
Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 51(2)(2019) pp. 1-19

Numerical Approximation of Stiff Problems Using Efficient Nested Implicit
Runge–Kutta Methods

Attique Ur-Rehman*
Department of Mathematics,

Government College University Lahore, Pakistan.
Email: attique.ur-rehman@gcu.edu.pk*

Shafiq Ur Rehman
Department of Mathematics,

University of Engineering and Technology, Lahore, Pakistan.
Email: srehman@uet.edu.pk

Junaid Ahmad
Department of Mathematics,

University of Engineering and Technology, Lahore, Pakistan.
Email: junaidshaju@gmail.com

Received: 02 March, 2018 / Accepted: 01 June, 2018 / Published online: 10 December,
2018

Abstract. The aim of this paper is to investigate the accuracy and
efficiency of Gauss-type nested implicit Runge–Kutta (NIRK) methods.
These methods possess many important practical properties of implicit
Runge–Kutta (IRK) methods, such as, good stability, high order, and
symmetry. Moreover, as with IRK methods, NIRK methods can also be
presented in embedded form that helps local error estimation. However,
the implementation of NIRK methods is practically cheaper than other
classes of IRK methods as the NIRK formulas have explicit internal
stages.

We test an order six NIRK method that uses an embedded order four
method for estimating the local error. Our test problems are those from
stiff DETEST. As part of the testing, we compare the method with the
Matlab integrator ODE15s and assess the effectiveness of four variations
on the local error estimation.

AMS (MOS) Subject Classification Codes: 65L04; 65L05; 65L06
Key Words: Gauss-type methods, Nested implicit Runge-Kutta methods, Stiff problems,
Local error estimation.

1. OVERVIEW

Many systems of ordinary differential equations (ODEs) model various physical
phenomena from science, engineering and economics. The solution of these ordinary

1



2 A. Ur-Rehman, S. Rehman and J. Ahmad

differential equations tells us about the behaviour of the underlying physical system. In
order to get a unique solution of a differential equation system, some additional information
is required in the form of initial conditions (ICs). The initial value problems (IVPs)
naturally arise in many physical phenomena and are generally written as

y′(t) = f(y(t)), y(t0) = y0, (1. 1)

where y0 ∈ RN denote the initial positions, the operator ′ denotes differentiation with
respect to time, N is the dimension of the IVP, and f : RN → RN is a sufficiently smooth
function. It is not always possible to find analytical solutions for many IVPs. We therefore
resort to numerical approximations of the exact solutions using numerical methods. These
numerical methods can be classified as one step methods or multistep methods. In this
paper, we will only consider the one step methods.

In one step methods, the numerical solution advances in time from tk to tk+1 by using
information for the previous time tk only. The first one step method was the famous
method of Euler, introduced by Euler in 1768 that was published in his three volume work
Institutiones Calculi Integralis. Heun (1900) and Kutta (1901) further contributed and
characterized the methods that later became Runge-Kutta (RK) methods. The general form
of RK methods is

Yi = yk + h

s∑
j=1

aijf(tk + cjh, Yj), i = 1, 2, ..., s, (1. 2 a)

yk+1 = yk + h

s∑
i=1

bif(tk + cih, Yi), (1. 2 b)

where h = tk+1−tk is the step size and Yi are the stage values. Early focus was on explicit
Runge-Kutta (ERK) methods but with recognition of stiff ODEs, attention moved towards
implicit Runge-Kutta (IRK) methods as well.

The IRK methods have several advantages that make them a popular choice. They
include special classes of methods that have excellent stability properties. Stability of a
numerical method is connected with the ability of the method to control the propagation of
the error introduced in initial approximations. Furthermore, IRK methods can have high
order of convergence and can be implemented in a variable step size regime.

Suppose we are trying to solve an N–dimensional system of ODEs y′ = f(t, y(t)) with
an s–stage fully IRK method. We need to solve a system of sN nonlinear equations for the
unknown stages Y1, Y2, . . . , Ys. These stage values can be formulated as

Y1−y0 − h
(
a11f(t0 + c1h, Y1) + . . .+ a1sf(t0 + csh, Ys)

)
= 0,

Y2−y0 − h
(
a21f(t0 + c1h, Y1) + . . .+ a2sf(t0 + csh, Ys)

)
= 0,

...

Ys−y0 − h
(
as1f(t0 + c1h, Y1) + . . .+ assf(t0 + csh, Ys)

)
= 0.

(1. 3)



Numerical Approximation of Stiff Problems Using Efficient Nested Implicit Runge-Kutta Methods 3

The above system can be written in a more compact form as

Yi − yk − h
s∑
j=1

aijf(tk + cjh, Y (j)) = 0, i = 1, 2, . . . , s. (1. 4)

The main issue in the implementation of an IRK method is to achieve an efficient solution
to the above nonlinear system. Let gi = Yi − yk, then (1. 4 ) implies

gi = h

s∑
j=1

aijf(tk + cjh, yk + gj), i = 1, 2, . . . , s. (1. 5)

If the solutions gi of the above system are known, the step update (1. 2 b) become explicit
for yk+1. This needs s additional function evaluations unless the coefficient matrix A =
[aij ] is non-singular [8]. We can write (1. 5 ) in the form g1

...
gs

 = A

 hf(tk + c1h, yk + g1)
...

hf(tk + csh, yk + gs)

 , (1. 6)

so (1. 2 b) become equivalent to

yk+1 = yk +

s∑
j=1

qigi (1. 7)

where (q1, . . . , qs) = (b1, . . . , bs)A
−1. The formula (1. 7 ) is advantageous in a sense that

the values g1, . . . , gs are calculated iteratively. A fixed point iterative scheme can be used
but it destroys the stability properties, especially in case of stiff problems. On the other
hand, Newton’s method deals with such problems effectively. When we apply Newton’s
method to system (1. 5 ), we need to solve a linear system with the coefficient matrix

I − ha11 ∂f∂y (tk + c1h, yk + g1) · · · −ha1s ∂f∂y (tk + csh, yk + gs)
...

...
−has1 ∂f∂y (tk + c1h, yk + g1) · · · I − hass ∂f∂y (tk + csh, yk + gs)

 ,
in every iteration. To simplify the above matrix, we can replace the Jacobians ∂f

∂y (tk +

cjh, yk + gj) by the following approximation

J ≈ ∂f

∂y
(tk, yk).

We can choose to perform the evaluation of the Jacobians at every step or at every iteartion
or after specific number of steps. The simplified Newton iterative scheme for (1. 5 ) can be
written as

(I − hA⊗ J)∆Gn = −Gn + h(A⊗ I)F (Gn),

Gn+1 = Gn + ∆Gn,
(1. 8)

where n is the iteration index, ⊗ is the Kronecker product, Gn = (gn1 , . . . , g
n
s )T and

∆Gn = (∆gn1 , . . . ,∆g
n
s )T are the n-th approximations to the numerical solution and the



4 A. Ur-Rehman, S. Rehman and J. Ahmad

increments, respectively. Also

F (Gk) = (f(t0 + c1h, y0 + gk1 ), . . . , f(t0 + cjh, y0 + gkj ))T .

Every iteration needs s evaluations and the solution of sN linear equations with the same
matrix (I − hA⊗ J) for all iterations.

Although, IRK methods have many attractive properties, however they are costly to
implement. Several techniques are employed to overcome the high cost which include
the introduction of methods, such as, singly diagonally implicit Runge-Kutta (SDIRK)
methods [1, 13, 14], singly implicit Runge-Kutta (SIRK) methods [2, 3, 4], and mono-
implicit Runge-Kutta (MIRK) methods [5].

The main factor that increases the cost of IRK methods is the implicit nature of its stages.
However these are also important to retain so as to solve the stiff systems efficiently. A new
class of methods termed as nested Implicit Runge-Kutta (NIRK) methods were introduced
by G. Yu. Kulikov and S. K. Shindin [12, 10] to reduce the cost of implementation. The
idea is that the stages are evaluated explicitly, however they depend on the unknown output
value. This leads to a nonlinear implicit equation involving the output approximation only
and this can be solved by Newton iterations.

In the next section, we present Gauss-type nested implicit Runge-Kutta (NIRK) methods
and important error estimation techniques used in the implementation of these methods
are presented. An important part of this paper is the numerical testing that we discuss in
Section 3. Different classes of test problems and comparison of numerical methods applied
on these problems are included. The numerical results are also presented and discussed
in this section. Finally, Section 4 provides conclusions drawn on the basis of numerical
experiments.

2. GAUSS-TYPE NESTED IMPLICIT RUNGE-KUTTA METHODS

NIRK formulas are based on Gauss quadrature formulas and have been developed up
to order six. The NIRK methods are A-stable and stiffly accurate [10]. In these methods
the internal stages are calculated in an explicit manner so their practical implementation
is potentially cheaper than IRK methods. Also, some of the stage values calculated in the
integration step are sufficiently accurate, giving a dense output of the same order as of the
method applied. With these two properties, the NIRK methods are suitable for solving
stiff IVPs. The integration of Hamiltonian problems, partial differential equations and
differential algebraic systems is likewise successful [12].
An s-stage nested implicit Runge–Kutta method to solve IVP (1. 1 ) is presented as

Y 2
j = a2j1yk + a2j2yk+1 + h

(
d2j1f(tk, yk) + d2j2f(tk+1, yk+1)

)
, j = 1, 2, (2. 9 a)

Y ij = aij1yk + aij2yk+1 + h
(
dij1f(tk, yk) + dij2f(tk+1, yk+1)

)
+ h

i−1∑
m=1

dij,m+2f(T i−1m , Y i−1m ), i = 3, 4, . . . , s, j = 1, 2, . . . , i, (2. 9 b)

yk+1 = yk + h

s∑
i=1

bif(T si , Y
s
i ), (2. 9 c)



Numerical Approximation of Stiff Problems Using Efficient Nested Implicit Runge-Kutta Methods 5

where T ij = tk + hcij and Y ij are the i-th level stage values. For an N -dimensional
differential system the step update formula (2. 9 c) can be expanded as a system of N
nonlinear equations as

yk+1 − yk − h
(
b1f(T s1 , Y

s
1 ) + b2f(T s2 , Y

s
2 ) + . . .+ bsf(T ss , Y

s
s )
)

= 0. (2. 10)

The formulas (2. 9 a) and (2. 9 b) represent two levels at which the internal stage values
are evaluated. The NIRK method use Hermite interpolation for approximating the true
solution at fixed nodes. If two numerical solutions yk and yk+1 and their derivatives y′k
and y′k+1 at the grid points tk and tk+1 are available then a Hermite polynomial of degree
three can help in constructing the method of order four [11]. To obtain order six NIRK
method, the solutions y(tk+c21h) and y(tk+c22h) at two fixed points tk+c21h and tk+c22h
are approximated by using Hermite polynomial of degree three. These solutions become
second level stage values (2. 9 a). Similarly, we use degree five Hermite polynomial to
approximate the solutions y(tk + c31h), y(tk + c32h) and y(tk + c33h) at three fixed points
tk + c31h, tk + c32h and tk + c33h with the help of calculated information. These solutions
become 3-rd level stage values ((2. 9 b), for i = 3). These second and third level stage
values are used in the step update formula (2. 9 c). Note that the numerical solutions yk
computed at tk and yk+1 computed at tk+1 can be considered as first level stage values.

An additional property of NIRK methods is that their coefficients aij , bj and cj satisfy

aij1 + aij2 = 1, i = 2, 3, . . . , s j = 1, 2, . . . , i,

cij = aij2 +

i+1∑
l=1

dijl.
(2. 11)

NIRK methods can be represented in Butcher tableau as

0 0 0 0 · · · 0 0 0

c2 d21 0 0 · · · 0 a2bT d22

c3 d31 D3 0 · · · 0 a3bT d32

c4 d41 0 D4 · · · 0 a4bT d42
...

...
...

...
. . .

...
...

...

cs ds1 0 0 · · · Ds asbT ds2

1 0 0 0 · · · 0 bT 0

0 0 0 · · · 0 bT 0

TABLE 1. Butcher tableau for Gauss-type NIRK methods, which shows
that these methods can be expressed in the form of IRK methods with
s+ 1 block stages.

where,

Di =

 di13 · · · di1,i+1
...

. . .
...

dii3 · · · dii,i+1

 , di1 =

 di11
...
dii1

 , di2 =

 di12
...
dii2

 ,



6 A. Ur-Rehman, S. Rehman and J. Ahmad

ai =

 ai12
...
dii2

 , ci =

 ci1
...
cii

 , b =

 b1
...
bs

 .
When dealing with stiff problems, a Newton iterative scheme is more efficient than the
fixed point iterative scheme to solve the nonlinear equation of the step update formula.
Kulikov presented a modified Newton scheme in [9] as given below

Y
2,(l)
j = a2j1ȳk + a2j2y

(l−1)
k+1 + h

(
d2j1f(tk, ȳk) + d2j2f(tk+1, y

(l−1)
k+1 )

)
, j = 1, 2,

(2. 12 a)

Y
3,(l)
j = a3j1ȳk + a3j2y

(l−1)
k+1 + h

(
d3j1f(tk, ȳk) + d3j2f(tk+1, y

(l−1)
k+1 )

)
+ h

2∑
m=1

d3j,m+2f(T 2
m, Y

2,(l−1)
m ), j = 1, 2, 3, (2. 12 b)

U(hJ)(y
(l)
k+1 − y

(l−1)
k+1 ) = −y(l−1)k+1 + ȳk + h

s∑
i=1

bif(T si , Y
s,(l)
i ), l = 1, 2, . . . , N,

(2. 12 c)

where J def
= ∂tf(tk+1, y

(0)
k+1) represents the Jacobian of the function provided in IVP (1. 1 )

and ȳk = yMk , k = 0, 1, . . . , N − 1 is the numerical solution obtained by method (2. 9 ),
using M iterations of (2. 12 ) per step.

A major constraint for iteration (2. 12 ) is its practical efficiency because the coefficient
matrix U(hJ) in (2. 12 c) is a matrix-valued cubic polynomial of the form

U(hJ)
def
= Im −

1

2
hJ +

1

10
(hJ)2 − 1

20
(hJ)3, (2. 13)

where Im is an m × m identity matrix. The evaluation of the coefficient matrix U
as in (2. 13 ) is impractical due to its large computational cost. One way to overcome
this is to use its linear part and ignore the higher degree terms. However this approach
does not reduce the CPU time considerably and damages the stability of MIRK methods
including NIRK formulas [6, 10, 11]. Cash and Singhal, in [6], suggested to approximate
the coefficient matrix U by some power equal to the degree of the original matrix-valued
polynomial (2. 13 ). Kulikov approximated it for NIRK methods [9] as

Ũ(hJ)
def
=
(
Im −

1

6
hJ
)3
. (2. 14)

The above polynomial has many advantages. Firstly, it is effectively utilized in iterative
scheme (2. 12 ). The matrix Im−hJ/6 is decomposed once per integration step. The three
linear systems are then solved with the decomposed matrix. So, this uses reasonably less
computational cost. Secondly, the polynomial (2. 14 ) is an approximation of order 2, that
is U(hJ) = Ũ(hJ) + O(h2J2). So, replacement of U(hJ) with Ũ(hJ) has no negative
influence on the convergence rate of the iteration.

In case of Gauss–type NIRK method, a pair of embedded RK formulas can be formed
by order four and order six methods [12]. Both of these methods are applied to obtain
two numerical solutions of the given IVP. The difference of both numerical solutions



Numerical Approximation of Stiff Problems Using Efficient Nested Implicit Runge-Kutta Methods 7

estimates the error. Thus a family of order six Gauss–type methods with built-in error
estimation is achieved [9]. Kulikov and Shindin introduced an embedded stage error
estimation technique in [12, 10] and tested it successfully on order four NIRK methods.
They termed it as the Embedded Stages Approach (ESA). It is based on the result attained
in [11], that the stage order of the NIRK methods is raised by one when a specific
value of the free parameter θ is used [9, 11]. The primary role of θ is to change the
coefficients in the coefficient matrix of the Butcher tableau. Moreover, the values of θ
are for controlling the stage values of the method. For example, θ = 1/2 + 2

√
3/9 in

Table 2 and θ = 9
√

15/500−
√

27/200 in Table 3 gives the stage values for the Gauss–type
NIRK methods of order 4 and order 6, respectively. The following Butcher tableau present
Gauss–type NIRK methods of order four and order six with built in error estimations, as
constructed in above cited papers.

0 0 0 0 0

c21
1
2
c21 + 1

2
θ − 5

12
1
2
− 1

2
θ 1

2
− 1

2
θ 1

2
c21 + 1

12
θ − 7

12

1 − c21
7
12

− 1
2
c21 − 1

12
θ 1

2
θ 1

2
θ 5

12
− 1

2
c21 − 1

12
θ

1 0 1
2

1
2

0

0 1
2

1
2

0

1
2

− 1
2

− 1
2

1
2

TABLE 2. Butcher tableau for embedded Gauss–type NIRK methods of
order 4 for built in error estimation.

0 0 0 0 0 0 0 0

c2
c3
6 0 0 35

108 −
10c3
27

14
27 −

16c3
27

35
108 −

10c3
27

c3
6 −

1
6

c3
c2
6 0 0 35

108 −
10c2
27

14
27 −

16
27 c2

35
108 −

10c2
27

c2
6 −

1
6

c4
c6
10 −

3
200

9c3
50 −

9
100 + θ θ

v1
360 −

5θ
9

v1
225 −

8θ
9

v1
360 −

5θ
9

3
200 −

c4
10

c5
1
32

√
27

32 −
√

27
32

5
36

2
9

5
36 − 1

32

c6
c4
10 −

3
200 −θ 9c2

50 −
9

100 − θ
v2
360 + 5θ

9
v2
225 + 8θ

9
v2
360 + 5θ

9
3

200 −
c6
10

1 0 0 0 5
18

4
9

5
18 0

0 0 0 5
18

4
9

5
18 0

0 1
2

1
2 − 5

18 − 4
9 − 5

18 0

TABLE 3. Butcher tableau for embedded Gauss–type NIRK methods of
order 6 for built in error estimation.

Four different error estimation techniques are examined numerically for order four and
order six Gauss–type NIRK methods in [10] and [9], respectively. We consider these
techniques here for the order six methods:

• Embedded method error estimation (EMEE)- This scheme estimates the local error
by comparing the two numerical solutions obtained from the embedded NIRK
method of order four and order six NIRK methods, respectively.



8 A. Ur-Rehman, S. Rehman and J. Ahmad

• Modified embedded method error estimation (MEMEE)- It might be time consum-
ing to implement directly the EMEE for some large-scale differential equations.
This issue can be resolved by applying Shampine’s idea [8] to modify the EMEE
technique. The Shampine’s idea is to modify the error estimation technique for
an embedded method, especially for stiff equations in which the embedded error
becomes unbounded. The resulting MEMEE technique is suitable for stiff ODEs.

• Embedded stage error estimation (ESEE)- Kulikov and Shindin have recently
presented a new error estimation technique in [12, 10]. This ESEE technique is
successfully tested for order 4 NIRK methods in [12, 10] and is also extended to
order six NIRK methods.

• Modified embedded stage error estimation (MESEE)- Similar to EMEE, ESEE
cannot be effective for stiff problems. So again using Shampine’s idea, the error
estimation technique ESEE is modified. The MESEE technique is bounded for any
step size and is cheaper as well [9].

3. NUMERICAL TESTING

In this section we apply the order six NIRK methods on a variety of stiff differential
equations. The exact solutions of these problems are not available so we compared our
solutions with reference solutions. These reference solutions were computed using a highly
accurate Matlab integrator. We first give a brief introduction of the test problems and then
discuss our numerical testing. A complete list of test problems is given in the Appendix.

We have applied our numerical methods on the stiff DETEST problems [7]. These
problems are divided into different classes depending upon their special features. The
problem classes used in this paper are as follows:

• Problem class A (linear with real eigenvalues)-This class consists of four systems.
These systems have different dimensions. They are ordered according to increas-
ing stiffness ratio.

• Problem class B (linear with complex eigenvalues)- This class consists of five
systems. The first system requires many methods to take variable step sizes. The
four remaining systems differ in their eigenvalues.

• Problem class C (nonlinear coupling)- There are five systems in this class. All of
these are nonlinear having real eigenvalues.

We apply two numerical methods to stiff DETEST problems. The first method is the Gauss-
type NIRK method of order six with built-in error estimation. The second method is the
highly accurate Matlab integrator ode15s. It is an RK method that is very effective for stiff
ODEs. The details of this integrator can be found in [15].

We have always used modified Newton’s method to iteratively solve for the stages. We
allow a maximum of three to four iterations for convergence. The iterative scheme uses a
coefficient matrix U and we take two different values of the matrix U as given in (2. 13 )
and (2. 14 ). The convergence of our iterative scheme is bounded by a small positive
number that is 10−2 times local error tolerance. We have checked it with other values
as well but we did not find any considerable difference. The local error tolerance (TOL) is
taken as

10−i, i = 2, 3, . . . , 10.



Numerical Approximation of Stiff Problems Using Efficient Nested Implicit Runge-Kutta Methods 9

This variation in TOL is used to perform different experiments. We evaluate an exact
Jacobian and check our results by providing it in every step or in every iteration. Although
we have experimented with all the problems in five classes, we have only included a few
results here.

for probID = 1 : 14 % Loop over the 14 problems.

for i = 2 : 10 % Loop over the tolerance.

TOL = 10−i % Set the tolerance.

Initialise the integration

NIRK % Attempt the integration using NIRK.

if ind == 1 % Test if the integration was successful.

Calculate NFE or tCPU % It was. Calculate the function ...

% ... evaluations or CPU time.

Calculate ERROR % Estimate the global error.

Print ERROR along with % Print results.

TOL or NFE or tCPU

else

Print error message % Integration failed. Print error message.

end if
end for

end for

TABLE 4. Pseudo-code of one step of Gauss-type NIRK methods
implemented on the collection of 14 test problems.

Table 4 gives pseudo-code for our driver. There are two nested loops. The outer loop is
over the 14 test problems (probID) of stiff DETEST and the inner loop is over the 9 local
error tolerances (TOL), giving 126 integrations in total. Once the tolerance has been set,
we initialise the integration by setting the initial value of t and y, and the initial step size.
We then attempt the integration using the NIRK method. If the integration is successful
(ind is 1 on return from the integrator), we calculate the number of function evaluations
(NFE) and CPU time (tCPU ) used for the integration. We then use the reference solution
to estimate the L2 norm of the end-point global error (ERROR). We print this norm
against TOL, NFE or tCPU . If the integration was not successful, an error message is
printed.

EXPERIMENT 1

In our first set of experiments, we check the accuracy of order six NIRK methods
in terms of end-point global error. Figures 1 – 3 contain the graphs of the end-point
global errors (ERROR) computed at various tolerances (TOL) for the three classes of stiff
DETEST problems.



10 A. Ur-Rehman, S. Rehman and J. Ahmad

10
−10

10
−5

10
−12

10
−10

10
−8

10
−6

10
−4

log
10

(TOL)

lo
g 10

(E
R

R
O

R
)

 

 

Problem A2

ode15s
EMEE
MEMEE
ESEE
MESEE

(a)

10
−10

10
−5

10
−15

10
−10

10
−5

10
0

log
10

(TOL)

lo
g 10

(E
R

R
O

R
)

Problem A4

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(b)

FIGURE 1. Experiment 1a, tolerance vs end-point global error for NIRK
and ode15s, (a) = with Ũ and mitn = 4, (b) = with U and mitn = 4.

For problem class A (linear with real eigenvalues), the NIRK method is more accurate
than ode15s method at all tolerances, except for problem A2, where ode15s exhibits a
similar or more accuracy at smaller tolerances as shown in Figure 1(a). Moreover, the
EMEE technique is the most accurate and MESEE is the least for these set of problems.
However, MEMEE and ESEE are more or less accurate relative to one another in different
tests. For example, in tests with the coefficient matrix U , MEMEE performs slightly better
than ESEE but it is vice versa for tests with the value of Ũ as in above Figure 1(b). On the
other hand, the increasing of maximum allowed iterations from three to four shows slight
changes in the results.

10
−10

10
−5

10
−15

10
−10

10
−5

10
0

10
5

log
10

(TOL)

lo
g 10

(E
R

R
O

R
)

Problm B1

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(a)

10
−10

10
−5

10
−15

10
−10

10
−5

10
0

log
10

(TOL)

lo
g 10

(E
R

R
O

R
)

Problem B5

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(b)

FIGURE 2. Experiment 1b, tolerance vs end-point global error for NIRK
and ode15s, (a) = with U and mitn = 3, (b) = with Ũ and mitn = 3.



Numerical Approximation of Stiff Problems Using Efficient Nested Implicit Runge-Kutta Methods 11

In different tests on problems of class B (linear with non-real eigenvalues), the NIRK
method exhibits more accurate result than ode15s scheme for problems B2 and B3, but
in case of problems B1 and B4, the former method is less accurate at larger tolerances
as in Figure 2(a). Problem B5 gives good accuracy with NIRK method when Ũ is used,
however by usingU in the iterative scheme, ode15s performs better than ESEE and MESEE
techniques for this problem as shown in Figure 2(b). In comparison of different error
estimate techniques, EMEE is the most accurate. The accuracy level of ESEE and MESEE
is similar to one another in the most experiments and is lower than EMEE and MEMEE.

10
−10

10
−5

10
−15

10
−10

10
−5

10
0

log
10

(TOL)

lo
g 10

(E
R

R
O

R
)

Problem C2

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(a)

10
−10

10
−5

10
−10

10
−8

10
−6

10
−4

10
−2

log
10

(TOL)

lo
g 10

(E
R

R
O

R
)

Problem C4

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(b)

FIGURE 3. Experiment 1c, tolerance vs end-point global error for NIRK
and ode15s, (a) = with U and mitn = 3, (b) = with Ũ and mitn = 3.

For problem class C (nonlinear coupling), ode15s is less accurate than NIRK method for
problem C4 and C5. However, for problems C2 and C3, the NIRK method is a little more
accurate than ode15s as shown in the Figure 3(a). In case of problem C1, both methods
have a similar behaviour in terms of accuracy. Moreover, for this class also, EMEE is
the most accurate, however MEMEE exhibits slightly better accuracy than ESEE at higher
tolerances when coefficient matrix Ũ is used in the iterative scheme. Figure 3(b) is an
example of this result that also shows that MESEE is the least accurate technique. Most of
the other results with U are quite similar to those with Ũ .

EXPERIMENT 2

One way to measure the efficiency of a NIRK scheme is to count the number of function
evaluations (NFE) against the end-point global errors (ERROR), computed at different
tolerances

10−i, i = 2, 3, . . . , 10.

The results for the second set of experiments are displayed in Figures 4 – 6. The initial
values are same as in the case of first set of experiments.



12 A. Ur-Rehman, S. Rehman and J. Ahmad

10
−10

10
−5

10
1

10
2

10
3

10
4

10
5

log
10

(ERROR)

lo
g 10

(N
F

E
)

Problem A1

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(a)

10
−10

10
−5

10
1

10
2

10
3

10
4

10
5

log
10

(ERROR)

lo
g 10

(N
F

E
)

Problem A4

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(b)

FIGURE 4. Experiment 2a, end-point global error vs function evaluation
for NIRK and ode15s, (a) = with U and mitn = 3, (b) = with Ũ and
mitn = 4.

For problem class A, the NIRK method uses a little more function evaluations than
ode15s. Maximum increase is less than two times in case of problem A1 with coefficient
matrix U as shown in Figure 4(a). However with Ũ , this difference is decreased for the
EMEE scheme. Problem A2 exhibits a similar result. For problem A3, both methods
show nearly same efficiency using U , while the MEMEE and MESEE techniques are not
as efficient as the other two schemes when Ũ is used. Figure 4(b) shows that for problem
A4, the NIRK scheme is more efficient than ode15s. All four error estimation techniques
of NIRK method uses nearly same number of function evaluations for all problems of this
class.

10
−10

10
−5

10
1

10
2

10
3

10
4

10
5

log
10

(ERROR)

lo
g 10

(N
F

E
)

Problem B4

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(a)

10
−10

10
−5

10
0

10
2

10
3

10
4

10
5

log
10

(ERROR)

lo
g 10

(N
F

E
)

Problem B5

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(b)

FIGURE 5. Experiment 2b, end-point global error vs function evaluation
for NIRK and ode15s, (a) = with U and mitn = 4, (b) = with Ũ and mitn
= 3.



Numerical Approximation of Stiff Problems Using Efficient Nested Implicit Runge-Kutta Methods 13

In problem class B, problems B2, B3 and B4 show similar efficiency as A1. Problem
B4 is shown in Figure 5(a). The integrator ode15s uses a maximum of 2 times less function
evaluations. In problem B1, the behaviour of ode15s is different, although it used less
function evaluations than the NIRK method. The reason of this behaviour is due to its
irregular global errors for this problem as in Figure 2(a). For problem B5, the NIRK shows
poor efficiency when Ũ is used in the iteration scheme. On the other hand, its efficiency is
very much improved by using U as given in Figures 5(b). Also, in this problem, EMEE and
ESEE techniques are more efficient than the other two and the EMEE scheme uses about
five times less function evaluations at an error of near 10−8.

10
−15

10
−10

10
−5

10
1

10
2

10
3

10
4

10
5

log
10

(ERROR)

lo
g 10

(N
F

E
)

Problem C1

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(a)

10
−10

10
−5

10
2

10
3

10
4

10
5

log
10

(ERROR)

lo
g 10

(N
F

E
)

Problem C4

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(b)

FIGURE 6. Experiment 2c, end-point global error vs function evaluation
for NIRK and ode15s, (a) = with Ũ and mitn = 3, (b) = with U and
mitn = 3.

For problem class C, the results of all problems are similar to each other except problem
C1. For all problems, ode15s scheme is found to be more efficient than NIRK method.
The difference in the function evaluations is small for problem C1, but is increased up to
factor of five in the case of problem C4 as shown in Figures 6(a) and 6(b). The choice
of coefficient matrix U or Ũ does not have an effect on the results. Moreover all error
estimation schemes show similar efficiency for all problems.

EXPERIMENT 3

Finally, we conduct a set of experiments to compute the computational times (CPU
TIME) and end-point global errors (ERROR) at nine different tolerances

10−i, i = 2, 3, . . . , 10.

The results of this set of experiments give a good estimate of the efficiency of NIRK
methods. Some of the results are shown in Figures 7 – 9.



14 A. Ur-Rehman, S. Rehman and J. Ahmad

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

log
10

(CPU TIME)

lo
g 10

(E
R

R
O

R
)

Probelm A2

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(a)

10
−2

10
−1

10
0

10
1

10
−15

10
−10

10
−5

10
0

log
10

(CPU TIME)

lo
g 10

(E
R

R
O

R
)

Problem A3

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(b)

FIGURE 7. Experiment 3a, CPU time vs end-point global error for NIRK
and ode15s, (a) = with U and mitn = 3, (b) = with Ũ and mitn = 4.

For problem class A, the NIRK method uses less computational time compared to
ode15s for all problems except A2 in which ode15s performs better at smaller tolerances.
Based on the Jacobian, the only difference found in most of the tests is that in case of
Jacobian evaluation at each step, the CPU time at tolerance of 10−2 is greater as compared
to remaining smaller tolerances. The results of two problems A2 and A3 are shown in
Figures 7(a) and 7(b), respectively. The problems A1 and A4 give similar behaviour to
problem A3. The choice of the coefficient matrix U or Ũ and maximum number of allowed
iterations 3 or 4 did not make any major effect on the computational times. Moreover all
four error estimation techniques of NIRK scheme exhibit nearly same behaviour for all of
these problems.

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

log
10

(CPU TIME)

lo
g 10

(E
R

R
O

R
)

Problem B4

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(a)

10
−0.4

10
−0.2

10
0

10
−10

10
−5

10
0

log
10

(CPU TIME)

lo
g 10

(E
R

R
O

R
)

Problem B5

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(b)

FIGURE 8. Experiment 3b, CPU time vs end-point global error for
NIRK and ode15s, (a) = with Ũ and mitn = 4, (b) = with U and mitn =
3.



Numerical Approximation of Stiff Problems Using Efficient Nested Implicit Runge-Kutta Methods 15

In problems of class B, NIRK method takes less CPU time than ode15s scheme for
problems B2, B3 and B5. In case of problem B4, ode15s performs better than NIRK when
the maximum allowed iterations is 3 and U is taken as the coefficient matrix. For Ũ and
4 allowed iterations, again NIRK approximates the solutions in less computational time.
However, for problem B1, at smaller tolerances, ode15s scheme exhibits better efficiency
than the NIRK method. This result is due to irregular behaviour of global errors for this
problem as we have seen in Figure 2(a). The choice of Jacobian evaluation within each step
or iteration has similar effect as in case of problem class A. The results of problems B4 and
B5 are displayed in Figures 8(a) and 8(b), respectively. Also we can see form these figures
that different error estimation techniques are almost using relatively the same CPU time.

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

log
10

(CPU TIME)

lo
g 10

(E
R

R
O

R
)

Problem C1

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(a)

10
−2

10
−1

10
0

10
−10

10
−5

log
10

(CPU TIME)

lo
g 10

(E
R

R
O

R
)

Problem C2

 

 

ode15s
EMEE
MEMEE
ESEE
MESEE

(b)

FIGURE 9. Experiment 3c, CPU time vs end-point global error for NIRK
and ode15s, (a) = with U and mitn = 3, (b) = with Ũ and mitn = 4.

In case of problem class C, for problems C4 and C5, the NIRK method is more efficient
than ode15s scheme whether U or Ũ is used as the coefficient matrix. Also the choice
of Jacobian evaluation and maximum number of allowed iterations has no effects on the
results. However for problems C1, C2 and C3, at smaller tolerance of near 10−9, the
ode15s scheme takes less computational time as compared to the NIRK method as shown
in Figure 9(b). In case of problem C1, NIRK and ode15s schemes use same CPU time at
some tolerances as in Figure 9(a). Also we can see in this Figure that at tolerance of 10−2

both schemes use greater time when the Jacobian is evaluated at each step. Among four
error estimation techniques MEMEE performs slightly better at smaller tolerances than
others.

4. CONCLUSIONS

Gauss-type NIRK methods of order 2, 4 and 6 have recently been introduced by G.
Yu. Kulikov and S. K. Shindin in [10, 12, 9]. These methods have cheap practical
implementation as compared to IRK methods due to their explicit internal stages. The
NIRK methods have built-in local error estimates and we have used four different
techniques in this paper. A variety of linear and nonlinear, stiff problems from stiff



16 A. Ur-Rehman, S. Rehman and J. Ahmad

DETEST with both real and complex eigenvalues were numerically solved with NIRK
and ode15s methods. We have performed three experiments to compute the end-point
global errors, function evaluations and computational times at different tolerances. The
accuracy and efficiency of NIRK methods were analysed problem-wise and the results of
some problems were presented graphically. The overall conclusions for the three problem
classes are summarized below.

• For solving linear problems with real eigenvalues, the NIRK method exhibited
good results compared to ode15s. This method was more accurate than ode15s.
Moreover, the NIRK method was also more efficient than ode15s method.
However, in some tests, NIRK method used a little more function evaluations.

• In case of linear problems with complex eigenvalues, NIRK method performed
better than ode15s. The NIRK method used slightly more function evaluations
than ode15s.

• For nonlinear coupled problems, the accuracy of NIRK method was good com-
pared to ode15s. However, this method used more function evaluations than
ode15s. The computational time of NIRK method was relatively less except at
a few smaller tolerances. So the NIRK method retained its efficiency for these
type of problems as well.

In our comparison of the NIRK method with ode15s, we conclude that the accuracy
of NIRK method was promising. The NIRK method was more efficient for most of the
problems in terms of CPU time. However, the NIRK method showed poor results in
terms of function evaluations for most of the problems. When we analysed the four error
estimation techniques, we found the EMEE technique performed better as compared to
others.

5. APPENDIX TEST PROBLEMS (STIFF DETEST)

The problems tested in this paper were the well known stiff DETEST problems. These
were all stiff IVPs provided in [7]. In this paper, the problems were classified into three
classes that represent linear and nonlinear categories with corresponding real and non-real
eigenvalues. The differential equations of all problems, their intervals of integration and
their initial conditions and step sizes are listed below. Moreover the eigenvalues of the
Jacobian are also given for each problem except where these values are obvious. A constant
eigenvalue throughout the interval of integration is given by a single number whereas if an
eigenvalue is monotonically increasing or decreasing, then its value at the initial point and
in the vicinity of the endpoint are given, with an arrow indicating the change from one to
the other [7].

PROBLEM CLASS A: Linear With Real Eigenvalues

A1: y′1 = −0.5y1, y1(0) = 1,

y′2 = −y2, y2(0) = 1,

y′3 = −100y3, y3(0) = 1,

y′4 = −90y4, y4(0) = 1,



Numerical Approximation of Stiff Problems Using Efficient Nested Implicit Runge-Kutta Methods 17

tend = 20, hinitial = 10−2.

A2: y′1 = −1800y1 + 900y2, y1(0) = 0,

y′j = yj−1 − 2yj + yj+1, yj(0) = 0, j = 2, 3, . . . , 8,

y′9 = 1000y8 − 2000y9 + 1000, y9(0) = 0,

tend = 120, hinitial = 5× 10−4,

(Eigenvalues: −0.10,−0.10,−1.0,−1.0,−2.6,−3.3,−3.8,−2000,−2000)

A3: y′1 = −104y1 − 100y2 − 10y3 + y4, y1(0) = 1,

y′2 = −103y2 + 10y3 − 10y4, y2(0) = 1,

y′3 = −y3 + 10y4, y3(0) = 1,

y′4 = −0.1y4, y4(0) = 1,

tend = 20, hinitial = 10−5.

A4: y′j = −j5yj , yj(0) = 1, j = 1, 2, . . . , 10,

tend = 1, hinitial = 10−5.

PROBLEM CLASS B: Linear With Complex Eigenvalues

B1: y′1 = −y1 + y2, y1(0) = 1,

y′2 = −102y1 − y2, y2(0) = 0,

y′3 = −103y3 + y4, y3(0) = 1,

y′4 = −104y3 − 102y4, y4(0) = 0,

tend = 20, hinitial = 7× 10−3,

(Eigenvalues: −1± 10i,−100± 100i)

B2: y′1 = −10y1 + µy2, y1(0) = 1,

y′2 = −µy1 − y2, y2(0) = 1,

y′3 = −4y3, y3(0) = 1,

y′4 = −y4, y4(0) = 1,

y′5 = −0.5y5, y5(0) = 1,

y′9 = −0.1y6, y6(0) = 1,

tend = 20, hinitial = 10−2, µ = 3,

(Eigenvalues: −0.1,−0.5,−1,−4,−10± iµ)



18 A. Ur-Rehman, S. Rehman and J. Ahmad

B3: Same as B2 with µ = 8.

B4: Same as B2 with µ = 25.

B5: Same as B2 with µ = 100.

PROBLEM CLASS C: Nonlinear Coupling

C1: y′1 = −y1 + y22 + y23 + y24 , y1(0) = 1,

y′2 = −10y2 + 10y23 + 10y24 , y2(0) = 1,

y′3 = −40y3 + 40y24 , y3(0) = 1,

y′4 = −100y4 + 2, y4(0) = 1,

tend = 20, hinitial = 10−2,

(Coupling from transient components to smooth components)

C2: y′1 = −y1 + 2, y1(0) = 1,

y′2 = −10y2 + νy21 , y2(0) = 1,

y′3 = −40y3 + 4νy21 + 4νy22 , y3(0) = 1,

y′4 = −100y4 + 10νy21 + 10νy22 + 10νy23 , y4(0) = 1,

tend = 20, hinitial = 10−2, ν = 0.1,

(Coupling from smooth components to transient components)

C3: Same as C2 with ν = 1.

C4: Same as C2 with ν = 10.

C5: Same as C2 with ν = 20.

REFERENCES

[1] R. Alexander, Diagonally implicit Runge–Kutta methods for stiff ODEs, SIAM J. Numer. Anal. 14, No. 6
(1977) 1006-1024.

[2] K. Burrage, A special family of Runge–Kutta methods for solving stiff differential equations, BIT. 18, No. 1
(1978) 22-41.

[3] K. Burrage, J. C. Butcher and F. H. Chipman, An implementation of singly implicit Runge–Kutta methods,
BIT. 20, No. 3 (1980) 326-340.

[4] J. C. Butcher, A generalization of singly-implicit methods, BIT. 21, No. 2 (1981) 175-189.
[5] J. R. Cash, A class of implicit Runge–Kutta methods for the numerical integration of stiff ordinary differential

equations, J. Assoc. Comput. Mach. 22, No. 4 (1975) 504-511.
[6] J. R. Cash and A. Singhal, Mono-implicit Runge–Kutta formulae for the numerical integration of stiff

differential systems, IMA J. Numer. Anal. 2, No. 2 (1982) 211-227.
[7] W. H. Enright, T. E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of ODEs, BIT.

15, No. 1 (1975) 10-48
[8] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential Algebraic

Problems, Springer-Verlag, 1996.



Numerical Approximation of Stiff Problems Using Efficient Nested Implicit Runge-Kutta Methods 19

[9] G. Yu. Kulikov, Automatic error control in the Gauss-type nested implicit Runge–Kutta formula of order 6,
Russ J. Numer. Anal. Math. Model. 24, No. 2 (2009) 123-144.

[10] G. Yu. Kulikov, A. I. Merkulov and S. K. Shindin, Asymptotic error estimate for general Newton-type
methods and its applications to differential equations, Russ. J. Numer. Anal. Math. Model. 22, No. 6 (2007)
567-590.

[11] G. Yu. Kulikov and S. K. Shindin, On a family of cheap symmetric one-step methods of order four, In
International Conference on Computational Science. Springer, Berlin, Heidelberg (2006) 781-785.

[12] G. Yu. Kulikov and S. K. Shindin, Adapted nested implicit Runge–Kutta formulas of Gauss type, Appl.
Numer. Math. 59, No. 3-4 (2009) 707-722.

[13] A. Kværnø, Singly diagonally implicit Runge–Kutta methods with an explicit first stage, BIT. 44, No. 3
(2004) 489-502.

[14] S. P. Nørsett, Semi-explicit Runge–Kutta methods, Matematisk Institut, Universitet I, 1974.
[15] L. F. Shampine and M. W. Reichelt, The matlab ode suite, SIAM J SCI COMPUT. 18, No. 1 (1997) 1-22.


