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Abstract. Accurate numerical approximations for solving non linear frac-
tional order boundary value problems are presented in this paper. To ac-
complish this goal, first- and second-order derivatives involved in the de-
veloped scheme are approximated by central finite difference scheme of
order four. Whereas, integrals in this work are approximated by the com-
posite Simpson’s rule in the Caputo’s definition. The performance of the
proposed iterative scheme is demonstrated by solving nonlinear fractional
order boundary value problems of order 0 < α < 1.
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1. INTRODUCTION

Many real world problems are extensively modeled as differential equations (DEs). Or-
dinary differential equations (ODEs) have been applied in many areas of science and en-
gineering, such as, physics, electronic engineering, and population dynamics. Partial dif-
ferential equations (PDEs) are also encountered in several areas of engineering, applied
sciences, and finance. In some cases, differential equations can be solved analytically, but
mostly the differential equations are too-complicated to solve analytically, necessitating
the use of numerical techniques to obtain numerical approximate solution. There are many
methods for the discretization of differential equations, for instance, perturbation method
[9, 19, 28]. Many numerical and analytical methods have been developed and illustrated
to examine the solution of PDEs, such as, adomian decomposition method [1, 14], varia-
tional iterative method [18], homotopy perturbation method [2, 31]. For nonlinear PDEs,
perturbation iteration technique, modified, and improved perturbation iteration technique
have been developed [10]. A special type of nonlinear differential equations, namely, Lane-
Emden, have been solved by optimal perturbation iterative method [13].

Fractional calculus (FC) presents a highly endorsement tool to evoke natural phenom-
ena more realistically by making classy modeling of physical phenomena [25]. Much of the
literature survey is available which cope with the theory and applications of fractional dif-
ferential equations [8, 20, 23, 26, 30, 33, 34, 39]. Fractional differential equations arises in
many scientific and engineering disciplines including: chemistry, physics, viscoelasticity,
signal processing, mathematical biology, and fluid mechanics, as the mathematical mod-
eling of structures and mechanisms in these fields involves derivatives of fractional order,
see, for example [5, 7, 21, 41, 42]. Not only in applied mathematics, FC also has great
applications in pure mathematics [35].
The idea of FC is almost as old as calculus itself. Basically, FC deals with the properties
of derivatives and integrals of fractional order over real and complex domains. Simply,
we can say FC is generalization of classical calculus. Particularly, it involves the study of
fractional differential equations and their applications in daily life. Leibniz was the first
person who gave the idea of generalizing the derivatives to fractional order in 1695 [26].
L’Hospital asked him, what if the order of a derivative is 1/2? Leibniz replied, it will lead
to a paradox, from which one day useful consequences will be drawn.
The first paper in which fractional derivative was mentioned, published in 1819 by S. F.
Lacroix [38]. F. Lacroix started with y = xn, for positive n and found its mth derivative

Dm
x y =

dmy

dxm
=

n!

(n−m)!
xn−m. (1. 1)

Using Legendre’s symbol Γ which denotes the generalized factorial given in equation
(2. 6 ) and by taking α, a constant, he obtained

Dm
x x

α =
dmxα

dxm
=

Γ(α+ 1)

Γ(α−m+ 1)
xα−m. (1. 2)
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Then S. F. Lacroix put α = 1 and m = 1/2 and obtained

D1/2
x x =

d1/2x

dx1/2
=

2
√
x√
π
. (1. 3)

Note that, the definition in equation (1. 2 ) gives a nonzero value for the fractional order
derivative of a constant function, i.e., for α = 0

Dm
x x

0 =
dm1

dxm
=

1

Γ(1−m)
x−m 6= 0. (1. 4)

These are the basic developments of FC. These theoretical developments causes to bring
revolution in FC. The first practical application of FC is due to Abel [3, 4].
Now a days, fractional differential equations with boundary conditions have become one of
the crucial question of FC, because fractional order boundary value problems arise in the
modeling of many complex systems, including: blood flow, thermo-elasticity, population
dynamic, and underground water flow, see, for example [6, 11, 24, 40, 45]. These types of
problems also arise in various physical process of stochastic transport and many applica-
tions in the liquid filtration in a strongly porous medium [46] .
Recently, various strategies have been introduced for the numerical approximation of frac-
tional order differential equations, see, for example [15, 16, 17, 22, 27, 32, 36, 37, 43].
Several new techniques are created for the numerical approximation of linear fractional or-
der boundary value problems [29]. In this paper, we develop a numerical iterative scheme
for the approximation of nonlinear fractional order boundary value problems.
In the next section, we provide some preliminaries which are vital in the development of
the proposed iterative scheme. In Section 3, the construction of the proposed scheme is
discussed. Whereas, Section 4 describes the experimental framework used to illustrate the
performance of the proposed iterative scheme. Finally, Section 5 presents overall conclu-
sions based upon the numerical testing performed in Section 4. We also provide future
directions in Section 5.

2. NOTATIONS AND PRELIMINARIES

We begin this section with some preliminaries of FC, in-particular, fractional derivatives
and their formula which are used to develop the proposed iterative scheme for the numerical
approximation of nonlinear fractional order boundary value problems.

Definition 2.1. Suppose α is a positive real number. Then the fractional integral

I−ma,x f(x) =
1

Γ(m)

x∫
a

f(t)

(x− t)1−m dt, (2. 5)

is called Riemann-Liouville integral of fractional orderm. And Γ is a gamma function [44]
which is defined as

Γ(w) =

∞∫
0

xw−1e−xdx, <(w) > 0. (2. 6)
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Definition 2.2. The Riemann-Liouville derivative of fractional order α, where (n − 1 <
α < n) and n is a positive integer, i.e., n ∈ Z+, of the function f(t) is given by

RLD
α
0,tf(t) =

dn

dtn
D
−(n−α)
0,t f(t),

=
1

Γ(n− α)

dn

dtn

t∫
0

(t− τ)n−(α+1)f(τ)dτ.
(2. 7)

Definition 2.3. In 1967, Italian mathematician M. Caputo introduced Caputo fractional
derivative [12] which is defined as

Dα
c f(t) = D−(n−α)

c

dn

dtn
f(t),

=
1

Γ(n− α)

t∫
0

f (n)(τ)

(t− τ)−(n−α−1)
dτ.

(2. 8)

A beautiful property of Caputo fractional derivative is that, it allows standard initial and
boundary conditions in the modeling. Whereas, models based on other fractional deriva-
tives could also require the values of fractional derivative terms at the initial time.

2.4. Derivative approximation. We approximate derivatives in the developed iterative
scheme (Section 3) using central difference formulas.

xj−1 xj xj+1x0 xn−1 xn

xn−2

x1

x2

Interior nodes

hh

FIGURE 1. Nodes for central difference scheme

The stencil of fourth order central difference scheme used to approximate the first- and
second-order derivatives for the interior nodes is

{xj−1, xj , xj+1}, for j = 2, 3, ..., n− 2. (2. 9)

It means that if we are at location j, then we need one grid node to the left of j and one
grid point to the right of it. It is noticeable that, mutual distance between nodes is equal to
h = (b− a)/(n− 1). We consider the following compact finite difference scheme

κ1f
′′
j−1 + f ′′j + κ2f

′′
j+1 =

1

h2
(τ1fj−1 + τ2fj + τ3fj+1) . (2. 10)

We are interested to obtain the values of unknowns in such a way that the fourth order
accurate approximation of second-order derivative is achieved. By expanding equation
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(2. 10 ) around x1, we have the following system of algebraic equations:
τ1 + τ2 + τ3 = 0,

τ1 − τ3 = 0,

−τ1/2− τ3/2 + κ1 + κ2 + 1 = 0,

τ1/6− τ3/6− κ1 + κ2 = 0,

−τ1/24− τ3/24 + κ1/2 + κ2/2 = 0.

(2. 11)

By solving the above system of equations, we have{
κ1 =

1

10
, κ2 =

1

10
, τ1 =

6

5
, τ2 = −12

5
, τ3 =

6

5

}
. (2. 12)

To find the approximations of first derivatives at the interior nodes, we consider the follow-
ing prototype

κ1f
′
i−1 + f ′i + κ2f

′
i+1 =

1

h2
(τ1fi−1 + τ2fi + τ3fi+1). (2. 13)

By expanding equation (2. 13 ), we get the following system of algebraic equations:
τ1 + τ2 + τ3 = 0,

τ1 − τ3 + κ1 + κ2 = 0,

−τ1/2− τ3/2− κ1 + κ2 = 0,

τ1/6− τ3/6 + κ1/2 + κ2/2 = 0,

−τ1/24− τ3/24− κ1/6 + κ2/6 = 0.

(2. 14)

Solving the above system, we get{
κ1 =

1

4
, κ2 =

1

4
, τ1 = −3

4
, τ2 = 0, τ3 =

3

4

}
. (2. 15)

Similarly, one sided approximations for nodes adjacent to boundary nodes and solving
system of equations, we obtain the following coefficients:

For second-order derivative, we use the following scheme

f ′′1 + κ f ′′2 =
1

h2
(τ1 f1 + τ2 f2 + τ3 f3 + τ4 f4 + τ5 f5) ,

where, we have{
κ = 10, τ1 =

145

12
, τ2 = −76

3
, τ3 =

29

2
, τ4 = −4

3
, τ5 =

1

12

}
. (2. 16)

For first-order derivative, we use

f ′1 + κ f ′2 =
1

h
(τ1 f1 + τ2 f2 + τ3 f3 + τ4 f4 + τ5 f5) ,

where, we have{
κ = 4, τ1 = −37

12
, τ2 =

2

3
, τ3 = 3, τ4 = −2

3
, τ5 =

1

12

}
. (2. 17)
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2.5. Integral approximation. For the numerical computation of the integrals used in this
work, we have applied the following Simpson’s rule

xn−1∫
1

ζ(s)ds ≈ h

3

ζ1 + 4

n−2∑
i=2,4,6

ζi + 2

n−3∑
i=3,5,7

ζi + ζn−1

 , (2. 18)

where ζi = ζ(xi) and h(= xn − xn−1) is uniform step-size.

3. PROPOSED SCHEME

For the construction of the proposed iterative scheme, consider the following non ho-
mogeneous nonlinear fractional order boundary value problem

D−αy′′ + p(x)f(y) = g(x), x ∈ (0, 1), 0 < α < 1, (3. 19)

with the boundary conditions:

y(0) = 0, y(1) = 0. (3. 20)

Here, D−α is fractional order derivative in Caputo sense and f(·) is a nonlinear function.
The fractional order differential equation (3. 19 ) can also be written as

y′′(x) = Dα(g(x)− p(x)f(y)). (3. 21)

For a given smooth function w(·), we describe

Dαw(x) = 1
Γ(1−α)

x∫
0

(x− s)−αw′(s)ds, α > 0,

= 1
(1−α)Γ(1−α)

(
x1−αw′(0) +

x∫
0

(x− s)1−αw′′(s)ds

)
.

(3. 22)

We can write equation (3. 21 ) with the help of equation (3. 22 ) as

y′′(x) =
1

Γ(1− α)

[
x1−α

1− α

(
g′(0)− p′(0)y(0)− p(0)y′(0)

)

+

x∫
0

(x− s)1−α

1− α

(
g′′(s)− p′′(s)y(s)− 2p′(s)y′(s)− p(s)y′′(s)

)
ds

]
.

(3. 23)

For a given n number of nodes, we discretize [0, 1] and compute uniform step size h =
(1− 0)/(n− 1) = 1/(n− 1). Furthermore, we use central finite difference approximation
of order four for the approximation of first- and second-order derivatives as described in
subsection 2.4. Whereas, integrals in our work are approximating by using Simpson’s rule
(2. 18 ). The equation (3. 23 ) can also be written as

y′′(xi) =
1

Γ(2− α)

[
x1−α
i

(
g′(0)− p′(0)y(0)− p(0)y′(0)

)

+A(xi)−B(xi)− C(xi)−D(xi)

]
,

(3. 24)
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where,

A(xi) =

xi∫
0

(xi − s)1−αg′′(s)ds,

B(xi) =

xi∫
0

(xi − s)1−αp′′(s)fds,

C(xi) =

xi∫
0

(xi − s)1−α2p′(s)f ′ds,

D(xi) =

xi∫
0

(xi − s)1−αp(s)f ′′ds.

Here, we have applied a very vigorous iterative scheme. The equation (3. 23 ) can also
be written as

yn+1 = Ψ(yn), (3. 25)
where, y = [y1, y2, ..., yn]T is the nth numerical approximation to the solution of dis-
cretized form of equation (3. 23 ) and Ψ(y) is the right hand side.

4. NUMERICAL TESTING

To illustrate the performance, in-terms of convergence and accuracy, of the above con-
structed iterative scheme, we perform numerical testing on a collection of test problems.
In all our numerical testing, we approximate the numerical solution of two non-linear frac-
tional order (0 < α < 1) boundary value problems by solving iteratively the equation
(3. 25 ) to obtain a sequence of probably convergent vectors y0, y1, y2, ..., till ||yn+1 −
yn|| ≤ some pre-defined tolerance.

Problem 4.1. Assume a solution y(x) = x4(x− 1)(1− (1− x)3) to the equation (3. 19 ).
We can compute g(x) from the equation (3. 19 ) as

g(x) =
128

3003

x7/2
(
896x3 − 1287 + 3432x− 2912x2

)
√
π

+ x18 (x− 1)
4
(

1− (1− x)
3
)4

.

We have performed the first set of numerical experiments with f(x) = x4 and p(x) =
x2. Table 1 shows maximum of the absolute error for different values of α and n. The
maximum of the absolute error is defined as the maximum absolute of the error evaluated at
n evenly spaced data points. That is, we estimate the maximum absolute error by sampling
|ynum(x) − ytrue(x)| over the complete interval of integration and using the maximum
over all sampled values to be the estimate of |ynum(x) − ytrue(x)|. It has been observed
that as we increase the value of n and decrease the value of α, the maximum absolute error
is decreased. The best observed accuracy (smallest maximum absolute error) is obtained at
α = 1/8 and with n = 400.
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TABLE 1. Maximum absolute error for different values of α and n.

Max Absolute Error

n α = 1/2 α = 1/5 α = 1/8

100 2.6218× 10−4 3.9828× 10−5 2.3866× 10−5

150 1.4086× 10−4 1.8096× 10−5 1.0479× 10−5

200 9.0898× 10−5 1.0405× 10−5 5.8719× 10−6

250 6.4789× 10−5 6.7948× 10−6 3.7554× 10−6

300 4.9160× 10−5 4.8052× 10−6 2.6099× 10−6

350 3.8941× 10−5 3.5889× 10−6 1.9203× 10−6

400 3.1828× 10−5 2.7893× 10−6 1.4729× 10−6

We performed a second set of experiments with n = 400, f(x) = x4, p(x) = x2,
and α = 1/8. In Figure 2(a), the approximated and exact solutions are plotted. One can
observe that, the exact values and the numerical approximated values are very close to
each other as both plots go side by side. The absolute of the error for different values of
x is shown in Figure 2(b). It has been observed that near the boundary points, the value
of absolute error is quit small and the maximum absolute error at the interior nodes in this
case is approximately 1.4729×10−6. Figure 2(c) shows number of iterations (Nit) against
the log10(||yn+1 − yn||). We observe that as n increases log10(||yn+1 − yn||) is reduced
significantly till a value of approximately 5.9845×10−14 forNit = 4, which is very small
compared to the maximum absolute error obtained in this case. This is an optimal achieved
accuracy which cannot be improved with further iterations.
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(A) Comparison between analytical and numerical solutions.
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FIGURE 2. with n = 400, f(x) = x4, p(x) = x2, and α = 1/8

Problem 4.2. Assume a solution y(x) = 10x6(1 − x2) to the equation (3. 19 ). We can
compute g(x) from the equation (3. 19 ) as

g(x) =− 5120

3003

x9/2
(
−143 + 224x2

)
√
π

+ x2e10 x6(1−x2)

The next set of experiments is performed for the second test problem with same param-
eters as described in Table 1 except for f which is f(x) = ex in this case. Table 2 shows
maximum of the absolute error for different values of α and n. From Table 2, we observe
that as we increase the value of n and decrease the value of α, the maximum absolute error
is decreased. As before, the best observed accuracy is again obtained at α = 1/8 and with
n = 400.

For the final set of experiments performed using the developed iterative scheme, absolute
of the error and number of iterations against the log10(||yn+1− yn||) are plotted in Figures
3(a) and 3(b), respectively. Figure 3(a) illustrates that estimated maximum error occurs
for this problem using the proposed scheme is approximately 3.5130 × 10−5. We can
observe from the Figure 3(b) that, also in this case, as n increases log10(||yn+1 − yn||) is
reduced significantly. In this case, log10(||yn+1 − yn||) is approximately 4.9014 × 10−15

for Nit = 14, which is, again, very small compared to the maximum absolute error.



124 Muhammad Adnan Anwar, Shafiq Ur Rehman, Fayyaz Ahmad and Muhammad Irfan Qadir

TABLE 2. Maximum absolute error for different values of α and n.

Max Absolute Error

n α = 1/2 α = 1/5 α = 1/8

100 8.4154× 10−3 1.0767× 10−3 5.0025× 10−4

150 4.5308× 10−3 5.0817× 10−4 2.2772× 10−4

200 2.9266× 10−3 2.9971× 10−4 1.3114× 10−4

250 2.0871× 10−3 1.9937× 10−4 8.5694× 10−5

300 1.5841× 10−3 1.4303× 10−4 6.0592× 10−5

350 1.2551× 10−3 1.0807× 10−4 4.5235× 10−5

400 1.0261× 10−3 8.4806× 10−5 3.5130× 10−5
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FIGURE 3. with n = 400, f(x) = ex, p(x) = x2, and α = 1/8

5. CONCLUSION

In this paper, a new iterative scheme is developed for the numerical approximation of
nonlinear boundary value problems of fractional order 0 < α < 1. The proposed scheme is
developed by using central finite difference scheme of order four for the approximation of
first- and second-order derivatives and using Simpson’s rule for the numerical computation
of the integrals used in this work. For the sets of experiments performed to obtain the
maximum of the absolute error for different values of α and n, it has been observed that
as we increase the value of n and decrease the value of α, the maximum absolute error
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is decreased. The best observed accuracy (smallest maximum absolute error) for the test
problem 1 and 2 is obtained at α = 1/8 and with n = 400. Moreover, for the problems
considered in this paper, convergence of the proposed iterative scheme till reaching optimal
accuracy is achieved after no more than 14 iterations.

We believe that the optimal accuracy can further be improved by using more higher order
finite difference schemes for the derivatives involved and using other numerical integration
techniques for numerical computation of the integrals.
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