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1. INTRODUCTION

Practically, to estimate the population parameters usually have been a common issue for
all fields particular in management, engineering, actuarial, medicine and social sciences.
The mean of sample values of the study variable y for size n i.e. t1 =

∑n
j=1 yj/n is an∑N 

efficient e stimator o f t he m ean o f p opulation values o f s ize N  i .e. Y¯ =  j=1 yj /N . 
Although it fulfills the properties of good estimator yet it is very responsive to outliers and 
even a single outlier can mislead its value. The auxiliary information is used by the survey 
statisticians to achieve a precise estimator of Ȳ  . For instance, to improve the estimators 
plot size can be taken as additional information to estimate production of fruits in a specific 
field. To utilize auxiliary information the classical estimators such as ratio, product and
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regression estimators are used to estimate the population mean, see (Audu and Adewara
[2], Noor-ul-Amin et al. [1]). If there is positive relation between an auxiliary variable z
and the study variable y and line passes through the origin then the ratio estimator is most
suitable. The ratio estimator is defined as,

t2 =
t1
z̄
Z̄, (1.1)

with the mean square error (MSE)

MSE(t2) = var(t1)− 2Rcov(t1, z̄) +R2var(z̄), (1.2)

where z̄ =
∑n

1=j zj/n, Z̄ =
∑N
j=1 zj/N , var(z̄) = [ (1−f)

n ]S2
z , var(t1) = [ (1−f)

n ]S2
y ,

f = n
N and R = Ȳ /Z̄.

Moreover, t2 is more efficient than t1 with condition ρ > Vz/2Vy , where Vz = Sz/Z̄
and Vy = Sy/Ȳ ;Sz and Sy are the standard deviations of z and y over the values of entire
population, respectively, and ρ is population coefficient of correlation of z and y.

The above mentioned studies are based on the postulation that the y follows normal
distribution. But in some situations if the outliers appear then the data do not follow the
normal distribution, see (Jenkins et al. [7], Jabbari and Nasiri [6], Haddad and Alsmadi
[5]). It is noticed that the efficiency of t1 decreases under non-normal distribution. The
MMLEs are proved very helpful to enhance the efficiency (Tiku and Bhasln [12]). The
MMLEs are implemented in the situations where maximum likelihood estimators (MLEs)
are not in closed form. It is also discussed at large in literature e.g. see (Tiku and Suresh
[15]; Tiku and Vellaisamy [16],Tiku,Islam, and Selcuk[13] and Oral [11]). The MMLEs
have same large sample properties as MLEs and for small sample size they are identified
efficient as MLEs (Vaughan and Tiku[17]).

Following [15] and [16], suppose a linear regression model yj = βzj+ej ,j = 1, 2, ..., n,
in which y follows a long tailed symmetric (LTS) family as,

f(y) : LTS(µy, b, λ) =
Γ(b)

λ
√
nΓ(1/2)Γ(b− 1/2)

[1 +
1

k
{(y − µy)/λ}2]−b,−∞ < y < +∞

(1.3)

where shape parameter is b and k = 2b − 3 and taking b is great than 2 with E(y) = µy;
var(y) = λ2 and kurtosis of (1.3) is β2 = 3

(1−2/k) for k → ∞ it reduce to normal distri-
bution.

Let the sample of order statistics from (1.3) as y(1) ≤ y(2) ≤ ... ≤ y(n) .The MMLEs of
mean (µy ) and standard deviation (λ ) as,

µ̂y =
n∑
j=1

γjyj/w, (1.4)
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and

λ̂ = (D +
√
D2 + 4nQ)/

√
4n(n− 1), (1.5)

where, w =
∑n
j=1 γj ; D = (2b/k)

∑n
j=1 αjy(j) and Q = (2b/k)

∑n
j=1 γj(y(j) − µ̂y)2

the coefficients (αj , γj) are given by

αj =
(2/k)t3(j)

[1 + t2(j)/k]2
and γj =

[1− t2(j)/k]

[1 + t2(j)/k]2
. (1.6)

Since E(µ̂y − Ȳ ) = 0 by [16]

var(µ̂y) = γtΩγ
λ2

w
and cov(µ̂y, ȳ) = γtΩw(λ2/w), (1.7)

where w is n× 1 column vector through elements 1/n and γ is the vector consist of the el-
ements of γj . Let t(j) = E(

y(j)−µy

λ ) and Ω be the expected vector and variance covariance
matrix of order statistics of LTS family which are tabularized by Tiku and Kumra [14] for
b ≤ 10. Using t(j) and Ω, one may get solution for each of Eq.(1.4)-(1.7).

Oral and Oral [10] advised a ratio estimator when study variable y is not from the normal
distribution following the MMLE by,

t3 = (µ̂y/z̄)Z̄, (1.8)

whereµ̂y is the MMLE of µy . The MSE of (1.8) is given by,

MSE(t3) = var(µ̂y)− 2Rcov(µ̂y, z̄) +R2var(z̄), (1.9)

where cov(µ̂y, z̄) = 1/β[cov(µ̂y, t1) − cov(ē, βz̄[.] + ē[.]]; z̄[.] =
∑n
j=1 γjz[j]/w; e[.] =

y(j)−βz[j] and z[j] is the concomitant of y[j], 1 < j < n. Hence cov(µ̂y, z̄) = [cov(µ̂y, t1)/β−
cov(ē, ē[.])/β], where β is the slope of the model and cov(ē, ē[.]) = γtΩw(λ2

e/w).

Note that if f = n/N > 0.05 then finite population correction (f.p.c) (1 − f) can be
used as cov(µ̂y, z̄) = (1− f)/β[cov(µ̂y, t1)− cov(ē, ē[.])].

They showed that t3 is robust in presence of wild observations and has always less MSE
as compare to the MSE of t2, except the under study distribution is normal. Following
the MMLE, Kumar and Chhaparwal [5] suggested product estimator which is robust under
existence of outliers.

In this paper, the objectives are twofold. The first objective is to propose the MMLEs to
improve the robustness of any estimator, and the second objective is to propose an improved
ratio estimator following the proposed MMLEs. The proposed MMLEs are presented in
Section 2. A new ratio estimator following the proposed MMLEs is discussed in Section
3. Efficiency comparison and simulation study for presenting application and simulation
study are presented respectively in Section 4 and 5.
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2. PROPSED MODIFIED MLES

The log likelihood equation from (1.3) can be given by,

L = −nlogλ− n

2
logk − nlog{ Γ(b)

Γ(1/2)Γ(b− 1/2)
} − b

n∑
j=1

[1 +
1

k
{(y − µy)/λ}2].

(2.1)

Differentiating (2.1) with respect to parameters ( µy and λ ) respectively, we have

∂L

∂µy
=

2b

kλ

n∑
j=1

h(vj), (2.2)

and

∂L

∂λ
= −n

λ
+

2b

kλ

n∑
j=1

vjh(vj), (2.3)

where h(vj) =
vj

1+v2j/k
and vj =

yj−µy

λ . The MLEs of µy and λ are the solution of (2.2)
and (2.3) respectively, which does not have explicit solutions. In such situation replacement
of particular portions of (2.1) by some appropriate approximation occasionally results into
simpler and efficient estimators of the parameters. Thus, the estimators in literature are
known as MMLEs e.g. see Mehrota and Nanda [9] and Tiku and Suresh [15].

Following[12], the variate vj =
yj−µy

λ is replaced with ordered variate v(j) =
y(j)−µy

λ
in (2.2) and (2.3) respectively as,

∂L

∂µy
=

2b

kλ

n∑
j=1

h(v(j)), (2.4)

and

∂L

∂λ
= −n

λ
+

2b

kλ

n∑
j=1

v(j)h(v(j)), (2.5)

where h(v(j)) =
v(j)

1+v2
(j)
/k

. The function h(v(j)) is linearized taking up to first order ap-

proximation by the Taylor series expansion around t(j) as,

h(v(j)) ∼= h(t(j)) + (v(j) − t(j))|h′(v(j))|v(j)=t(j) , (2.6)

where t(j) = E(v(j)), Tiku and Kumra [14] constructed the table of t(j) taking b =
2(0.5)10, n ≤ 20 for LTS family. Further, simplification of (2.6) can be yield as, h(v(j)) ∼=

(2/k)t3(j)
[1+t2

(j)
/k]2

+ v(j)
[1−t2(j)/k]

[1+t2
(j)
/k]2

or alternatively can be given by,

h(v(j)) ∼= αj + v(j)γj , (2.7)
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where αj =
(2/k)t3(j)

[1+t2
(j)
/k]2

and γj =
[1−t2(j)/k]

[1+t2
(j)
/k]2

.

In Eq. (1.4) y(j) is being weighted by γj . The γj gives higher weights to the central
observations and lower to the extreme observations. Consequently, the extremes receive
minute weights that reduce the effect of non-normality and existence of outlier (Oral and
Oral [10]), (see figure 1). Figure1 shows that the small sample size, γj gives lower weight
to extreme observations but it is not so lower that can minimize the effect of extremes. If
the sample size is increased, although it is useful for the protection from extreme values
yet middle observations attain balance weights relatively instead higher weights. To deal
with it, the weight function is modified as under to improve the robustness and to pro-
vide appropriate weight to middle observations particularly in small and large sample size,
respectively,

γ∗j =
exp(−t(j)/c)/[1 + exp(−t(j)/c)]2∑n

j=1
exp(−t(j)/c)

[1+exp(−t(j)/c)]2
, (2.8)

where c is a tuning constant and assumed to be known or may be chosen so as to make
estimator good in sense of robustness and efficiency. This modification may be chosen for
convenience in order to improve the efficiency of the linear estimates (Downton [4]). From
the figure 2, it may be observed that γ∗j overcomes the problems that one may face while
using γj and attains the features, we have claimed. following (2.8) ,we consider (2.7) as,

h(v(j)) ∼= αj + v(j)γ
∗
j ,

we can write (2.4) and (2.5) respectively as,

∂L

∂µy
∼=

2b

kλ

n∑
j=1

(αj + v(j)γ
∗
j ) = 0, (2.9)

and

∂L

∂λ
∼= −

n

λ
+

2b

kλ

n∑
j=1

(αj + v(j)γ
∗
j ) = 0. (2.10)

Now proposed MMLEs for µy and λ can be obtained from (2.9) and (2.10) respectively as,

µ̂∗y =
n∑
j=1

γ∗j yj , (2.11)

and

λ̂∗ = (E +
√
E2 + 4nG)/

√
4n(n− 1), (2.12)

where, E = (2b/k)
∑n
j=1 αjy(j) and G = (2b/k)

∑n
j=1 γ

∗
j (y(j) − µ̂∗y)2 iff

∑n
j=1 γ

∗
j = 1;∑n

j=1 αj = 0.
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FIGURE 1. Weights function for sample size n = 5, 10, 15 and 20

µ∗y is also the linear estimate in ordered observations and is unbiased mean estimator of
population. The variance of µ∗y and covariance between µ∗y and t1 can be obtained as,

var(µ̂∗y) = γ∗tΩγ∗λ2, (2.13)

and

cov(µ̂∗y, t1) = γ∗tΩwλ2, (2.14)

where w is the n × 1 column vector through elements 1/n and γ∗t is the transpose vector
of γ∗.

3. PROPOSED ROBUST RATIO ESTIMATOR

Due to attractive features of the proposed weight function, we propose a robust ratio
estimator following the proposed MMLEs of previous section by

tp =
µ̂∗y
z̄
Z̄. (3.1)

For the derivation of approximate MSE of (3.1) we may follow proceed as,

tp − Ȳ =
µ̂∗y
z̄
Z̄ − Ȳ ⇒ Z̄(R̂−R),

where R̂ =
µ̂y

∗

z̄ and R = Ȳ /Z̄.
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FIGURE 2. γj and γ∗j at c = 0.10, 0.25, and 0.36 for n = 20

Following the Taylor series approximation of R̂−R about (Z̄, Ȳ )

g(z̄, µ̂∗y) ∼= g(Z̄, Ȳ ) + (z̄ − Z̄)|
∂g(z̄, µ̂∗y)

∂z̄
|(z̄=Z̄),(µ̂∗

y=Ȳ ) + (µ̂∗y − Ȳ )|
∂g(z̄, µ̂∗y)

∂µ̂∗y
|(z̄=Z̄),(µ̂∗

y=Ȳ ),

(3.2)

where g(z̄, µ̂∗y) = R̂ and g(Z̄, Ȳ ) = R. Using (3.2) to the proposed estimator in order to
obtain the MSE as,

R̂−R ∼= (µ̂∗y − Ȳ )
1

Z̄
− (z̄ − Z̄)

Ȳ

Z̄2
,

or

Z̄2E(R̂−R)2 + E(z̄ − Z̄)2R2 − 2R[E(µ̂∗y − Ȳ )(z̄ − Z̄)],

or the MSE(tp) is obtained as,

MSE(tp) ∼= var(µ̂∗y) +R2var(z̄)− 2Rcov(µ̂∗y, z̄), (3.3)

where cov(µ̂∗y, z̄) = 1/β{cov(µ̂∗y, t1)− cov(βz̄[.] + ē[.], ē)} or alternatively may be written
as, cov(µ̂∗y, z̄) = 1/β{cov(µ̂∗y, t1)−cov(ē[.], ē)}; z̄[.] =

∑n
j=1 γ

∗
j z[.]; ē[.] =

∑n
j=1 γ

∗
j e[.]; e[.] =

y(j) − βz(j) and z(j) is the concomitant of y(j), where cov(ē[.], ē) = γ∗tΩwλ2
e.
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4. EFFICIENCIES COMPARISON

To derive the conditions for which the suggested estimator is perform better than their
competing estimator are given as,

MSE(tp) < MSE(t2),

cov(t1, z̄) <
1

2R [E(t1 − Ȳ )2 − E(µ̂∗y − Ȳ )2] + cov(µ̂∗y, z̄),

cov(t1, z̄) < B1, (4.1)

whereB1 = 1
2R [E(t1− Ȳ )2−E(µ̂∗y− Ȳ )2]+cov(µ̂∗y, z̄). If the condition (4.1) is satisfied

then the proposed ratio estimator is more efficient than the classical ratio estimator.

MSE(tp) < MSE(t3),

cov(µ̂y, z̄) <
1

2R [var(µ̂y)− var(µ̂∗y)] + cov(µ̂∗y, z̄),

cov(µ̂y, z̄) < B2, (4.2)

where B2 = 1
2R [var(µ̂y) − var(µ̂∗y)] + cov(µ̂∗y, z̄). Since the proposed ratio estimator

is more efficient than the proposed Oral and Oral ratio estimator if the condition (4.2) is
satisfied.

5. NUMERICAL ILLUSTRATION OF A PRACTICAL APPLICATION

The data by Dobson and Barnett [3] in table 1 show the percentages of total calories
obtained from complex carbohydrates, for twenty male insulin-dependent diabetics who
had been on a high-carbohydrate diet for six months. Compliance with the regime was
thought to be related to the percentage of calories as protein.

TABLE 1. Carboydrate and protein for twenty male insulin-dependent diabetics
Carb. (y) Pro.(z) Carb.(y) Pro.(z)

33 14 50 17
40 15 51 19
37 18 30 19
27 12 36 20
30 15 41 15
43 15 42 16
34 14 46 18
48 17 24 13
30 15 35 18
38 14 37 14

Let the amount of carbohydrate and protein be the study variable (y ) and an auxiliary
variable (z ) respectively. The Q-Q plot in figure 3 shows that the data of carboydrate is
following the LTS(b = 2.5) family. Considering c = 0.35 , and using the equations (1.2),
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TABLE 2. Computation of Example 1
N = 20 var(µ̂∗y) = 0.3956
n = 5 cov(t1, z̄) = 1.17

R = 2.3648 cov(µ̂y, z̄) = −0.4597
var(t1) = 8.6274 cov(µ̂∗y, z̄) = −0.4851
var(z̄) = 0.7405 B1 = 1.2553
var(µ̂y) = 0.0361 B2 = −0.5611

TABLE 3. MSE values of ratio estimators
MSE(t2) MSE(t3) MSE(tp)

7.2349 6.3517 6.8312

(1.11) and (3.3) the values of the MSEs are evaluated and results are presented in Table 2
and 3. From Table 3, it may be concluded that non-normality is highly influenced on usual

FIGURE 3. LTS family Q-Q plot of carbohydrate data for b = 2.5

ratio estimator. From table 3 it is also observed that the proposed ratio estimator tp has less
MSE value than the MSE of t2 and reason is that the required condition in (4.1) is met for
this data, see table 2, cov(t1, z̄) = 1.17 and B1 = 1.255354 so cov(t1, z̄) < B1.

From table 3, it is observed that required condition in (4.2) is not fulfilled for this data,
and this is why the proposed ratio estimator tp is attaining slightly larger value of MSE
as compared to the MSE of t3, see table 2,cov(µ̂y, z̄) = −0.4597 and B2 = −0.5611 so
cov(µ̂y, z̄) > B2.
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6. MONTE- CARLO SIMULATION

Followed by R programming in simulations study, we apply the model yj = βzj + ej
where ej and zj are generated independently, and compute yj . Let ej be random obser-
vation of error of the LTS population with zero mean and variance σ2

e = λ2
e,1 < j < N ,

let
∏
N represent the related population consisting of (z1, y1), (z2, y2), ..., (zN , yN ) . In

order to determine the MSEs of the tp , we have to compute tp for each sample. The
coefficients (γj , γ

∗
j ) are calculated with (b = 2.5, c = 0.10, 0.25, 0.38, 0.50) . There

would be T=
(
N
n

)
possible samples of size n that could be drawn theoretically from

∏
N

using simple random sample (SRS). Obviously T is much large, therefore, a Monte Carlo
stimulation study is carried out. Taking N = 500 in every simulation and z is from uni-
form distribution with parametric values 0 and 1, and take β with no loss of generality.
To select the parametric value of σ2

e = 1/12[1/ρ2 − 1] such that ρ = 0.65 . Gener-
ating

∏
500 pairs and then picked at random S = 15000 of all the possible

(
500
n

)
SRS

of size n = 5, 10, 15 and 20 from assumed populations, which provide 15000 values of
tp. For the comparison of the efficiencies of the tp for a given n, compute the values of
the MSEs, MSE(t2) = (1/S)

∑S
j=1(t2 − Ȳ )2,MSE(t3) = (1/S)

∑S
j=1(t3 − Ȳ )2 and

MSE(tp) = (1/S)
∑S
j=1(tp − Ȳ )2 following the models as,

1) True model LTS(2.5, 0, 1)
2) Outlier model of Dixon; n− no observations from LTS(2.5, 0, 1) and no (we do not

know which) from LTS(2.5, 0, 4) , where no is calculated from the formula [| n10 + 1
2 |].

To recognize that model (1), may be consider as the true population model for com-
parisons purpose and the model (2) is elected as its probable substitute. In Dixons outlier
model (2), we adopt the procedure to inject the outliers into the each sample rather than
the generated populations in order that all the samples drawn from

∏
100 contain outliers.

With the attention that all models have the same variance as that of y , standardized the
ej(j = 1, 2, ..., N) in all models. Replicated values of the MSEs of tp and their corre-
sponding relative efficienciesE are given in Table 4, whereE = MSE(t1)

MSE(tg) where g = 1, 2, 3

and p.

See table 4, for all values of c proposed estimator tp has less MSE than the sample mean
per unit t1 in this study. The MSE of all estimators decreases as the sample size increases.
The MSE of tp for any specified sample size decreases as the value of c increases. As the
value of c increases the relative efficiency of proposed estimator regarding t2 and t3 also
increases in all choices of sample sizes. Proposed estimator tp is better perform than the t3
for c ≥ 0.38.

It would be perceived that tp has dual advantages with respect to robustness and ef-
ficiency, depending on the choice of survey statisticians. If they want to select efficient
estimator with compromising on robustness or robust estimates with compromising on ef-
ficiency then both can be achieved with the choice of c.
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7. CONCLUSION

This paper proposes a new ratio estimator utilizing the information provided by using an
auxiliary variable that is measured on the whole population. The observed random variable
is usually assumed to be normally distributed. However, in many real-life problems non-
normal distributions are also encountered quite often. In such cases the classical estimators
usually develop biases and their variances are also inflated. If a non-normal distribution
exhibit long-tailed (kurtosis greater than 3) behavior, observing some large values in the
sample are very much expected. In reference to the normal distribution such observations
can be thought as outliers, however, they are not. In any case, the maximum likelihood
method can be used in order to obtain maximum likelihood estimators of the parameters.
However, in non-normal cases the likelihood equations are in intricate nonlinear form and
do not yield estimators that are expressed analytically. Tiku and Suresh proposed modified
maximum likelihood method through which they were able to get closed form estimators
under non-normality. In this paper the authors borrow these estimators and with some
modifications plugged them into their ratio estimator. It is shown, through simulation, that
the ratio estimators so obtained are more efficient and comparatively robust in comparison
with the other available estimators.

8. ACKNOWLEDGMENTS

We would like to thank anonymous referees and editor for their valuable comments to
improve the manuscript.

REFERENCES

[1] M. N.-ul-Amin, M. Tayyab and M. Hanif, Mean Estimation Using Even Order Ranked Set Sampling,Punjab
Univ. j. math. 51, No. 1 (2019) 91-99.

[2] A. Audu and A. A. Adewara, , A Modified Factor-type Estimator under Two-phase Sampling,Punjab Univ.
j. math. 49, No. 2 (2017) 59-73.

[3] A. J. Doson and A. Barnet, Introduction to Generalized Linear models, Champan and Hall, New York,
(2008), p96.

[4] F. Downton, Linear estimates of parameters in the extreme value distribution, Technometrics 8, (1996) 3-17.
[5] F. Haddad and M. K Alsmadi, Improvement of The Hotellings T Charts Using Robust Location Winsorized

One Step M-Estimator (WMOM), Punjab Univ. j. math. 50, No. 1 (2018) 97-112.
[6] N. M. Jabbari and P. Nasiri, Bayesian Shrinkage Estimator of Parameter of Exponential Distribution with

Outliers, Punjab Univ. j. math. 50, No. 2 (2018) 11-19.
[7] O. C. Jenkins, L. J. Ringer and H. O. Hartley, Root estimators, Journal of the American Statistical Associa-

tion 68, (1973) 414-419.
[8] S. Kumar and P. Chhaparwal, A robust unbiased dual to product estimator for population mean through

modified maximum likelihood in simple random sampling, Cogent Mathematics 3, (2016) 1-13.
[9] K. G. Mehrotra and P. Nanda, Unbiased estimation of parameters by order statistics in the case of censored

samples, Biometrika 61, (1974) 601-606.
[10] E. Oral and E. Oral, A robust alternative to the ratio estimator under non-normality, Statistics and Proba-

bility Letters 81, (2011) 930-936.
[11] E. Oral, Binary regression with stochastic covariates, Communications in Statistics Theory and Methods 35,

(2006) 1429-1447.
[12] M. L. Tiku and P. Bhasln, Usefulness of robust estimators in sample survey, Communications in Statistics

Theory and Methods 11, (1982) 2597-2610.
[13] M. L. Tiku, M. Q. Islam and S. Selcuk, Nonnormal Regression II. Symmetric Distributions, Communications

in Statistics Theory and Methods 30, (2001) 1021-1045.



Modified Maximum Likelihood Integrated Robust Ratio Estimator in Simple Random Sampling 145

[14] M. L. Tiku and S. Kumra, Expected values and variances and covariances of order statistics for a fam-
ily of symmetric distributions, In selected tables in mathematical statistics 8, (1981) 141-270, American
Mathematical Society, Providence RI, USA.

[15] M. L. Tiku and R. P. Suresh, A new method of estimation for location and scale parameters, Journal of
Statistical Planning and Inference, 30, (1992) 281-292.

[16] M. L. Tiku and P. Vellaisamy, Improving efficiency of survey sample procedures through order statistics,
Journal of the Indian Society of Agricultural Statistics 49, (1996) 363-385.

[17] D. C. Vaughan and M. L. Tiku, Estimation and hypothesis testing for a nonnormal bivariate distribution
with applications, Mathematical and Computer Modelling 32, (2000) 53-67.


