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Abstract. An AG-groupoidS satisfying the identityc(yz) = z(xy) for

all z,y,z € S'is called a CA-AG-groupoid. In this article the notions of
equivalence relation and congruence is extended to CA-AG-groupoids and
various congruences on CA-AG-groupoid and inverse CA-AG-groupoid
are defined and investigated. Furthermore, it is shown that a suitably de-
fined relationp on inverse CA-AG-groupoid is a maximal idempotent-
separating congruence, thigtp is fundamental and that the semilattice of
idempotents of is isomorphic to the semilattice of idempotents$p.
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1. INTRODUCTION

A groupoid S satisfy (zy)z = (zy)x for all z,y,z € S (known as the left invertive law

[15]) is called an Abel-Grassmann groupoid (in short AG-groupoid [25]). This structure is
introduced in1972 by Kazim and Naseeruddin [15]. The said structure is called upon by
different names by different authors, such as left almost semigroup (in short LA-semigroup)
[15], right modular groupoid [7] and left invertive groupoid [9]. It is a hon-associative alge-
braic structure midway between a groupoid and a commutative semigroup, and generalize
the class of commutative semigroups. AG-groupoid is a well worked area of research hav-
ing a variety of applications in various fields like flocks theory [15], matrix theory [6, 3],
geometry [29] and topology [16] etc.
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Various aspects of AG-groupoids are investigated by different researchers and many
results are available in literature (see, e.g., [3, 33, 28, 34, 18, 2, 30, 14] and the references
herein). Some new classes of AG-groupoids are discovered and investigated in [32, 24, 17,
31, 26, 1]. Igbal et al. [10] introduced the notion of CA-AG-groupoid and enumerated it
upto order6. Further, they introduced CA-test for verification of arbitrary AG-groupoid to
be cyclic associative and studied some fundamental properties of CA-AG-groupoids. The
same authors in [11] discussed a different aspect of cancellativity of an element in CA-AG-
groupoid and provided a partial solution to an open problem mentioned in [29]. For detail
study of CA-AG-groupoids we recommend [10, 11, 12].

Mushtaq and Igbal [21] defined the notion of partial ordering and congruence on LA-
semigroup. They defined a congruence relatjpon an inverse LA-semigrouf with
a weak associative law and proved thais idempotent-separating and also proved that
w={(a,b) € SxS:(Vfe E(S))(df)a= (tf)b}, whered, t' are the unique inverses
of a andb respectively, is the maximal idempotent-separating congruencg dn [22]

Protic and Bainovit defined some congruences on AG**-groupoid, while in [23] Rroti
defined congruences on inverse AG**-groupoid via the natural partial order. Dudek and
Gigon [8] defined some congruences on completly inverse AG**-groupoidzirBwic et

al. [4] discussed the notion of natural partial order on AG-groupoids and defined some
congruences on inverse and completly inverse AG**-groupoid. Mushtaq and Yusuf [20]
defined a congruence relatipron a locally associative LA-semigroupand investigated
thatp is separative and/p is maximal separative homomorphic imagesof

Motivated by this consideration, our main focus in the present article is to extend the
notions of equivalence relation and congruence to CA-AG-groupoids, and to define dif-
ferent congruences on CA-AG-groupoids and on inverse CA-AG-groupoids and explore
different aspects of these relations. We generalize the result given in [5, Lemma 1] to the
whole class of AG-groupoids. Moreover, we explore some fundamental characteristic of
an inverse CA-AG-groupoid.

2. PRELIMINARIES

A magma(S, -) or simply S satisfyingzy - z = 2y - « for everyz,y,z € S is called an
AG-groupoid [25]. Through out the article we will denote an AG-groupoid simplysby
otherwise stated else. The medial lawy - zt = xz - yt always holds inS [13, Lemma
1.1(i)]. Left identity may or may not be contained 1 however, if S contains a left
identity then it is unique [19] and with left identity always satisfies the paramedial law:
xy - 2zt = ty - zx [13, Lemma 1.2(ii)]. Now, we define some elementary aspects and quote
few definitions which are essential to step up this study.

An elementf < S is called idempotent iff> = f. The set of all idempotents is
represented by (S). S having all elements as idempotent is called 2®and (in short
AG-band) [33]. IfS is an AG-band thers? = S. A commutative AG-band is called a
semilattice. S is called AG* [17] if for all z,y,z € S, xy - z = y - xz (known as weak
associative law), AG** ifr - yz = y - xz [22] and is called cyclic associative AG-groupoid
(in short CA-AG-groupoid) ifc - yz = z-zy [10]. An AG-groupoidS is called inverse AG-
groupoid [21], if for everyr € S there exists’ € S such thatr = za’ -z andz’ = 2’z -2,
Henceforth, by’ we shall mean an inverse nfand byV (z) we shall mean the set of all
inverses ofx, i.e. V(z) = {«’ € S: = za’ - x anda’ = 2’z - 2'}. An AG-groupoid



Some Congruences on CA-AG-groupoids 73

S is called completely inverse AG-groupoid if it satisfies the identity = 2’z for all
x € S. The notion of an inverse AG-groupoid is a natural generalization of the notion of
an AG-group, where an inverse element ¢~ = e andz~! - = = ¢, wheree is the left
identity) of AG-group is substituted by a generalized invens€ (z = r andx’z -z’ = x).
This is why the inverse AG-groupoids are called generalized AG-groups.

A relation p is called equivalence relation on AG-groupdidf it satisfies the condi-
tions: (7). p is reflexive, i.e.xpx for everyz € S (ii). p is symmetric, i.e.xpy = ypx
for all z,y € S (ii3). p is transitive, i.e. zpy andypz = zpz for all z,y,z € S. A
relationp is right compatible ifxpy = xzpyz, for all x,y,z € S and is left compatible
if zpy = zxpzy. A relation which is left and right compatible is called compatible. A
(left/right) compatible equivalence relation is called (left/right) congruence. A congruence
p on an AG-groupoid is called idempotent-separating if eachlass contains atmost one
idempotent, i.e. ife, f) € p, thene = f Ve, f € E(S). An inverse AG-groupoid is called
fundamental ifvVb € S) 2’b-z=y'b-y=z =y.

3. INVERSECA-AG-GROUPOID

To start with, we prove the existence of inverse CA-AG-groupoid by providing supporting
example. We also verify by counterexamples that a CA-AG-groupoid is not necessarily an
inverse CA-AG-groupoid and an inverse AG-groupoid is not necessarily an inverse CA-
AG-groupoid.

Example 3.1. (¢) Let S = {1,2,3} and the binary operation oi% be defined by the
Cayley’s Tablel. ThenS is an inverse CA-AG-groupoid having= 1, 2’ = 2 and3’ = 3.

(i1) CA-AG-groupoid presented in Cayley's Tal?ds not an inverse CA-AG-groupoid,
since for every, € S there exists na € S such thatuz - @« = a andza - x = x.

(#i1) The set of integer& is an inverse AG-groupoid under the binary operation defined by
zoy=y—uz,Vr,y€Z,as(zoy)oz=(zoy)ox. Butsincez —y —x #y —z — z,

soz ¢ (yoz) # zo (zoy), thus(Z, o) is not an inverse CA-AG-groupoid.

Tablel Table2

Mushtaq and Igbal [21] proved thatif is an inverse of: andy’ is an inverse of; in an
AG-groupoid, then by the medial law

(zy - 2"y ey = (z2’ - yy oy = (22" - 2)(yy' - y) = 2y,
and(z'y’ - zy)z'y’ = (¢'z - y'y)2'y’ = (2’2 - 2)(y'y - y) = 2"y

Thus(zy - 2’y )xy = xy and(z’y’ - xy)2'y’ = z’y’. Hence in an inverse AG-groupoid the
inverse ofzy is 'y, i.e.

(zy)" =2y G 1
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Remark 3.2. If S is an AG-groupoid and, f € E(S), thenef -ef =ee- ff = ef by
medial law. Thug f is an idempotent and sef € E(S). Hence in AG-groupoid holds:
the product of two idempotents is an idempotent.

The following example illustrates that in an AG-groupoid, idempotent elements can be
mutually non-commutative.

Example 3.3. Table3 represents an AG-band. As2 # 2-1, sol and2 does not commute.
Similarly zy # yx Va,y € E(S) whenx # y.

2

=W N =
W N B | =
— N W
N W~ R W
NG SN GUI O] TSN

Table3
However:

Lemma 3.4. In CA-AG-groupoid idempotents commute with each other.

Proof. Let S be a CA-AG-groupoid and, f € E(S). Then by Remark 3.2, medial law,
cyclic associativity and left invertive law we hav¢ = ef -ef =cee- ff = f(ee- f) =
f(fe-e)=ce(f-fe)=cele-ff)=ff-ee= fe,soef = fe. Hence in CA-AG-groupoid
idempotents commute with each other. d

As commutativity of an AG-groupoid implies associativity [10], thus from Lemma 3.4 we
have.

Corollary 3.5. For any CA-AG-groupoidb, E(S) is a semilattice.

Note that in [10] it is shown that every CA-AG-groupoid is paramedial. The following
example depicts that in an inverse AG-groupoid, the elemeritandx’x are not neces-
sarily idempotents and may not be equal.

Example 3.6. Let.S = {a, b, ¢, d} and the binary operation of be defined by the follow-
ing Cayley's tablel.

. ‘ a b ¢ d
alb ¢ a d
bld a ¢ b
clec b d a
dla d b ¢
Table4

ThenS is an inverse AG-groupoid. Furtheid - ¢ = a,da-d =d,bc-b=b,cb-c = ¢,
thusa’ = d,d = a, b/ = candd = b. Now (ad’)(aa’) = (ad)(ad) = ¢ # d,
(dd")(dd") = b # a, thusaa’ and dd’ are not idempotent. Als@b')(bb') = d # ¢,
(cd')(cd') = a # b, sobl andcc’ are not idempotent. Moreoverd = d # a = da and
bc = ¢ # b = cb. Note thatE(S) = ¢.
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It is proved by M. Ba&inovic et al. [5, Lemma 1] that in an inverse AG**-groupoy

if V(z) = {«'} thenza’ = 2’z if and only if z2/, 2’ € E(S). However, there is no
clue given whether in AG-groupoidz’, 2’z belong toE(S) implies xz’ = 2'x or not.
Similarly if in an AG-groupoidca’ = 2’z then whether2', 2’z € E(S) or not. We claim

that in an AG-groupoidS, zz’ = z’z if and only if z2’ and 2’x belong toE(S). We
proceed to prove our claim in the following lemma, which definitely generalize the result
of [5, Lemma 1] to the whole class of AG-groupoids instead of AG**.

Lemma 3.7. Let S be an inverse AG-groupoid. Then for everg S,
za', ¥’z € E(S) <= z2’ = 2'x.
Proof. Letz € S andz’ € V(z) such thatea’, 2’z € E(S). Then by definition of inverse,
left invertive law, definition of idempotent and medial law
e = (2'z -2 e =22 2’z = (2’ x2)(2'2) = (2’ - 2')x)(2'x)

= (2'z-x)(xz’ - 2') = (2’2 22’ (22)) = ((z2" - x)2") (z2)

= (z2')(zx’) = x2’.
Conversely, supposer’ = z’x. Then by definition of idempotent, left invertive law and
definition of inversgza’)? = 2’ - 2’ = (x2’ - 2')x = (2'z - ')z = 2’z = x2', imply
thatza’ is an idempotent, i.exz’ € E(S). Similarly (2/z)? = o'z - 2’z = (2'x - 2)2’ =
(xz' - x)2' = za’ = o'z, thusz’z € E(S). O
If in an AG-groupoidS, za’ # «'z, thenxzz’ and 2’z may not be inE(S), also it is not
necessary thatr’ = z’z. To justify this we provide an example.
Example 3.8. Table5 represents an inverse AG-groupoid in whith= 2, 2 = 1 and
3 =3 As(1-1)(1-1)=(1-2)(1-2)=2-2=3+#2=1-1,thusl -1 ¢ E(S).
Similarly1’-1,2-2',2" -2 ¢ E(S). Alsoasl-1'=1-2=2#1=2-1=1"-1,thus
1-17#1-1. Notethat3 -3’ =3=13"-3. Also3-3' € E(S)as(3-3)(3-3") =3.

1
3
1
3

2
3
3

Tableb
However, in inverse CA-AG-groupoids boitx’ andz’z are idempotents and alsa’ =
z'x, as it is proved in the following lemma.

Lemma 3.9. Let S be an inverse CA-AG-groupoid ald(z) = {z'}, thenzz’, 2’2 €
E(S) and S is completely inverse CA-AG-groupoid.

Proof. Asz’ € V(z), soxz’ -z = x andx’x - ' = 2’. Now by the paramedial and medial
laws and cyclic associativity

xr' -xx’ =22 xx =2’ e =@z 1)) = ax’.
Thus,zz’ is idempotent. Similarly

rr-2'r=xx 2’2 =x2 xx’ =2 (v2' - x) = 2.
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This shows that’z is also idempotent. Hencer', 2’z € E(S). Now, it is remaining to
show thatrz’ = 2’2, As

v’ =22’z 2') =2 (v 2'x) =2 (v x2’)
=xx’ -2’z = (2'z 2" )r =22
ConsequentlyS is completely inverse CA-AG-groupoid. a
Remark 3.10. If a is an idempotent element of an AG-groupoid, thér= a, a® = a%a =
aa = a, a* = a®*a = (aa - a)a = (aa)a = aa = a and in generak™ = a forn € N.

By Lemma 3.9z2’ and «/z are idempotents in CA-AG-groupoid, $oz’)" = xz’ and
(2'x)™ = o'z for all n € N. Also, sincerz’ = z'z, so(xz’)"* = (2'x)".

Now, we proceed to prove that the inverse of an element in an inverse CA-AG-groupoid is
unique.
Lemma 3.11. The inverse of an element in inverse CA-AG-groupoid is unique.

Proof. Assume the contrary. Let andb be the inverses of an elementof an inverse
CA-AG-groupoid, then by definition = xa - x, a = ax - a, x = xb- x andb = bx - b.
Now by cyclic associativity, Lemma 3.9, left invertive law and medial law we have
a=azr-a=(a(xb-x)a) = (a(xb(xb-x)))a = ((zb- x)(a- xb))a
((zb-x)(b-ax))a = (ax((zb - x)b))a = (b(azx(xb- x)))a
= (a(az(xzb-2)))b = ((xb- z)(a - ax))b = ((bx - z)(a - ax))b
((zz-b)(a-ax))b = ((zx-a)(b-ax))b = ((az - z)(b- ax))b
((za-z)(b-ax))b = (x(b-ax))b= (ax - xb)b = (b(az - z))b
= (b(za - x))b = (bx)b =b.
Thus, inverse of an element in inverse CA-AG-groupoid is unique. O

In the following we provide an example to verify that in case of semigroup the inverse of
element may not be unique.

Example 3.12. Table 6 represents an inverse semigroup haviigz) = {a,b,c,d} =
V(b) =V(c)=V(d).

. ‘ a b ¢ d
ala b a b
bla b a b
cle d ¢ d
dlic d ¢ d
Table6

The following example clarify that in CA-AG-groupoifl, S ¢ 52, thusS? # S.

Example 3.13. S = {a, b, ¢, d} with the following Cayley’s Tablé is a CA-AG-groupoid.
AsS? = {a,b,c}, s0S ¢ S2.



Some Congruences on CA-AG-groupoids 77

. ‘ a b ¢ d
ala a a a
bla a a a
cla a a a
dla a b c
Table7

However:
Lemma 3.14. If S is an inverse CA-AG-groupoid, theit = S.

Proof. SincesS is inverse CA-AG-groupoid, then for for all € S there existg; € .S such
thatz = zy -z € S-S = S%. Thus for each: € S we haver € S2. This means that
S C §2. But sinceS? C S holds in general. It follows thag? = S. O

Now we provide an example to verify that in inverse AG-groupaid’)’ # zz’.

Example 3.15. An inverse AG-groupoid is represented in TaBleavinga’ = b, b’ = a
andcd = c. As(aa’)’ = (ab) =V = aandaa’ = ab = b, then(aa’)’ # ad’.

Table8

However:
Lemma 3.16. In inverse CA-AG-groupoiticz’)’ = xa’.
Proof. By cyclic associativity, medial, left invertive and paramedial laws
(xz’ - za')(zx') = (2 (z2" - x))(z2") = (2'2)((x2’ - x)2")
= (@'2)(2'x - 22’) = (x2’ - 2) (2’2 - 2') = 22

Thus,zz’ is the inverse ofcz’. As by Lemma 3.11, the inverse of an element in CA-AG-
groupoid is unique, s@rz’) = za’. O

Lemma 3.17. If S is an inverse CA-AG-groupoid, thén’)’ = z.

Proof. Clearly z is the solution of the equations = z'y - 2’ andy = yxz’ - y. As by
Lemma 3.11, inverse of an element in CA-AG-groupoid is uniquersp = x. O

Lemma 3.18. Let S be an inverse CA-AG-groupoid. Thet(S) = {zz' | z € S}isa
semilattice.

Proof. Let z12), x2xh € A(S). Then by Lemma 3.9, paramedial and medial laws] -
Xoxh = xhxy-2hre = womy -aha) = moxh 212, thus commutative law holds iA(.S). As
in AG-groupoid, commutativity implies associativity [10], thd$S) is associative. Hence
A(S) is a semilattice. O
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Corollary 3.19. Let S be an inverse CA-AG-groupoid. Thela (S) = {«'z | x € S}isa
semilattice.

Lemma 3.20. Let .S be an inverse CA-AG-groupoid. There E(S) impliese’ € E(S).

Proof. As S is an inverse CA-AG-groupoid, so for alle S there exists’ € S such that
x=uzz'-zandx’ =2’z -2'. AsE(S) C S, soin particular foe € E(S),e = ee’ - ¢ and

e/ = e’e - e/. We will show thate’ is an idempotent. Using the medial, left invertive and
paramedial laws, cyclic associativity, the definition of inverse and Lemma 3.9 we have

d?=¢e =(e-e)e €)= (e-ce)ee) = (e(ee-e'))(e)
= (e€')('e') = (ee-€')('e/) = (e - e)('e¢') = (ee - e)(ee)
=e(e'e’) = (ee)(e'e’) = ('e)(e'e) = (e'e’)(ee) = (ee - €')e
= (ee')e = ('e)e’ = ¢'.
Thuse? = ¢’. Hencee' € E(9). O

Lemma 3.21. If S is an inverse AG-groupoid ande E(S). Then:
(i)e-ze’ =e-xe,forallz €S,

(i1) ee’ = e,
(7i1) €'e = e,
(iv) e =e.

Proof. Ase € E(S), soe? = e. Alsoee’ -e = eande’e - e’ = ¢'.
(1) By left invertive and medial laws

=((e-e'e)e)(
(e ¢'e)(e))(ae) = ((ce - 'e) (¢'e)) (ae) = ((ec’ - ce)(e'e))(re)
= ((e' - e)('e))(ze) = (e(€'e))(we) = (ee - 'e)(we)

D~~~ ~ ~ —~

(#1) By part(i) and left invertive law
e’ =e(e'e-€')=ec(ce-e) =e(ee-€')
=e(ee’) = e(ee) = ee = e.
(7i1) By left invertive law and partii)
de=(e-ele=ce' -de=c-€e
/

:€6'€/€:6€/'€€:€€ € =¢€.

(iv) By part(zi7) and part(ii)

or equivalently said the inverse efe E(S) ise. O
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In the following we provide an example to verify that an AG-group8jclement ofS
may not commute with element &f(.5).

Example 3.22. Cayley’s Table9 represented an AG-groupoid o% = {1,2,3} having
E(S) = {1}. The element € E(S) does not commute with € S, asl1-2 # 2. 1.
However, ad - 3 = 3 - 1, thusl € E(S) commute witl3 € S.

1
1
3
1

Table9
Lemma 3.23. In CA-AG-groupoidS, elements of and E/(S) commute with each other.

Proof. Let 2 be an arbitrary element & and f € E(S), then by cyclic associativity,
paramedial and left invertive laws

af =a(ff)=a(ff-f)=f- [N =Ff fe=af-ff=af-f=ff =[x
Thus, elements 0§ commute with elements df'(S). O

Lemma 3.24. Let S be an inverse CA-AG-groupoid amde E(S). Then for anyr € S,
the followingz’e - © € E(S) is holds.

Proof. By the left invertive, medial and paramedial laws, Lemma 3.23 and cyclic associa-
tivity

= (ex)(z'z - 2') = (ve)2’ = (2'e)x.
Thus,2’e - z is an idempotent, i.er’e - x € E(.9). O
By using Remark 3.2 and Lemma 3.24 we have.
Corollary 3.25. LetS be an inverse CA-AG-groupoid ardc E(S). Then for any: € S
and any naturah the following(z’e - )™ € FE(S) holds.
4. CONGRUENCES ON INVERSECA-AG-GROUPOIDS

Congruences play an important role in associative and non-associative structures. Here, we
extend the notions of equivalence relation and congruence to CA-AG-groupoids and define
different congruences on CA-AG-groupoids and on inverse CA-AG-groupoids.
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Lemma 4.1. Let S be an AG-groupoid. Then

@)y ={(z,y) € Sx S: (Va€S)ax = ay},

(i1) 2 = {(z,y) € S x S : (Va € S) za = ya},
are equivalence relations afi.

Proof. (i) Asax = ax forall a € S, sovy; is reflexive. Also, ifry;y thenaz = ay which
impliesay = ax, s0v, is symmetric. To show that; is transitive, letxy,;y andy~y; z
wherezx, y, z € S then for alla € S, axr = ay anday = az, which impliesaz = az, thus
71z, hencey, is transitive.

(¢4) Similarly to (7). O

Lemma 4.2. LetS be a CA-AG-groupoid. Then the relation as defined in Lemma 4.1 is
right compatible.

Proof. For if zy;y thenaz = ay, for everya € S. Now for anyz € S, by cyclic
associativity

a(zz) = z(az) = z(ay) = y(za) = a(yz).
This implieszzy1yz. O

Remark 4.3. v, is not left compatible. The relation, as defined in Lemma 4.1 is neither
left compatible nor right compatible.

Lemma 4.4. Let S be an inverse AG-groupoid. Then the relations

(1) v3 = {(z,y) € Sx §: (Vo,y € §) 2’z = y'y},

(15) va ={(z,y) € S xS : (Va,y € S)zz’ = yy'},

are idempotent-separating congruences$nMoreover, ifz’z € E(S) for everyx € S,
then~z and~, are maximal.

Proof. (i) Clearly 3 is reflexive and symmetric. l§vsy and yysz, thenz’z = 'y
andy’'y = 2z, which impliesz’x = 2'z, thusxzysz and~s is transitive. Henceys is
an equivalence relation. Now, ifyzy thenz’'z = y'y, let z € S then by medial law
(@'z)(2'2) = (Yy)(2'z) = (') (zz) = (y'2")(yz) which by virtue of equation (3. 1)
gives(zz)'(zz) = (yz)'(yz), soxzysyz, thusys is right compatible. Similarlyy; is left
compatible. Hences is a congruence ofi. To show thaty; is idempotent-separating, let
e, f € E(S)suchthaeysf,thenbyLemma78 =ece=ce=f'f=ff=f=e=f.
Thus~s is idempotent-separating congruence. To showihé maximal, letu be another
idempotent-separating congruence. kgl thenx’uy’. Also, asu is compatible so from
7' uy’ andzuy we haver’'zuy’x andy’zuy'y. These by transitivity of impliesz’zuy'y.
Asforallz € S, 2’z € E(S) (given) and since: is idempotent-separating it follows that
z'x = y'y, whence it follows thatysy. Hencexuy implieszysy, thusy C 3. Hence;ys

is the maximal idempotent-separating congruencé.on

(44) Similar to (7). O

Theorem 4.5. Let S be an inverse CA-AG-groupoid. Then the relations
(1) 75 = {(z,y) € Sx §: (Vo,y € )2’z = yy'},

(1) v6 = {(z,y) € S xS : (Va,y € S)z'x = yy'},

are maximal idempotent-separating congruences'on
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Proof. (i) As by Lemma 3.9 in inverse CA-AG-groupoidz = zz’, thus~s is reflexive.
Again, if zysy thenz’z = yy’, which impliesyy’ = 2’z. By using Lemma 3.9,y = zx/,
thusy~ysz, sovs is symmetric. Ifxysy andy~ysz, thenz’z = yy’ andy’y = 22/, which
by virtue of Lemma 3.9 impliegy’ = z2’. Thusz’z = yy’ andyy’ = z2’, which implies
2’z = 22/, thuszys 2z, consequentlyys is transitive. Henceys is an equivalence relation.
Now, if zvysy, thenz’z = yy/, let z € S then(2'z)(2'2) = (yy')(2'z), which by medial
law and Lemma 3.9 implie&r’2’)(xz) = (yy')(2z’), which by virtue of equation ( 3. 1)
and medial law give$xz)’'(zz) = (yz)(y'2’) implies (zz)'(zz) = (y2z)(yz)’. Soxzvysyz,
thus~ys is right compatible. Similarly;y; is left compatible. Henceys is a congruence
on S. To show thatys is idempotent-separating, l¢tg € E(S) such thatf~sg, then
by Lemma 78f = ff = f'f = ¢g = g9 = g = [ = ¢. Thus~s is idempotent-
separating congruence. To show thats maximal, letu be another idempotent-separating
congruence. Letuy thena’/uy’. As u is compatible so fromx’uy’ and xuy we have
z'zpy’z andy’zuy'y. By transitivity of i impliesx’zuy’y. This by virtue of Lemma 75
impliesz’zuyy’. Since by Lemma 7%« andyy’ are idempotents, and ads idempotent-
separating se’z = yy’, hencervsy. Thereforexuy implieszvsy, thusy C ~5. Hence,
~s is the maximal idempotent-separating congruencé on
(i1) As by Lemma 3.9, in inverse CA-AG-groupaidz = xzz’. Hence, the result follows.
g

Theorem 4.6. Let.S be a CA-AG-groupoid and'(S) # ¢. Then the relation defined dh
byn={(z,y) € SxS:3f € E(S))(zf,yf € E(S) ANzf =yf)}is acongruence on
S.

Proof. Clearlyn is reflexive and symmetric. To prove transitivity of let xny andynz,
thenzg = yg andyf = zf for someg, f € E(S). Now by cyclic associativity, left
invertive, paramedial and medial laws, assumption and Lemma 3.4
vogf=f-a9g=f-y9=9 -fy=99.fy=9f-9y=yf-99==2f" 99
=g(zf-9)=glgf -2) =2(9-9f) = 2(f - 99) = 2(fg) = z(9f).
Asg, f € E(S),soby Remark3.%f € E(S). Thusz(gf) = z(gf), impliesznz. Hence
7 is an equivalence relation a1 To prove that) is right compatible, letny andz € S,
thenzg = yg for someg € E(S). Now, by the medial law
TZ-g=2x2-99=2xg 29 =Yg 29 =Yz 99 =Yz g.
Thus,zznyz. Hencey is right compatible. Again, by left invertive law
zr-g=gr-z=(g99-v)z=(xg-9)x=(yg-9)2= (99 -y)z2=2y-99=2y-g
= zan zy.
Thus,n is also left compatible. Hence,is a congruence of. O
Using Lemma 3.23 and Theorem 4.6, we have the following.
Corollary 4.7. LetS be a CA-AG-groupoid an&'(S) # ¢. Then the relations defined on
S by

(i) m = {(z,y) € S x SAf € E(9)) (fx, fy € E(S) A fx = fy)},
(#1) n2 = {(=,y) € S x S(3f € E(S)) (xf, fy € E(S) Naf = fy)},
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(10i) 3 = {(z,y) € S x S(3f € E(S)) (fz,yf € E(S)A fr =yf)},
are congruences oA.

In the following lemma we establish different relationships)dfvherer is as defined in
Theorem 4.6) on AG-groupoid and prove thatify thenz2ny? and then prove in general
z"ny", wheren € N. We further prove that itny andanb, thenxzanyb andaznby.

Lemma 4.8. Let.S be an AG-groupoid and&(.S) # ¢. Then
(1) any = =*ny?,

(i) zny N anb = xanyb A axnby,

(#91) zny = " ny™.

Proof. (i) As zny, soxg = yg for someg € E(S). Now by the medial law
g =ar-99 =129 -9 =y9 Y9 =yy 99 =Yg
= x217 yQ.

(#i) As zny andanb, soxg = yg andaf = bf, for someg, f € E(S). Now by these
results and medial law we have

za-gf =xg-af =yg-bf =yb-gf.

As by Remark 3.2g, f € E(S) impliesgf € E(S), thuszanyb. Similarly aznby.
(iii) Let zny then by Part(i), z2ny?. Again by Part(ii), from 22ny? andxny we have
x3ny>. By repeated use of Pait) and Part(ii), we get the desired result. O

Theorem 4.9. Let S be an AG-groupoid and®(.S) # ¢. Then, the relation defined of
by s = {(z,y) € S x S: (Ve € E(S)) xze = ye} is a congruence of.

Proof. Clearly 3 is a reflexive and symmetric. To proykis transitive, letz8y andySz,
then for alle belongs toE(.S), xe = ye andye = ze, which impliesze = ze, thusznz.
Hence,3 is an equivalence relation. To prove thats right compatible, letcGy then
ze = ye Ve € E(S). Now for z € S, by medial law and assumption

Tz-e=Tz-ee=Te-ze=1Ye-ze =Yz € =Yyz-e
= zzfyz.

Thus, 3 is right compatible. Similarly; is left compatible. Hence the result follows. O

Note that if 3 (as defined in Theorem 4.9) is a congruence on CA-AG-groupdiden
S/ is a CA-AG-groupoid. Also, ifj is a congruence on inverse CA-AG-groupdidhen
S/ is an inverse CA-AG-groupoid and3y if and only if 2/ 3y’. Using Lemma 3.23 and
Theorem 4.9 we have the following.

Corollary 4.10. LetS be a CA-AG-groupoid an&(.S) # ¢. Then the relations defined
on S by

(i) B = {(z,y) € S x S+ (Ve € B(S)) ex = ey},

(1) B2 = {(z,y) € S x S: (Ve € E(5)) xze = ey},

(71) B3 = {(x,y) € S x S : (Ve € E(S)) ex = ye},

are congruences of.
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Theorem 4.11. Let S be an inverse CA-AG-groupoid arfd(S) # ¢. Then the relation
defined onS by = {(x,y) € S x S : (Je € E(S)) (2’e-z,y'e-y € E(S)Na'e-z =
y'e - y)} is a congruence oH.

Proof. Asz’e - x = x’e - x soxdx, thusd is reflexive. Again, ifzdy thenz'e -z = y/e - y
which impliesy’e - y = 2’e - z, soydx, thusd is symmetric. To prove thalis transitive,

let zdy andydz thena’e - © = y'e-yandy'f -y = 2’ f - 2 for somee, f € E(S). Now

by cyclic associativity, left invertive, paramedial and medial laws, definition of idempotent,
Lemma 3.4, Lemma 3.23 and assumption

(' -ef)r=(f 2'e)r = (;v-x'e)f = (e-x2)f = (ee-za)f = (2'e - ze)f
=(fWe-y)e=(y(f ye)e

y'e yfle= (yy-ef)e W'y fe)e=(ey- fy)e

=(ey -y’ fle= (Y f-ye)e = ((z'f - z)e)e = (ee) (' - 2)

= (ze)(2'f €)= (2 2'f)(ee) = (f - 22/ )e = (¢ - fr)e

= (e f2) = (z-ef)z' = (' -ef)z.

As by Remark 3.2, foe, f € E(S) = ef € E(S). Thus from(z’ - ef)x = (2' - ef)z, we
getxdz. Hence,0 is an equivalence relation aft Now to show thab is compatible, let
zdy thenz’e - = y'e - y. Now for anyz € S, by equation ( 3. 1), medial law and the
assumption

((x2)e)(z2) = (22 - ee)(xzz) = (2'e- 2e)(xz) = (2'e-x)(Ze - 2)
e u)Fe-2) = (e e)yz) = (7 - ee)yz) = (y2)e) (w2).

Thuszzdyz, henced is right compatible. Similarly, one can easily shows thas left
compatible. Hencé is a congruence oAf. O

Remark 4.12. If x is an element of an inverse CA-AG-groupdicande € E(S), then
by Lemma 3.23 the elements $fcommute with elements &f(S). By this result and
left invertive law fromz’e - © = ze - ' we haveer’ - © = ex - 2/, which further implies
zz'-e = z'x-e. Also by cyclic associativity and Lemma 323 -¢e = ¢’z = z-ex’ = z-
x'e = e-xa’. This by cyclic associativity and Lemma 3.23 impliese’ = 2’ ex = 2’ - ze.
Also by cyclic associativity and Lemma 3.23,ex = z-2’e andz-2’e = x-ex’. Again by
cyclic associativity, Lemma 3.23 and left invertive lawrz’ = 2’ -ex = 2/ -ze = e - 2'x
andzz’-e =ex' -z = a’e-x = xze -2’ = ex-2’ = 2’z -e. Similarly all other possibility of
z,x’ ande are equal tar’e - z. Alsoz’e - x = 2’ - ex clarify that inz, 2/, e any two can by
operate by “” first and then with the third one from left or from right. Similarly all other
cases can be tackle on similar way.

By Remark 4.12 and Theorem 4.11, the following corollary is now obvious:

Corollary 4.13. Let S be an inverse CA-AG-groupoid add(S) # ¢. Then the relation
defined onS by d,, = {(z,y) € S x S : (Fe € E(5)) (Xp, Tp,Tpgs Y1 YgoYgs € E(S) A
Tp, TpaTps = Yq YgaVgs )} IS @ CONGruence o, wherex,, x,,z,,iS any permutation of
the elements’, e, z andy,, 4, Y4, IS any permutation of the elementse, y.
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In the following, we define a relatiomon an inverse CA-AG-groupoifl and prove thap

is a maximal idempotent-separating congruence. We also define a generalized farm of
denoted by, . Furthermore, we prove thaV p is fundamental and’'(S) is isomorphic to
E(S/p).

Theorem 4.14. Let S be an inverse CA-AG-groupoid arfd(S) # ¢. Then the relation
defined onS by p = {(z,y) € S x S : (Ve € E(S))z’e - x = y'e - y} is the maximal
idempotent-separating congruence $n

Proof. Clearly p is reflexive, ast’e - & = 2’e -  for everye € E(S). Also if zpy, then
z'e-x = y'e-y, which impliesy’e -y = x’e - x, thusypx, hencep is also symmetric. Now
to show that is transitive, letrpy andypz, thenz’e -z = y'e -y andy’e -y = 2'e - 2
Ve € E(S). Thusz'e - x = z'e - z andxzpz, hencep is transitive. Thereforg is an
equivalence relation 0. To prove thap is left compatible, letcpy, thenz'e -z = y'e -y
Ve € E(S). Now for anyz € S, by equation (3. 1) and medial law

((zz)'e)(zz) = (2'2" - ee)(2x) = (e d'e)(zx) = (Ze- 2)(d'e - x)
= (Ze-z)(y'e-y) = (Fe-y'e)(zy) = ('Y - ee)(zy) = ((zy)'e) (2y).

Thuszxpzy, thereforep is left compatible. It can be similarly shown thais right compat-
ible. Hencep is compatible and hence is a congruenceoiio show thap is idempotent-
separating, letf,g € E(S) be such thatfpg. Thenf'e - f = g'e- g Ve € E(S). In
particular fore = f ande = gwe havef'f - f = ¢'f-gandf'g- f = ¢g'g-g. Now
by definition of inverses, Lemma 3.21, Remark 3.4, cyclic associativity and definition of
idempotent element

f=rrr=rfr-fr=9r-9=9f-9=9-9f=r99="fg 4.2)

Now by definition of inverses, Lemma 3.21, Lemma 3.4, left invertive law, definition of
idempotent element and equation (4. 2)

9=99-9d=9g9-9=fg-f=fg-f=9f f=ff-9=fa=1F
Hencep is idempotent-separating. To show thas maximal, letu be another idempotent-
separating congruence. duy, thenz'uy’. As p is right compatible, thus for € E(S)
andz’uy’ we havex’epy’e. Also by Lemma 4.§8(i7), from 2’euy’e and zuy we have
z'e - zuy'e - y. Now by medial, paramedial and left invertive laws, cyclic associativity,
definition of inverse and Lemma 3.23

2= (de-z)(ale-x) = (2e-2'e)(xx) = (ee- 2'a)(xx) = (x2 - 2’2 )e

(@'e - x)
=@z -2'x)e = (x(2'z-2")e = (z2')e = (ex’)z = (2e)x.
Thus,z’e - x is an idempotent. Similarly/’e - y is an idempotent. Since is idempotent-
separating s@’e - © = y'e - y for everye € E(5), which implieszpy. Henceruy implies
zpy, thuspu C p. Therefore,p is the maximum idempotent-separating congruence on
S. O

Using Theorem 4.14 and Remark 4.12, we deduce the following.

Corollary 4.15. Let S be an inverse CA-AG-groupoid arfd(S) # ¢. Then the relation
defined onS by p, = {(z,y) € S x S5 : (Ve € E(5)) p, ¥p,Tps = Ya1Ya:Yas } IS the
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maximal idempotent-separating congruenceSowherex,,, x,,, x,,iS any permutation of
the elements;, e, 2" andy,, y4, Y4, iS any permutation of the elements, v'.

Theorem 4.16. Let p be the maximal idempotent-separating congruence on an inverse
CA-AG-groupoidS with E(S) # ¢. ThenS/p is fundamental.

Proof. Let z € S ande € E(S) such that[(«'p)(ep)](zp) = [(¥'p)(ep)](yp). Then
(@'e-x)p= (Ye-y)p, i.e.(2’e-x)p(y’e-y). Now by medial, paramedial and left invertive
laws, cyclic associativity, definition of inverse and Lemma 3.23

(z'e-2)* = (2'e-x)(2'e-z) = (/e - 2'e)(zx) = (ee- 2'z’)(zx) = (zx - 2'2))e
= (2'z-2'x)e = (z(2'z - 2'))e = (z2')e = (ex’)x = (2'e)x.

Thus,z’e - 2 is an idempotent. It can be similarly shown that - y is an idempotent. Ag
is idempotent-separating $0’c - x)p(y'e - y) impliesa’e - x = y'e - yVe € E(S), which
by definition ofp implieszpy. ThusS/p is fundamental. O

Theorem 4.17. Let E(S) # ¢ be the semilattice of idempotents on an inverse CA-AG-
groupoid S. If E(S/p) is the semilattice of idempotents 6fp, wherep is maximal
idempotent-separating congruence $nthenF(.S) and E(.S/p) are isomorphic.

Proof. Definep : E(S) — E(S/p) by ep = epVe € E(S). Let f,g € E(S) such
that f = g. Then fp = gp, which impliesfp = gp, thusp is well-defined. Since
(fo)p=(fa)p=(fp)(gp) = (fp)(gp), it follows thats is homomorphism. For one-one,
let fp = gp, thenfp = gp. As p is idempotent-separating, so frofp = gp we have
f = g. Thusp is one-one. As elements &(S/p) are of the formep, wheree € E(S)
and for eaclep € E(S/p) there existe € E(S) such thakp = ep, thusp is onto. Hence
p is an isomorphism from E(S) tB(S/p), i.e. E(S) = E(S/p). O

5. CONCLUSION

We demonstrated that inverse CA-AG-groupoids exist. We precisely discussed some fun-
damental characteristics of inverse CA-AG-groupoid and established various properties of
this class. We also extended the notion of equivalence relation and congruences to CA-
AG-groupoids and investigated various congruences on CA-AG-groupoid and inverse CA-
AG-groupoid. Moreover, we defined a maximal idempotent-separating congryemte
inverse CA-AG-groupoid and proved théf p is fundamental and’(S) = E(S/p). We

used the modern techniques of Prover-9, Mace-4 and GAP to produce illustrative examples
and counterexamples to improve the standard of this research work.
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