step 5: Find positive decision soft matrix and negative decision soft matrix.
Step 6: Obtain an optimum set ofU (suboptimum set ofU if the optimum set is

empty) and non-optimum set ofU .

Now, we apply this algorithm for a decision problem by using the soft weak-extended
difference product̃\w.

Example 4.6. Assume that there are six candidates who apply for the empty position of
a company. And there are two business partner of this company who are decision mak-
ers. Let the set of candidates beU = {u1, u2, u3, u4, u5, u6} which is characterized by a
set of parametersE = {e1, e2, e3, e4, e5}. For i = 1, 2, 3, 4, 5, the parametersei stand
for “young age”, “experience”, “having good references”, “computer knowledge” and
“knowing foreign languages”.
The first decision marker investigates eligible candidates and the second one investigates
noneligible candidates.
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When each partner selects the parameters from the parameter setE, we can apply the soft
difference max-row decision making algorithm as follows:
Step 1:To evaluate the candidates, the partners consider set of parametersA = {e1, e2, e3, e4}
andB = {e2, e3, e4}, respectively. The partners generate the following soft sets over the
universe setU with respect to their parameters, respectively.
FA = {(e1, {u2, u5, u6}), (e2, {u1, u4, u6}), (e3, {u2, u3, u6}), (e4, {u2, u4, u6})},
GB = {(e2, {u2, u3, u4, u5}), (e3, {u1, u5}), (e4, {u1, u3, u5})}.
Step 2:For the soft setsFA andGB , the following soft matrices are created respectively.

[FA] = [aij ] =




0 1 0 0 0
1 0 1 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 0
1 1 1 1 0




and[GB ] = [bij ] =




0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 0 0 0
0 1 1 1 0
0 0 0 0 0




.

Step 3:The matrix of the first decision maker[aij ] is a favorable soft matrix and the ma-
trix of the second decision maker[bij ] is an unfavorable soft matrix since the first decision
marker investigates eligible candidates and the second one investigates noneligible candi-
dates.
Step 4: Using the soft weak-extended difference product, we find the positive difference
max-row soft matrix and the negative difference max-row soft matrix as

[ei1] = Mr([aij ]\̃w[bij ]) =




1
1
1
1
0
1




and[fi1] = Mr([bij ]\̃w[aij ]) =




1
1
1
1
1
0




.

Step 5:We obtain the positive decision soft matrix and the negative decision soft matrix as

[gi1] = [ei1]\̃[fi1] =




0
0
0
0
0
1




and[hi1] = [fi1]\̃[ei1] =




0
0
0
0
1
0




.

Step 6:Now we can find an optimum set and a non-optimum set ofU .

opt(U) = {u6}
whichu6 is an optimum candidate for the empty position of the company. Also,

non− opt(U) = {u5}
whichu5 is an unlikely candidate for the empty position of the company.

In this example, if we use soft restricted difference product instead of soft weak-extended
difference product, then we obtainopt(U) = {u3, u6}. This doesn’t give a definite result,
because only one candidate will be preferred.
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5. APPLICATIONS ONBENCHMARKING PROBLEM

Benchmarking means that a company ,in order to increase competitive power, examines
other companies that have superior performance and these companies’ techniques of doing
business, as well as compares their own techniques and applies in their own companies the
knowledge gained from this comparison. The benchmarking agreement is also an agree-
ment to ensure the continuation of this benchmarking. Thus, the benchmarking companies
can constantly monitor developments in the topic of benchmarking in other companies.
In order to better understanding of the following examples, let us first give the benchmark-
ing types and their benchmarking processes.

Benchmarking Types

(i) Benchmarking according to the focused
partner(s)

(ii) Benchmarking according to the fo-
cused topic(s)

Benchmarking Process: Bechmarking Process:
1. Determine partner(s) for benchmarking1. Determine topic(s) of benchmarking
2. Construct benchmarking team by speci-
fying tasks

2. Construct benchmarking team by speci-
fying tasks

3. Determine topic(s) of benchmarking 3. Determine partner(s) for benchmarking
4. Obtain necessary data and analyze 4. Obtain necessary data and analyze
5. Apply method and evaluate results 5. Apply method and evaluate results

5.1. An example on benchmarking problem according to the focused partner

Assume that a companyY operates in six different business areas. The set of these business
areas isU = {u1, u2, u3, u4, u5, u6}, whereui (1 ≤ i ≤ 6) stand for “textile raw material
production”, “electricity distribution services”, “designing of safety systems”, “automo-
tive spare parts production”, “manufacture of cleaning articles” and “production of elec-
trical household appliances”, respectively. Another companyX, which operates in the
same business areas, appoints three benchmarker to make benchmarking agreement with
the companyY .
First benchmarker investigatespositiveaspects in terms of production of companyY .
Second benchmarker investigatespositiveaspects in terms of staff of companyY .
Third benchmarker investigates all of thenegativeaspects of companyY .
For this case, letE = {e1, e2, ..., e24} be a set of all parameters which is determined
by benchmarkers. These parameters;e1=raw material cost,e2=raw material procurement,
e3=advertising revenues of product,e4=profitability, e5=inventory control,e6=collection,
e7=optimum number of staff,e8=relationship between objectives and results,e9=staff mo-
tivation, e10=market share,e11=production rate,e12=product design,e13=storage con-
trol, e14=production cost,e15=production of multiple choice ,e16=quality management,
e17=management style,e18=amount of daily production,e19=customer delight,e20=distri
bution of products,e21=technology systems,e22=internal control mechanisms,e23=positive
competition of staff,e24=staff efficiency.
When each benchmarker selects the parameters from the parameter setE, we can apply the
soft difference max-row decision making algorithm as follows:
Step 1: The benchmarkers determine the parameter subsets as follows, respectively
A = {e1, e2, e3, e4, e5, e6, e7, e8, e10, e11, e12, e15, e18, e19, e20, e21},
B = {e4, e7, e8, e9, e11, e14, e16, e17, e19, e21, e24} and



Difference Operations of Soft Matrices with Applications in Decision Making 17

C = {e1, e2, e3, e5, e6, e7, e9, e10, e11, e12, e14, e16, e17, e18, e19, e20, e21, e23, e24}.
As a result of research, they obtain their soft sets as follows:
FA = {(e1, {u1, u2, u5, u6}), (e2, {u2, u3, u4, u5, u6}), (e3, {u5, u6}), (e4, {u1, u3, u5}),
(e5, {u2, u3, u5, u6}), (e6, {u1, u4, u6}), (e7, {u1, u3, u4, u5}), (e8, {u2, u3}),
(e10, {u1, u2, u4, u5, u6}), (e11, {u2, u4, u5}), (e12, {u1, u3, u6}), (e15, {u1, u3, u4, u6}),
(e18, {u1, u4, u6}), (e19, {u1, u2, u5, u6}), (e20, {u3, u5, u6}), (e21, {u1, u4})},
GB = {(e4, {u1, u2, u5}), (e7, {u1, u4, u5, u6}), (e8, {u2, u3}), (e9, {u1, u2, u4, u6}),
(e11, {u1, u4, u5}), (e14, {u1, u2, u4, u6}), (e16, U), (e17, {u1, u2, u4, u5}),
(e19, {u1, u2, u4, u5}), (e21, {u2, u4})(e24, {u1, u5})},
HC = {(e1, {u2, u4, u5}), (e2, {u1, u6})}, (e3, {u2, u3}), (e4, {u2, u5, u6}),
(e5, {u1, u4, u6}), (e6, {u2, u3, u4, u5}), (e7, {u2, u3, u4, u5}), (e9, {u1, u3}),
(e10, {u1, u3}), (e11, {u1, u4, u5}), (e12, {u1, u4, u5}), (e14, {u5, u6}), (e16, {u2, u6}),
(e17, {u2, u3, u5}), (e18, {u1, u3, u6}), (e19, {u1, u2, u4, u5, u6}), (e20, {u1, u4}),
(e21, {u1, u3, u4}), (e23, ∅), (e24, {u1, u4, u6})}.
Step 2: For the soft setsFA, GB andHC , the following soft matrices are created respec-
tively.

[FA] = [aij ]=2
6666664

1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0
1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0

3
7777775

,

[GB ] = [bij ]=2
6666664

0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

3
7777775

,

and

[HC ] = [cij ]=2
6666664

0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1
1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0
1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1
1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1

3
7777775

.

Step 3: Using the soft intersection, we obtain the favorable soft matrix

[dij ] = [aij ]e∩[bij ]=2
6666664

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3
7777775

and the unfavorable soft matrix
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[cij ]=2
6666664

0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1
1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0
1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1
1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1

3
7777775

.

Step 4: Using the soft restricted difference product, we find the positive difference max-
row soft matrix and the negative difference max-row soft matrix as

[ei1] = Mr([dij ]\̃r[cij ]) = Mr([dij ]∩̃[cij ]cC ) =




1
0
0
0
0
0




and

[fi1] = Mr([cij ]\̃r[dij ]) = Mr([cij ]∩̃[dij ]cA∩B ) =




1
1
1
1
0
1




.

Step 5: We obtain the positive decision soft matrix and the negative decision soft matrix
as, respectively

[gi1] = [ei1]\̃[fi1] =




0
0
0
0
0
0




and[hi1] = [fi1]\̃[ei1] =




0
1
1
1
0
1




.

Step 6: Since the optimum set ofU is opt(U) = ∅, we take suboptimum set ofU instead
of the optimum set ofU . Then, we obtain

sub− opt(U) = {u1, u5}
which u1 andu5 are optimum business areas that can make benchmarking agreement of
the companiesX andY .
Benchmarking Process:
1. Determine partner for benchmarking: the company Y
2. Construct benchmarking team by specifying tasks: three benchmarkers
3. Determine topics of benchmarking: the business areasu1, u2, u3, u4, u5 andu6

4. Obtain necessary data and analyze: the soft setsFA, GB andHC

5. Apply method and evaluate results: soft difference max-row decision making method
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5.2. An example on benchmarking problem according to the focused topic

Suppose that a company X, which manufactures electronic devices, wants to benchmark
company’s latest version computer with the latest version computers of five companies
which are sold cheaper.U = {u1, u2, u3, u4, u5} is the set of the latest version computers
of five companies. The company determines the set of benchmarking parameters asE =
{e1 = quality of material, e2 = product design, e3 = product advertising, e4 =
technological specifications, e5 = service facilities, e6 = product distribution}.
Also, the company appoints four benchmarkers to make benchmarking agreement with one
of these companies.
First and second benchmarkers investigate the latest version computers of five companies
that have featuresbetterthan the latest version computer of companyX.
Third and fourth benchmarkers investigate the latest version computers of five companies
that have featuresworsethan the latest version computer of companyX.
When each benchmarker selects the parameters from the parameter setE, we can apply the
soft difference max-row decision making algorithm as follows:
Step 1: The benchmarkers determine the parameter subsets asA = B = C = D =
{e1, e2, e3, e4, e5, e6}, respectively. As a result of research, they obtain the soft sets as
FA = {(e1, {u2, u3}), (e2, {u1, u5}), (e3, {u2, u4, u5}), (e4, {u1, u3, u4}),
(e5, {u1, u3, u5}), (e6, {u2, u4})},
GB = {(e1, {u2, u3}), (e2, {u1, u3, u5}), (e3, {u1, u2, u5}), (e4, {u1, u3, u4}),
(e5, {u1, u3, u5}), (e6, {u2, u5})},
HC = {(e1, {u1, u4, u5}), (e2, {u3}), (e3, {u1, u3}), (e4, {u2, u4, u5}), (e5, {u3, u4}),
(e6, {u1, u5})},
ID = {(e1, {u1, u4, u5}), (e2, {u2, u4}), (e3, {u1, u4}), (e4, {u2, u4}), (e5, {u3, u4}),
(e6, {u1, u5})}.
Step 2: For the soft setsFA, GB , HC , ID, the soft matrices are obtained respectively.

[FA] = [aij ]=




0 1 0 1 1 0
1 0 1 0 0 1
1 0 0 1 1 0
0 0 1 1 0 1
0 1 1 0 1 0




, [GB ] = [bij ]=




0 1 1 1 1 0
1 0 1 0 0 1
1 1 0 1 1 0
0 0 0 1 0 0
0 1 1 0 1 1




[HC ] = [cij ]=




1 0 1 0 0 1
0 0 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 0 1 0 1




, [ID] = [dij ]=




1 0 1 0 0 1
0 1 0 1 0 0
0 0 0 0 1 0
1 1 1 1 1 0
1 0 0 0 0 1




.

Step 3:Using the soft intersection, we obtain the favorable soft matrix and the unfavorable
soft matrix as follows, respectively.

[aij ]∩̃[bij ]=




0 1 0 1 1 0
1 0 1 0 0 1
1 0 0 1 1 0
0 0 0 0 0 0
0 1 1 0 1 0




and[cij ]∩̃[dij ]=




1 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 1 1 0
1 0 0 0 0 1




.
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Step 4: Using the soft difference product, we find the positive and negative difference
max-row soft matrices as

[ei1] = Mr(([aij ]∩̃[bij ])\̃([cij ]∩̃[dij ])) =




1
1
1
0
1




,

and

[fi1] = Mr(([cij ]∩̃[dij ])\̃([aij ]∩̃[bij ])) =




1
1
0
1
1




.

Step 5:We obtain the positive decision soft matrix and the negative decision soft matrix as

[gi1] = [ei1]\̃[fi1] =




0
0
1
0
0




and[hi1] = [fi1]\̃[ei1] =




0
0
0
1
0




.

Step 6: Consequently, we have an optimum set and a non-optimum set ofU as follows:

opt(U) = {u3}
whichu3 is an optimum company that can be made benchmarking agreement.

non− opt(U) = {u4}
whichu4 is an unlikely company that should not be made benchmarking agreement.
Benchmarking Process:
1. Determine topic of benchmarking: the latest version computer
2. Construct benchmarking team by specifying tasks: assigned four benchmarkers
3. Determine partners for benchmarking: the companiesu1, u2, u3, u4 andu5

4. Obtain necessary data and analyze: the soft setsFA, GB , HC andID

5. Apply method and evaluate results: soft difference max-row decision making method

6. CONCLUSION

Soft set theoretical structures are made more practical and efficient through the soft matri-
ces. This shows itself in applications, as well. Relatedly, we introduced novel soft matrix
operations called soft difference product, soft restricted difference product, soft extended
difference product and soft weak-extended difference product. We constructed a practical
novel decision making algorithm via these soft operations. Then, we applied this algorithm
to solve three different problems. In the first example, a company determines a candidate
which is an optimal for empty position, the other examples are benchmarking problems
according to the focused partner and topic. Eventually, our method can successfully be
applied to solve problems involving uncertainties.



Difference Operations of Soft Matrices with Applications in Decision Making 21

REFERENCES

[1] U. Acar, F. Koyuncu and B. Tanay,Soft sets and soft rings, Comput. Math. Appl.59, (2010) 3458-3463.
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[9] N. Çãgman and S. Enginõglu, Soft matrix theory and its decision making, Comput. Math. Appl.59, No. 10

(2010) 3308-3314.
[10] D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wang,The parametrization reduction of soft sets and its

applications, Comput. Math. Appl.49, No. 5-6 (2005) 757-763.
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