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1. INTRODUCTION

A well-known class of functions defined on the intervalI in R, is known to be convex
on I if the inequality

f(λu + (1− λ)v) ≤ λf(u) + (1− λ)f(v) (1. 1)

holds∀u, v ∈ I andλ ∈ [0, 1]. Moreover, If the inequality in (1. 1 ) holds in the reverse
direction,f is said to be concave function. The geometrical interpretation of convexity is
that, if there are any three distinct pointsR, S andT located on the graph of functionf
with S lies betweenR andT, then the pointS lies on or below the chord joining the points
R andT.

For the class of convex functions, many inequalities have been introduced, when this
idea was first introduced than a century ago. But among those the most prominent is so
called Hermite-Hadamard’s inequality (or (H-H)). For the statement of this inequality is
(see for example [15] ):

Let I be an interval inR andf : I → R be a convex function defined onI such that
b1, b2 ∈ I with b1 < b2. Then the inequalities

f

(
b1 + b2

2

)
≤ 1

b2 − b1

∫ b2

b1

f(x)dx ≤ f(b1) + f(b2)
2

(1. 2)

hold. If the functionf is concave onI, then both the inequalities in ( 1. 2 ) hold in the
reverse direction. It gives an estimate from both sides of the mean value of a convex func-
tion and also ensure the integrability of convex function. It is also a matter of great interest
and one has to note that some of the classical inequalities for means can be obtained from
Hadamard’s inequality under the utility of peculiar convex functionsf. These inequalities
for convex functions play a crucial role in analysis and as well as in other areas of pure and
applied mathematics.

For more related results, generalizations, improvements and refinements to Hermite-
Hadamard inequality see [1–14,16–30,32] and the references cited therein.

For simplicity we symbolize the function

∆ := ∆(f ; b1, b2) = f

(
b1 + b2

2

)
− 1

b2 − b1

b2∫

b1

f(x)dx, (1. 3)

wheref : [b1, b2] → R is an integrable function.
Throughout this paper, we assume thatI is an interval inR andI◦ is interior ofI.

In 1998, Dragomir and Agarwal [10] have proved the following important lemma:

Lemma 1. Let f : I◦ ⊂ R → R be a differentiable mapping onI◦, b1, b2 ∈ I◦ with
b1 < b2. If f ′ ∈ L[b1, b2], then

f(b1) + f(b2)
2

− 1
b2 − b1

∫ b2

b1

f(x)dx =
b2 − b1

2

∫ 1

0

(1− 2z)f ′(zb1 + (1− z)b2)dz

(1. 4)

holds.
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The following two results are the ultimate consequences of Lemma 1, which have been
presented in [10] .

Theorem 1. Let f : I◦ → R be a differentiable function such thatf ′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If the function|f ′| is convex on[b1, b2], then the inequality

∣∣∣∣∣
f(b1) + f(b2)

2
− 1

b2 − b1

∫ b2

b1

f(x)dx

∣∣∣∣∣ ≤
(b2 − b1)(|f ′(b1)|+ |f ′(b2)|)

8
(1. 5)

holds.

Theorem 2. Let f : I◦ → R be a differentiable function such thatf ′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If the function|f ′| p

p−1 for p > 1 is convex on[b1, b2], then the
inequality
∣∣∣∣∣
f(b1) + f(b2)

2
− 1

b2 − b1

∫ b2

b1

f(x)dx

∣∣∣∣∣ ≤
b2 − b1

2(p + 1)
1
p

[
|f ′(b1)|

p
p−1 + |f ′(b2)|

p
p−1

2

] p−1
p

(1. 6)

holds.

In 2000, Pearce and Pecaric [31] proved the following theorem by using Lemma 1.

Theorem 3. Let f : I◦ → R be a differentiable function such thatf ′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If for the function|f ′|q is concave on[b1, b2] for q > 1, then the
inequality

∣∣∣∣∣
f(b1) + f(b2)

2
− 1

b2 − b1

∫ b2

b1

f(x)dx

∣∣∣∣∣ ≤
b2 − b1

4

∣∣∣∣f ′
(

b1 + b2

2

)∣∣∣∣ (1. 7)

holds.

Theorem 4. Let f : I◦ → R be a differentiable function such thatf ′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If the function|f ′|q is concave on[b1, b2] for q > 1, then the
inequality

∣∣∣∣∣f
(

b1 + b2

2

)
− 1

b2 − b1

b2∫

b1

f(x)dx

∣∣∣∣∣ ≤
b2 − b1

4

∣∣∣f ′
(

b1 + b2

2

) ∣∣∣ (1. 8)

holds.

In this paper, we establish two new integral identities connected with the left hand side of
(H-H) inequality. By using these identities, we obtain some new bounds for the Hadamard’s
type inequalities. Our one new bound is better than the earlier obtained bound (see Remark
1). We also present applications for means and for some error estimates of the mid point
formula.

2. MAIN RESULTS

To establish our main results connected with the left-hand side of (H-H) inequality for
differentiable convex function, we need the following lemma.
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Lemma 2. Let f : I◦ ⊂ R → R be a differentiable mapping and letb1, b2 ∈ I◦ with
b1 < b2. If f ′ ∈ L[b1, b2], then

∆ =
b2 − b1

4

[ 1∫

0

zf ′
(

zb2

2
+

2− z

2
b1

)
dz−

1∫

0

(1−z)f ′
(

1− z

2
b1 +

1 + z

2
b2

)
dz

]

holds, where∆ is defined as in(1. 3 ).

Proof. Integration by parts gives that

I1 =

1∫

0

zf ′
(

zb2

2
+

2− z

2
b1

)
dz

=
zf

(
zb2
2 + 2−z

2 b1

)
b2−b1

2

∣∣∣
1

0
− 2

b2 − b1

1∫

0

f

(
zb2

2
+

2− z

2
b1

)
dz

=
2

b2 − b1
f

(
b1 + b2

2

)
− 2

b2 − b1

1∫

0

f

(
zb2

2
+

2− z

2
b1

)
dz.

By change of variable we have that

I1 =
2

b2 − b1
f

(
b1 + b2

2

)
− 2

b2 − b1

b1+b2
2∫

b1

f(x)
2

b2 − b1
dx

=
2

b2 − b1
f

(
b1 + b2

2

)
− 4

(b2 − b1)2

b1+b2
2∫

b1

f(x)dx. (2. 9)

Similarly, we can write

I2 =

1∫

0

(1− z)f ′
(

1− z

2
b1 +

1 + z

2
b2

)
dz

= − 2
b2 − b1

f

(
b1 + b2

2

)
+

4
(b2 − b1)2

b2∫

b1+b2
2

f(x)dx. (2. 10)

Now by subtraction (2. 10 ) from (2. 9 ) and then multiplying byb2−b1
4 , we obtain the

required result. ¤

Theorem 5. Let f : I◦ → R be a differentiable function such thatf ′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If the function|f ′|q is concave on[b1, b2] for q > 1, then the
inequality

|∆| ≤ b2 − b1

8

[∣∣∣f ′
(

b2 + 2b1

3

) ∣∣∣ +
∣∣∣f ′

(
b1 + 2b2

3

) ∣∣∣
]
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holds, where∆ is defined as in(1. 3 ).

Proof. By concavity of|f ′|q and the power mean inequality, we may write

|f ′(zb1 + (1− z)b2)|q ≥ z|f ′(b1)|q + (1− z)|f ′(b2)|q ≥ (z|f ′(b1)|+ (1− z)|f ′(b2)|)q.

Since we have

|f ′(zb1 + (1− z)b2)| ≥ z|f ′(b1)|+ (1− z)|f ′(b2)|,
|f ′| is also concave function. By using triangle inequality and Lemma 2, we have:

∣∣∣∣∣f
(

b1 + b2

2

)
− 1

b2 − b1

b2∫

b1

f(x)dx

∣∣∣∣∣

≤ b2 − b1

4

[ 1∫

0

z
∣∣∣f ′

(
zb2

2
+

2− z

2
b1

) ∣∣∣dz+

1∫

0

(1−z)
∣∣∣f ′

(
1− z

2
b1 +

1 + z

2
b2

) ∣∣∣dz

]
.

(2. 11)

Now by Jensen’s integral inequality, we have

1∫

0

(1− z)|f ′
(

1− z

2
b1 +

1 + z

2
b2

)
|dz

≤
1∫

0

(1− z)dz

∣∣∣∣∣f
′
( 1∫

0

(1− z)
(

1−z
2 b1 + 1+z

2 b2

)
dz

1∫
0

(1− z)dz

)∣∣∣∣∣. (2. 12)

Since
1∫
0

(1− z)dz = 1
2 and

1∫
0

(
(1−z)2

2 b1 + 1−z2

2 b2

)
dz = 1

6b1 + 1
3b2, (2. 12 ) turns out to

1∫

0

(1− z)
∣∣∣f ′

(
1− z

2
b1 +

1 + z

2
b2

) ∣∣∣dz ≤ 1
2

∣∣∣f ′
(

2b2 + b1

3

) ∣∣∣. (2. 13)

Similarly, we have

1∫

0

z
∣∣∣f ′

(
zb2

2
+

2− z

2
b1

) ∣∣∣dz ≤ 1
2

∣∣∣f ′
(

b2 + 2b1

3

) ∣∣∣. (2. 14)

¤

By substituting (2. 13 ) and (2. 14 ) in (2. 11 ) we get the required result.
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Remark 1. Note that the bound in (2. 11 ) is better than that in (1. 8 ). Since|f ′| is concave
on [b1, b2], we have

b2 − b1

8

[∣∣∣f ′
(

b2 + 2b1

3

) ∣∣∣ +
∣∣∣f ′

(
b1 + 2b2

3

) ∣∣∣
]

=
b2 − b1

4

[
1
2

∣∣∣f ′
(

b2 + 2b1

3

) ∣∣∣ +
1
2

∣∣∣f ′
(

b1 + 2b2

3

) ∣∣∣
]
≤ b2 − b1

4

∣∣∣f ′
(

b1 + b2

2

) ∣∣∣.

Lemma 3. Let f : I◦ ⊂ R → R be a differentiable mapping and letb1, b2 ∈ I◦ with
b1 < b2. If f ′′ ∈ L[b1, b2], then

∆ =
(b2 − b1)2

16

[ 1∫

0

(1− z)2f ′′
(

1− z

2
b1 +

1 + z

2
b2

)
dz

+

1∫

0

z2f ′′
(

zb2

2
+

2− z

2
b1

)
dz

]

holds, where∆ is defined as in(1. 3 ).

Proof. Integration by parts gives that

I1 =

1∫

0

(1− z)2f ′′
(

1− z

2
b1 +

1 + z

2
b2

)
dz

=
(1− z)2f ′

(
1−z
2 b1 + 1+z

2 b2

)
b2−b1

2

∣∣∣
1

0
+

4
b2 − b1

1∫

0

(1− z)f ′
(

1− z

2
b1 +

1 + z

2
b2

)
dz

= − 2
b2 − b1

f ′
(

b1 + b2

2

)
− 8

(b2 − b1)2
f

(
b1 + b2

2

)

+
8

(b2 − b1)2

1∫

0

f

(
1− z

2
b1 +

1 + z

2
b2

)
dz.

By change of variables, we have

I1 = − 2
b2 − b1

f ′
(

b1 + b2

2

)
− 8

(b2 − b1)2
f

(
b1 + b2

2

)
+

16
(b2 − b1)3

b2∫

b1+b2
2

f(x)dx.

(2. 15)

Similarly, we have:

I2 =
2

b2 − b1
f ′

(
b1 + b2

2

)
− 8

(b2 − b1)2
f

(
b1 + b2

2

)
+

16
(b2 − b1)3

b1+b2
2∫

b1

f(x)dx.

(2. 16)
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Now by adding (2. 15 ) and (2. 16 ) and then multiplying by(b2−b1)
2

16 , we obtain the re-
quired result.

¤
Theorem 6. Let f : I◦ → R be a differentiable function such thatf ′′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If the function|f ′′| is concave on[b1, b2], then the inequality

|∆| ≤ (b2 − b1)2

16

∣∣∣f ′′
(

7b2 + 5b1

12

) ∣∣∣
holds, where∆ is defined as in(1. 3 ).

Proof. By using Lemma 3 and triangle inequality, we have that

|∆| ≤ (b2 − b1)2

16

[ 1∫

0

z2
∣∣∣f ′′

(
zb2

2
+

2− z

2
b1

) ∣∣∣dz

+

1∫

0

(1− z)2
∣∣∣f ′′

(
1− z

2
b1 +

1 + z

2
b2

) ∣∣∣dz

]
.

As (1− z)2 ≤ 1− z2 for z ∈ [0, 1], we have

|∆| ≤ (b2 − b1)2

16

[ 1∫

0

z2
∣∣∣f ′′

(
zb2

2
+

2− z

2
b1

) ∣∣∣dz

+

1∫

0

(1− z2)
∣∣∣f ′′

(
1− z

2
b1 +

1 + z

2
b2

) ∣∣∣dz

]
. (2. 17)

Since|f ′′| is concave, inequality (2. 17 ) becomes

|∆| ≤ (b2 − b1)2

16

[ 1∫

0

∣∣∣f ′′
(z3b2

2
+

2z2 − z3

2
b1

+
(1− z2)(1− z)

2
b1 +

(1− z2)(1 + z)
2

b2

)∣∣∣dz

]
.

Now by applying Jensen’s inequality, we get

|∆| ≤ (b2 − b1)2

16

[∣∣∣f ′′
( 1∫

0

(z3b2

2
+

2z2 − z3

2
b1

+
(1− z2)(1− z)

2
b1 +

(1− z2)(1 + z)
2

b2

)
dz

∣∣∣
)]

=
(b2 − b1)2

16

∣∣∣f ′′
(

11
24

b2 +
5
24

b1 +
1
8
b2 +

5
24

b1

) ∣∣∣ =
(b2 − b1)2

16

∣∣∣f ′′
(

7b2 + 5b1

12

) ∣∣∣.

¤
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Theorem 7. Let f : I◦ → R be a differentiable function such thatf ′′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If the function|f ′′|q is concave on[b1, b2] for q > 1, then the
inequality

|∆| ≤ (b2 − b1)2

48

[∣∣∣f ′′
(

5b2 + 3b1

8

) ∣∣∣ +
∣∣∣f ′′

(
3b2 + 5b1

8

) ∣∣∣
]

holds, where∆ is defined as in(1. 3 ).

Proof. By Theorem 5, we have|f ′′| is concave function. By applying triangle inequality
in Lemma 3, we have

|∆| ≤ (b2 − b1)2

16

[∣∣∣
1∫

0

z2f ′′
(

zb2

2
+

2− z

2
b1

)
dz

∣∣∣

+
∣∣∣

1∫

0

(1− z)2f ′′
(

1− z

2
b1 +

1 + z

2
b2

)
dz

∣∣∣
]
. (2. 18)

Now by using Jensen’s integral inequality, we have:

1∫

0

(1− z)2|f ′′
(

1− z

2
b1 +

1 + z

2
b2

)
|dz

≤
1∫

0

(1− z)2dz

∣∣∣∣∣

1∫

0

f ′′
(

(1− z)2
(

1−z
2 b1 + 1+z

2 b2

)
1∫
0

(1− z)2dz

)∣∣∣∣∣dz. (2. 19)

Since
1∫
0

(1 − z)2dz = 1
3 and

1∫
0

(
(1−z)3

2 b1 + (1−z)2(1+z)
2 b2

)
= 1

8b1 + 5
24b2, (2. 19 ) turns

out to

1∫

0

(1− z)2|f ′′
(

1− z

2
b1 +

1 + z

2
b2

)
|dz ≤ 1

3

∣∣∣f ′′
(

5b2 + 3b1

8

) ∣∣∣. (2. 20)

Similarly, we have

1∫

0

z2f ′′
(

zb2

2
+

2− z

2
b1

)
dz ≤ 1

3

∣∣∣f ′′
(

3b2 + 5b1

8

) ∣∣∣. (2. 21)

¤

By substituting (2. 20 ) and (2. 21 ) in (2. 18 ), we get the required result.
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Remark 2. It can be noted that if we use the concavity of|f ′′|, then from (2. 18 ), we can
write as

|∆| ≤ (b2 − b1)2

24

[
1
2

∣∣∣f ′′
(

5b2 + 3b1

8

) ∣∣∣ +
1
2

∣∣∣f ′′
(

3b2 + 5b1

8

) ∣∣∣
]

≤ (b2 − b1)2

24

∣∣∣f ′′
(

b1 + b2

2

) ∣∣∣,

where∆ is defined as in (1. 3 ).

3. APPLICATION TO MEANS AND TO MID POINT FORMULA

We will consider the following particular means for anyb1, b2 ∈ R, b1 6= b2 which are
well-known in the literature, see [10]:

A(b1, b2) =
b1 + b2

2
, b1, b2 > 0,

L̄(b1, b2) =
b2 − b1

ln b2 − ln b1
, b1, b2 > 0,

Ln(b1, b2) =

[
bn+1
2 − bn+1

1

(n + 1)(b2 − b1)

] 1
n

, b1 < b2, n ∈ R.

Proposition 1. Let0 < b1 < b2, n ∈ R, and1 < n < 2. Then the inequality

|An(b1, b2)− Ln(b1, b2)n| ≤ |n|(b2 − b1)
8

(∣∣∣b2 + 2b1

3

∣∣∣
n−1

+
∣∣∣2b2 + b1

3

∣∣∣
n−1

)

holds.

Proof. Choosing the functionf(s) = sn, s > 0, 1 < n < 2 in Theorem 5, the proof can
be completed. ¤

Proposition 2. Let0 < b1 < b2, n ∈ R, and2 < n < 3. Then the inequality

|An(b1, b2)− Ln(b1, b2)n| ≤ |n(n− 1)|(b2 − b1)2

16

∣∣∣7b2 + 5b1

12

∣∣∣
n−2

holds.

Proof. Choosing the functionf(s) = sn, s > 0, 2 < n < 3 in Theorem 6, the proof can
be completed. ¤

Proposition 3. Let0 < b1 < b2, n ∈ R, and2 < n < 3. Then the inequality

|An(b1, b2)−Ln(b1, b2)n| ≤ |n(n− 1)|(b2 − b1)2

48

(∣∣∣5b2 + 3b1

8

∣∣∣
n−2

+
∣∣∣3b2 + 5b1

8

∣∣∣
n−2

)

holds.

Proof. Choosing the functionf(s) = sn, s > 0, 2 < n < 3 in Theorem 7 the proof can be
completed. ¤
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Now we give applications to mid point formula as in [10]. We consider thatσ as partition
of the interval[b1, b2] in R, i.e. σ : b1 = s0 < s1 < · · ·· < sn−1 < sn = b2, and the
trapezoidal formula defined as

T (f, σ) =
n−1∑

i=0

f

(
si + si+1

2

)
(si+1 − si).

Let f be a twice differentiable mapping on(b1, b2) with

M = max
t∈(b1,b2)

|f ′′(x)| < ∞,

then we have

b2∫

b1

f(x)dx = T (f, σ) + E(f, σ),

whereE(f, σ) is the approximation error of the integral
b2∫
b1

f(x)dx and by the trapezoidal

formula andT (f, σ) satisfies

|E(f, σ)| ≤ M

12

n−1∑

i=0

(si+1 − si)3.

Proposition 4. Letf : I◦ → R be a differentiable function such thatf ′′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If the function|f ′′| is concave on[b1, b2], then for every division
σ of [b1, b2], the inequality

|E(f, σ)| ≤ 1
16

n−1∑

i=0

(si+1 − si)3
∣∣∣f ′′

(
5si + 7si+1

12

) ∣∣∣

holds.

Proof. By applying Theorem 6 to the sub intervals[si, si+1] , i = 0, ..., n − 1, of the
divisionσ, we get

∣∣∣∣∣f
(

si + si+1

2

)
−

si+1∫

si

f(x)dx

∣∣∣∣∣ ≤
1
16

(si+1 − si)2
∣∣∣f ′′

(
5si + 7si+1

12

) ∣∣∣. (3. 22)

Summing up (3. 22 ) from0 to n − 1 and taking into consideration that|f ′| is convex, we
have

∣∣∣∣∣T (f, σ)−
b2∫

b1

f(x)dx

∣∣∣∣∣ ≤
1
16

n−1∑

i=0

(si+1 − si)3
∣∣∣f ′′

(
5si + 7si+1

12

) ∣∣∣

by triangle inequality. ¤
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Proposition 5. Letf : I◦ → R be a differentiable function such thatf ′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If the function|f ′|q is concave on[b1, b2] for q > 1, then for
every divisionσ of [b1, b2], the inequality

|E(f, σ)| ≤ 1
8

n−1∑

i=0

(si+1 − si)2
[∣∣∣f ′

(
2si + si+1

2

) ∣∣∣ +
∣∣∣f ′

(
si + 2si+1

2

) ∣∣∣
]

holds.

Proof. The proof is similar to that of Proposition 4. ¤
Proposition 6. Letf : I◦ → R be a differentiable function such thatf ′′ ∈ L[b1, b2], where
b1, b2 ∈ I◦ with b1 < b2. If the function|f ′′|q is concave on[b1, b2] for q > 1, then for
every divisionσ of [b1, b2], the inequality

|E(f, σ)| ≤ 1
48

n−1∑

i=0

(si+1 − si)3
[∣∣∣f ′′

(
3si + 5si+1

2

) ∣∣∣ +
∣∣∣f ′′

(
5si + 3si+1

2

) ∣∣∣
]

holds.

Proof. The proof is similar to that of Proposition 4. ¤
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