Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 50(3)(2018) pp. 13-24 ## Some Fejer and Hermite-Hadamard Type Inequalities Considering ϵ -Convex and (σ, ϵ) -Convex Functions Muhammad Amer Latif Department of Basic Sciences, Deanship of Preparatory Year Program, University of Hail, Hail 2440, Saudi Arabia. Email: m_amer_latif@hotmail.com Wajeeha Irshad Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan. Email: wchattha@hotmail.com Received: 21 July, 2017 / Accepted: 22 November, 2017 / Published online: 10 April, 2018 **Abstract.** In current paper, new Hermite-Hadamard and Fejér type inequalities are proved by using the ϵ -convexity and (σ, ϵ) -convexity of differentiable functions and a positive function symmetric with respect to $\frac{\epsilon j + k}{2}$. The results of the paper have been proved to contain previously established results related to differentiable convex functions. ## 1. Introduction A function $\eta:U\subseteq\mathbb{R}\to\mathbb{R}$ forenamed as convex function, let $$\eta (t\theta + (1-t)y) \le t\eta (\theta) + (1-t)\eta (y)$$ holds for every θ , $y \in I$ and $t \in [0, 1]$. The subsequent double integral inequality $$\eta\left(\frac{j+k}{2}\right) \le \frac{1}{k-j} \int_{j}^{k} \eta(\theta) d\theta \le \frac{\eta(j) + \eta(k)}{2}.$$ (1.1) holds for convex functions and is notable in literature as the Hermite-Hadamard inequality. The inequalities in (1.1) holds in reversed order as η is concave function. The inequality (1. 1) has been a likely of extensive study insomuch as discovery. A number of papers have been written which provide noteworthy extensions, generalizations and refinements for the inequalities (1. 1), see for example [1]-[19]. Dragomir and Agarwal [2], proved subsequent inequalities for differentiable functions which estimate the difference between the middle and rightmost terms in (1.1). **Theorem 1.1.** [2] Suppose $\eta: U \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping at U° , and j, $k \in U$ with j < k, also $\eta' \in L([j,k])$. If $\left|\eta'\right|$ is convex function on [j,k], so subsequent inequality holds: $$\left| \frac{\eta(j) + \eta(k)}{2} - \frac{1}{k - j} \int_{j}^{k} \eta(\theta) d\theta \right| \leq \frac{k - j}{8} \left[\left| \eta'(j) \right| + \left| \eta'(k) \right| \right]. \tag{1.2}$$ **Theorem 1.2.** [2] Let $\eta: U \subseteq \mathbb{R} \to \mathbb{R}$ is a differentiable mapping against I° , and j, $k \in U$ with j < k, including $\eta' \in L([j,k])$. Whenever $\left|\eta'\right|^{\frac{p}{p-1}}$ is a convex function supported [j,k], the coming inequality holds: $$\left| \frac{\eta(j) + \eta(k)}{2} - \frac{1}{k - j} \int_{j}^{k} \eta(\theta) d\theta \right| \leq \frac{k - j}{2 (p + 1)^{\frac{1}{p}}} \left[\left| \eta^{'}(j) \right|^{\frac{p}{p - 1}} + \left| \eta^{'}(k) \right|^{\frac{p}{p - 1}} \right], \quad (1.3)$$ point p > 1 furthermore $\frac{1}{p} + \frac{1}{q} = 1$. In [17], Pearce attained enhancement and resolution of constant in Theorem 1.2 wherever strengthen this consequence by proving the successive theorem. **Theorem 1.3.** [17] Consider $\eta: U \subseteq \mathbb{R} \to \mathbb{R}$ is a differentiable mapping at I° , with j, $k \in U$ and j < k, together $\eta' \in L([j,k])$. If $\left|\eta'\right|^q$ is a convex function on [j,k], also $q \geq 1$, then the subsequent inequality exists: $$\left| \frac{\eta(j) + \eta(k)}{2} - \frac{1}{k - j} \int_{j}^{k} \eta(\theta) d\theta \right| \leq \frac{k - j}{4} \left\lceil \frac{\left| \eta^{'}(j) \right|^{q} + \left| \eta^{'}(k) \right|^{q}}{2} \right\rceil^{\frac{1}{q}}. \tag{1.4}$$ If $\left|\eta^{'}\right|^{q}$ is concave on [j,k], a bit $q \geq 1$. Formerly $$\left| \frac{\eta(j) + \eta(k)}{2} - \frac{1}{k - j} \int_{j}^{k} \eta(\theta) d\theta \right| \le \frac{k - j}{4} \left| \eta'\left(\frac{j + k}{2}\right) \right|. \tag{1.5}$$ In [6], Dah-Yan Hwang established the following results for convex which affords weighted consolation of results inclined in Theorem 1.1, Theorem 1.2 and the inequality (1.4) of Theorem1.3. **Theorem 1.4.** [6] Authorize $\eta: U \subseteq \mathbb{R} \to \mathbb{R}$ is a differentiable mapping on I° , with j, $k \in U^{\circ}$ along j < k and allow $\rho: [j,k] \to [0,\infty)$ be continuous positive mapping also symmetric to $\frac{j+k}{2}$. Assume $|\eta'|$ is convex function at [j,k], succeeding inequality holds: $$\left| \left[\frac{\eta(j) + \eta(k)}{2} \right] \int_{j}^{k} \rho(\theta) d\theta - \int_{j}^{k} \eta(x) \rho(\theta) d\theta \right|$$ $$\leq \frac{k - j}{4} \left[\left| \eta'(j) \right| + \left| \eta'(k) \right| \right] \int_{0}^{1} \int_{L(j,k,t)}^{U(j,k,t)} \rho(\theta) d\theta dt, \quad (1.6)$$ where $$U(j,k,t)=\frac{1-t}{2}j+\frac{1+t}{2}k$$ and $L(j,k,t)=\frac{1+t}{2}j+\frac{1-t}{2}k$. **Theorem 1.5.** [6] Confirming considerations of Theorem 1.4 are fulfilled along $q \ge 1$. Assuming $\left|\eta^{'}\right|^{q}$ is convex function on [j,k], pursuing inequality grips: $$\left| \left[\frac{\eta(j) + \eta(k)}{2} \right] \int_{j}^{k} \rho(\theta) d\theta - \int_{j}^{k} \eta(\theta) \rho(\theta) d\theta \right| \\ \leq \frac{k - j}{2} \left[\frac{\left| \eta'(j) \right|^{q} + \left| \eta'(k) \right|^{q}}{2} \right]^{\frac{1}{q}} \int_{0}^{1} \int_{L(j,k,t)}^{U(j,k,t)} \rho(\theta) d\theta dt, \quad (1.7)$$ site U(j, k, t) with L(j, k, t) are decided in Theorem 1.4. The classical convexity that is stated above was generalized as ϵ -convexity by G. Toader in [19] as follows: **Definition 1.6.** Function $\eta:[0,k^*]\to\mathbb{R}$ named as ϵ -convex if $$\eta\left(t\theta + \epsilon\left(1 - t\right)y\right) \le t\eta\left(\theta\right) + \epsilon\left(1 - t\right)\eta\left(y\right)$$ grips being $\theta, y \in [0, k^*]$, $\epsilon \in [0, 1]$ and $t \in (0, 1]$, where $k^* > 0$. A function $\eta : [0, k^*] \to \mathbb{R}$ forenamed as ϵ -concave if $-\eta$ is ϵ -convex. Obviously, for $\epsilon=1$ the Interpretation 1.6 recaptures perception of standard convex functions which construed on $[0,k^*]$. Assumption of ϵ -convexity has been further generalized in [12] as declared in successive interpretation. **Definition 1.7.** Function $\eta:[0,k^*]\to\mathbb{R}$ is known as (σ,ϵ) -convex assuming $$\eta\left(t\theta + \epsilon\left(1 - t\right)y\right) < t^{\sigma}\eta\left(\theta\right) + \epsilon\left(1 - t^{\sigma}\right)\eta\left(y\right)$$ exists being $\theta, y \in [0, k^*]$, $(\sigma, \epsilon) \in [0, 1]^2$ with $t \in (0, 1]$, as $k^* > 0$. Function $\eta : [0, k^*] \to \mathbb{R}$ forenamed as (σ, ϵ) -concave if $-\eta$ is (σ, ϵ) -convex. It can easily be seen that for $\sigma=1$, the class of ϵ -convex functions are derived from the above interpretation and for $\epsilon=\sigma=1$ a class of convex functions are derived. For several declarations concerning Hermite-Hadamard type inequalities for ϵ -convex and (σ, ϵ) -convex functions we specify the attentive reader to [1, 3, 4, 8, 13, 14, 15, 16, 10, 11, 18] and the references cited therein. In Section 2, we prove some new Fejér and Harmine-Hadamard type inequalities by using the ϵ - and (σ, ϵ) -convexity of the differentiable mappings. The results of this paper contains some previously proved results for convex functions defined over the interval $[0, k^*]$ as special cases. 2. Fejér type inequalities for ϵ -convex and (σ, ϵ) -convex functions **Lemma 2.1.** Consider $\eta: U \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping at U° with $\rho: [\epsilon j, k] \to [0, \infty)$ be continuous and symmetric considering $\frac{\epsilon j + k}{2}$ for settled $\epsilon \in (0, 1]$, where $\epsilon j, k \in U^{\circ}$ with $\epsilon j < k$. If $\eta^{'} \in L_{1}[\epsilon j, k]$, resulting expression exists $$\left[\frac{\eta\left(\epsilon j\right) + \eta\left(k\right)}{2}\right] \int_{\epsilon j}^{k} \rho\left(\theta\right) d\theta - \int_{\epsilon j}^{k} \rho\left(\theta\right) \eta\left(\theta\right) d\theta$$ $$= \frac{k - \epsilon j}{4} \int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho\left(\theta\right) d\theta\right] \left[\eta'\left(U\left(t,\epsilon\right)\right) - \eta'\left(L\left(t,\epsilon\right)\right)\right] dt, \quad (2.8)$$ along $$U(t,\epsilon) = \epsilon \left(\frac{1-t}{2}\right)j + \left(\frac{1+t}{2}\right)k$$ furthermore $$L\left(t,\epsilon\right) = \epsilon\left(\frac{1+t}{2}\right)j + \left(\frac{1-t}{2}\right)k.$$ *Proof.* By the integration by parts, we get $$\begin{split} W_1 &= \int_0^1 \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho\left(\theta\right) d\theta \right] \eta'\left(U\left(t,\epsilon\right)\right) dt \\ &= \frac{2}{k - \epsilon j} \int_0^1 \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho\left(\theta\right) d\theta \right] d\left[\eta\left(U\left(t,\epsilon\right)\right)\right] \\ &= \frac{2}{k - \epsilon j} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho\left(\theta\right) d\theta \right] \eta\left(U\left(t,\epsilon\right)\right) \bigg|_0^1 \\ &- \int_0^1 \left[\rho\left(U\left(t,\epsilon\right)\right) + \rho\left(L\left(t,\epsilon\right)\right)\right] \eta\left(U\left(t,\epsilon\right)\right) dt \\ &= \frac{2}{k - \epsilon j} \eta\left(k\right) \int_{\epsilon j}^k \rho\left(\theta\right) d\theta - 2 \int_0^1 \rho\left(U\left(t,\epsilon\right)\right) \eta\left(U\left(t,\epsilon\right)\right) dt \\ &= \frac{2}{k - \epsilon j} \eta\left(k\right) \int_{\epsilon j}^k \rho\left(\theta\right) d\theta - \frac{4}{k - \epsilon j} \int_{\frac{\epsilon k + j}{2}}^k \rho\left(\theta\right) \eta\left(\theta\right) d\theta. \end{split}$$ Similarly, we can observe that $$W_{2} = -\frac{2}{k - \epsilon j} \eta\left(\epsilon j\right) \int_{\epsilon j}^{k} \rho\left(\theta\right) d\theta + \frac{4}{k - \epsilon j} \int_{\epsilon j}^{\frac{\epsilon j + k}{2}} \rho\left(\theta\right) \eta\left(\theta\right) d\theta.$$ Hence $$W_1 - W_2 = \frac{2}{k - \epsilon j} \left[\eta(\epsilon j) + \eta(k) \right] \int_{\epsilon j}^k \rho(\theta) d\theta - \frac{4}{k - \epsilon j} \int_{\epsilon j}^k \rho(\theta) \eta(\theta) d\theta.$$ Multiplying the above result by $\frac{k-\epsilon j}{4}$, we get what is desired. **Remark 2.2.** If we choose $\epsilon = 1$ in Lemma 2.1, we obtain the result proved in [3] [Lemma 2.1, page 9599]. **Remark 2.3.** If $\rho(\theta) = \frac{1}{k - \epsilon j}$, $\theta \in [\epsilon j, k]$, then the subsequent equality holds $$\frac{\eta(\epsilon j) + \eta(k)}{2} - \frac{1}{k - \epsilon j} \int_{\epsilon j}^{k} \eta(\theta) d\theta$$ $$= \frac{k - \epsilon j}{8} \int_{0}^{1} \left[\eta' \left(\epsilon \left(\frac{1 - t}{2} \right) j + \left(\frac{1 + t}{2} \right) k \right) - \eta' \left(\epsilon \left(\frac{1 + t}{2} \right) j + \left(\frac{1 - t}{2} \right) k \right) \right] dt.$$ (2. 9) Now we present some Fejér type inequalities for ϵ -convex functions. **Theorem 2.4.** Let $\eta: W \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on $W^{\circ} \supset [0, \infty)$ and $\rho: [\epsilon j, k] \to [0, \infty)$ be continuous and symmetric considering $\frac{\epsilon j + k}{2}$ for settled $\epsilon \in (0, 1]$, where $\epsilon j, k \in W^{\circ}$ with $\epsilon j < k$. Supposing $\eta' \in L_1[\epsilon j, k]$ and $\left| \rho' \right|$ is ϵ -convex on [0, k], ensuing inequality holds $$\left| \left[\frac{\eta(\epsilon j) + \eta(k)}{2} \right] \int_{\epsilon j}^{k} \rho(\theta) d\theta - \int_{\epsilon j}^{k} \rho(\theta) \eta(\theta) d\theta \right| \\ \leq \frac{k - \epsilon j}{4} \left[\epsilon \left| \eta'(j) \right| + \left| \eta'(k) \right| \right] \int_{0}^{1} \int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta dt. \quad (2. 10)$$ *Proof.* Taking absolute value on both sides of (2. 8) and employing ϵ -convexity on [0, k], we have $$\left| \left[\frac{\eta(\epsilon j) + \eta(k)}{2} \right] \int_{\epsilon j}^{k} \rho(\theta) d\theta - \int_{\epsilon j}^{k} \rho(\theta) \eta(\theta) d\theta \right|$$ $$\leq \frac{k - \epsilon j}{4} \int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \left[\left| \eta'(U(t,\epsilon)) \right| + \left| \eta'(L(t,\epsilon)) \right| \right] dt$$ $$\leq \frac{k - \epsilon j}{4} \int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \left[\epsilon \left(\frac{1 - t}{2} \right) \left| \eta'(j) \right| + \left(\frac{1 + t}{2} \right) \left| \eta'(k) \right| \right]$$ $$+ \epsilon \left(\frac{1 + t}{2} \right) \left| \eta'(j) \right| + \left(\frac{1 - t}{2} \right) \left| \eta'(k) \right| dt$$ $$= \frac{k - \epsilon j}{4} \left[\epsilon \left| \eta'(j) \right| + \left| \eta'(k) \right| \right] \int_{0}^{1} \int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta dt.$$ Hence argument of theorem is concluded. **Remark 2.5.** The choice of $\epsilon = 1$, gives the result of Theorem 2.2 proved in [3] for convex functions defined on [0, k]. **Corollary 2.6.** Under the assumptions of Theorem 2.4 and the choice of $\rho(\theta) = \frac{1}{k - \epsilon j}$, $\theta \in [\epsilon j, k]$, subsequent inequality holds $$\left| \frac{\eta\left(\epsilon j\right) + \eta\left(k\right)}{2} - \frac{1}{k - \epsilon j} \int_{\epsilon j}^{k} \eta\left(\theta\right) d\theta \right| \leq \frac{k - \epsilon j}{8} \left[\epsilon \left| \eta'\left(j\right) \right| + \left| \eta'\left(k\right) \right| \right]. \tag{2.11}$$ **Remark 2.7.** Assuming $\epsilon = 1$ in Corollary 2.6, we get the result proved in [2, Theorem 2.2] for convex functions rationale on [0, k]. **Theorem 2.8.** Let $\eta: W \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on $W^{\circ} \supset [0, \infty)$ and $\rho: [\epsilon j, k] \to [0, \infty)$ be continuous and symmetric regarding $\frac{\epsilon j + k}{2}$ for settled $\epsilon \in (0, 1]$, where $\epsilon j, k \in W^{\circ}$ with $\epsilon j < k$. If $\eta' \in L_1[\epsilon j, k]$ and $\left| \eta' \right|^q$ is ϵ -convex on [0, k] for $q \geq 1$, specified inequality is $$\left| \left[\frac{\eta\left(\epsilon j\right) + \eta\left(k\right)}{2} \right] \int_{\epsilon j}^{k} \rho\left(\theta\right) d\theta - \int_{\epsilon j}^{k} \rho\left(\theta\right) \eta\left(\theta\right) d\theta \right| \\ \leq \frac{k - \epsilon j}{2} \left[\frac{\epsilon \left| \eta'\left(j\right) \right|^{q} + \left| \eta'\left(k\right) \right|^{q}}{2} \right]^{\frac{1}{q}} \int_{0}^{1} \int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho\left(\theta\right) d\theta dt. \quad (2. 12)$$ *Proof.* Applying Lemma 2.1 and usage of Hölder inequality, gives $$\left| \left[\frac{\eta(\epsilon j) + \eta(k)}{2} \right] \int_{\epsilon j}^{k} \rho(\theta) d\theta - \int_{\epsilon j}^{k} \rho(\theta) \eta(\theta) d\theta \right| \leq \frac{k - \epsilon j}{4} \\ \times \left\{ \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] dt \right)^{1 - \frac{1}{q}} \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \left| \eta'(U(t,\epsilon)) \right|^{q} dt \right)^{\frac{1}{q}} \right. \\ + \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] dt \right)^{1 - \frac{1}{q}} \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \left| \eta'(U(t,\epsilon)) \right|^{q} dt \right)^{\frac{1}{q}} \right\}. \tag{2.13}$$ Employing power-mean inequality $\theta^r + y^r \le 2^{1-r} (\theta + y)^r$ for j, k > 0 with r < 1, $$\left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho\left(\theta\right) d\theta\right] \left|\eta'\left(U\left(t,\epsilon\right)\right)\right|^{q} dt\right)^{\frac{1}{q}} + \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho\left(\theta\right) d\theta\right] \left|\eta'\left(U\left(t,\epsilon\right)\right)\right|^{q} dt\right)^{\frac{1}{q}} \\ \leq 2^{1-\frac{1}{q}} \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \eta\left(\theta\right) d\theta\right]\right)^{\frac{1}{q}} \left(\int_{0}^{1} \left|\eta'\left(U\left(t,\epsilon\right)\right)\right|^{q} dt + \int_{0}^{1} \left|\eta'\left(U\left(t,\epsilon\right)\right)\right|^{q} dt\right)^{\frac{1}{q}}.$$ (2. 14) Since $\left|\eta^{'}\right|^q$ is ϵ -convex on [0,b] for settled $\epsilon\in(0,1]$ and $q\geq1$, we attained $$\int_{0}^{1} \left| \eta^{'}\left(U\left(t,\epsilon\right)\right) \right|^{q} dt + \int_{0}^{1} \left| \eta^{'}\left(U\left(t,\epsilon\right)\right) \right|^{q} dt$$ $$\leq \epsilon \left(\frac{1-t}{2}\right) \left| \eta^{'}\left(a\right) \right|^{q} + \left(\frac{1+t}{2}\right) \left| \eta^{'}\left(b\right) \right|^{q}$$ $$+ \epsilon \left(\frac{1+t}{2}\right) \left| \eta^{'}\left(a\right) \right|^{q} + \left(\frac{1-t}{2}\right) \left| \eta^{'}\left(b\right) \right|^{q} = \epsilon \left| \eta^{'}\left(a\right) \right|^{q} + \left| \eta^{'}\left(b\right) \right|^{q} \tag{2.15}$$ Using (2. 15) in (2. 14) and then resulting inequality in (2. 13), we grab which was desired. \Box **Remark 2.9.** Assuming $\epsilon = 1$, we accomplished result of Theorem 2.4 proved in [3]. **Corollary 2.10.** Under the assumptions of Theorem 2.8 and the choice of $g(\theta) = \frac{1}{k - \epsilon j}$, $x \in [\epsilon j, k]$, subsequent result exists $$\left| \frac{\eta(\epsilon j) + \eta(k)}{2} - \frac{1}{k - \epsilon j} \int_{\epsilon j}^{k} \eta(\theta) d\theta \right| \leq \frac{k - \epsilon j}{4} \left[\frac{\epsilon \left| \eta'(j) \right|^{q} + \left| \eta'(k) \right|^{q}}{2} \right]^{\frac{1}{q}}. \quad (2.16)$$ **Remark 2.11.** Consider $\epsilon = 1$ in Corollary 2.10, we draw the result proved in [17, Theorem 1]. Now we present some Fejér type inequalities for (σ, ϵ) -convex functions. **Theorem 2.12.** Endorse $\eta: W \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on $W^{\circ} \supset [0, \infty)$ and $\rho: [\epsilon j, k] \to [0, \infty)$ be continuous and symmetric by $\frac{\epsilon j + k}{2}$ for established $\epsilon \in (0, 1]$, where $\epsilon j, k \in W^{\circ}$ with $\epsilon j < k$. Wherever $\eta' \in L_1[\epsilon j, k]$ and $\left| \eta' \right|$ is (σ, ϵ) -convex on [0, k] for $(\sigma, \epsilon) \in (0, 1] \times (0, 1]$, resulting inequality is $$\left| \left[\frac{\eta\left(\epsilon j\right) + \eta\left(k\right)}{2} \right] \int_{\epsilon j}^{k} \rho\left(\theta\right) d\theta - \int_{\epsilon j}^{k} \rho\left(\theta\right) \eta\left(\theta\right) d\theta \right| \\ \leq \frac{\left(k - \epsilon j\right)^{2}}{4} \left\| \rho \right\|_{\infty} \left[\epsilon \chi\left(\sigma\right) \left| \eta'\left(j\right) \right| + \left(1 - \chi\left(\sigma\right)\right) \left| \eta'\left(k\right) \right| \right], \quad (2.17)$$ spot $$\chi\left(\sigma\right) = \frac{2\left(2^{-\sigma} + \sigma\right)}{\left(\sigma + 2\right)\left(\sigma + 1\right)} \ and \ \left\|\rho\right\|_{\infty} = \sup_{\theta \in \left[\epsilon j, k\right]} \left|\rho\left(\theta\right)\right|.$$ *Proof.* We observed the consequences of Lemma 2.1 can be drafted as $$\left[\frac{\eta\left(\epsilon j\right) + \eta\left(k\right)}{2}\right] \int_{\epsilon j}^{k} \rho\left(\theta\right) d\theta - \int_{\epsilon j}^{k} \rho\left(\theta\right) \eta\left(\theta\right) d\theta$$ $$= \frac{k - \epsilon j}{4} \int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho\left(\theta\right) d\theta\right] \left[\eta'\left(U\left(t,\epsilon\right)\right) - \eta'\left(L\left(t,\epsilon\right)\right)\right] dt$$ $$\leq \frac{\left(k - \epsilon j\right)^{2}}{4} \|\rho\|_{\infty} \int_{0}^{1} t \left[\eta'\left(U\left(t,\epsilon\right)\right) - \eta'\left(L\left(t,\epsilon\right)\right)\right] dt, \quad (2.18)$$ where $\|\rho\|_{\infty} = \sup_{\theta \in [\epsilon j, k]} |\rho(\theta)|$. Taking the absolute value on both sides of (2. 18), we gained $$\left| \left[\frac{\eta(\epsilon j) + \eta(k)}{2} \right] \int_{\epsilon j}^{k} \rho(\theta) d\theta - \int_{\epsilon j}^{k} \rho(\theta) \eta(\theta) d\theta \right| \\ \leq \frac{\left(k - \epsilon j\right)^{2}}{4} \left\| \rho \right\|_{\infty} \int_{0}^{1} t \left[\left| \eta'(U(t, \epsilon)) \right| + \left| \eta'(L(t, \epsilon)) \right| \right] dt. \quad (2.19)$$ Adopting (σ, ϵ) -convexity of $\left| \eta^{'} \right|$ on [0, k], we have $$\int_{0}^{1} t \left[\left| \eta' \left(U \left(t, \epsilon \right) \right) \right| + \left| \eta' \left(L \left(t, \epsilon \right) \right) \right| \right] dt$$ $$\leq \int_{0}^{1} t \left\{ \left(\frac{1+t}{2} \right)^{\sigma} \left| \eta' \left(b \right) \right| + \epsilon \left[1 - \left(\frac{1+t}{2} \right)^{\sigma} \right] \left| \eta' \left(j \right) \right|$$ $$+ \left(\frac{1-t}{2} \right)^{\sigma} \left| \eta' \left(k \right) \right| + \epsilon \left[1 - \left(\frac{1-t}{2} \right)^{\sigma} \right] \left| \eta' \left(a \right) \right| \right\} dt$$ $$= \left| \eta' \left(k \right) \right| \int_{0}^{1} t \left[\left(\frac{1+t}{2} \right)^{\sigma} + \left(\frac{1-t}{2} \right)^{\alpha} \right] dt$$ $$+ \epsilon \left| \eta' \left(j \right) \right| \int_{0}^{1} t \left[2 - \left(\frac{1-t}{2} \right)^{\sigma} - \left(\frac{1+t}{2} \right)^{\sigma} \right] dt$$ $$= \left\{ \frac{2 \left(2^{-\sigma} + \sigma \right)}{\left(\sigma + 2 \right) \left(\sigma + 1 \right)} \right\} \left| \eta' \left(k \right) \right| + \epsilon \left\{ 1 - \frac{2 \left(2^{-\sigma} + \sigma \right)}{\left(\sigma + 2 \right) \left(\sigma + 1 \right)} \right\} \left| \eta' \left(j \right) \right|. \quad (2.20)$$ Applying the inequality (2.20) in (2.19), we scored the result given by (2.17). **Corollary 2.13.** Presume conditions of Theorem 2.12 are fulfilled and $\rho(\theta) = \frac{1}{k - \epsilon j}$, $\theta \in [\epsilon j, k]$, subsequent inequality holds $$\left| \frac{\eta\left(\epsilon j\right) + \eta\left(k\right)}{2} - \frac{1}{k - \epsilon j} \int_{\epsilon j}^{k} \eta\left(x\right) dx \right| \\ \leq \frac{k - \epsilon j}{4} \left[\epsilon \chi\left(\sigma\right) \left| \eta'\left(j\right) \right| + \left(1 - \chi\left(\sigma\right)\right) \left| \eta'\left(k\right) \right| \right], \quad (2.21)$$ position $\chi(\sigma)$ is specified in Theorem 2.12. **Remark 2.14.** If $\sigma = \epsilon = 1$ in (2. 21), we get the result proved in [2, Theorem 2.2] for convex functions defined on [0, k]. **Theorem 2.15.** Let $\eta: W \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on $W^{\circ} \supset [0, \infty)$ and $\rho: [\epsilon j, k] \to [0, \infty)$ be continuous and symmetric by $\frac{\epsilon j + k}{2}$, settle $\epsilon \in (0, 1]$, where ϵj , $k \in W^{\circ}$ with $\epsilon j < k$. Granted $\eta' \in L_1[\epsilon j, k]$ and $\left|\eta'\right|^q$ is (σ, ϵ) -convex on [0, k] for $q \geq 1$, $(\sigma, \epsilon) \in (0, 1] \times (0, 1]$, coming inequality grips $$\left| \left[\frac{\eta\left(\epsilon j\right) + \eta\left(k\right)}{2} \right] \int_{\epsilon j}^{k} \rho\left(\theta\right) d\theta - \int_{\epsilon j}^{k} \rho\left(\theta\right) \eta\left(\theta\right) d\theta \right| \\ \leq \frac{\left(k - \epsilon j\right)^{2}}{4} \left\|\rho\right\|_{\infty} \left[\epsilon \chi\left(\sigma\right) \left| \eta'\left(j\right) \right|^{q} + \left(1 - \chi\left(\sigma\right)\right) \left| \eta'\left(k\right) \right|^{q} \right]^{\frac{1}{q}}, \quad (2.22)$$ where $\chi(\sigma)$ and $\|\rho\|_{\infty}$ are construe in Theorem 2.12. Proof. Continuing from (2. 19) and employing Hölder inequality, we achieved $$\left| \left[\frac{\eta\left(\epsilon j\right) + \eta\left(k\right)}{2} \right] \int_{\epsilon j}^{k} \rho\left(\theta\right) d\theta - \int_{\epsilon j}^{k} \rho\left(\theta\right) \eta\left(\theta\right) d\theta \right| \\ \leq \frac{\left(k - \epsilon j\right)^{2}}{4} \left\| \rho \right\|_{\infty} \left(\int_{0}^{1} t dt \right)^{1 - \frac{1}{q}} \\ \times \left\{ \left(\int_{0}^{1} t \left| \eta'\left(U\left(t, \epsilon\right)\right) \right|^{q} dt \right)^{\frac{1}{q}} + \left(\int_{0}^{1} t \left| \eta'\left(U\left(t, \epsilon\right)\right) \right|^{q} dt \right)^{\frac{1}{q}} \right\}. \quad (2. 23)$$ Accepting power-mean inequality $\theta^r + y^r \le 2^{1-r} (\theta + y)^r$ for j, k > 0 and r < 1, we attain $$\left(\int_{0}^{1} t \left| \eta^{'}\left(U\left(t,\epsilon\right)\right) \right|^{q} dt\right)^{\frac{1}{q}} + \left(\int_{0}^{1} t \left| \eta^{'}\left(U\left(t,\epsilon\right)\right) \right|^{q} dt\right)^{\frac{1}{q}}$$ $$\leq 2^{1-\frac{1}{q}} \left(\int_{0}^{1} t \left| \eta^{'}\left(U\left(t,\epsilon\right)\right) \right|^{q} dt + \int_{0}^{1} t \left| \eta^{'}\left(U\left(t,\epsilon\right)\right) \right|^{q} dt\right)^{\frac{1}{q}} \tag{2.24}$$ Since $\left|\eta^{'}\right|^{q}$ is (σ,ϵ) -convex on [0,k] for $q\geq 1,$ $(\sigma,\epsilon)\in (0,1]\times (0,1]$, we have $$\int_{0}^{1} t \left| \eta' \left(U \left(t, \epsilon \right) \right) \right|^{q} dt + \int_{0}^{1} t \left| \eta' \left(U \left(t, \epsilon \right) \right) \right|^{q} dt$$ $$\leq \int_{0}^{1} t \left\{ \left(\frac{1+t}{2} \right)^{\sigma} \left| \eta' \left(k \right) \right|^{q} + \epsilon \left[1 - \left(\frac{1+t}{2} \right)^{\sigma} \right] \left| \eta' \left(j \right) \right|^{q}$$ $$+ \left(\frac{1-t}{2} \right)^{\sigma} \left| \eta' \left(k \right) \right|^{q} + \epsilon \left[1 - \left(\frac{1-t}{2} \right)^{\sigma} \right] \left| \eta' \left(j \right) \right|^{q} \right\} dt$$ $$= \left\{ \frac{2 \left(2^{-\sigma} + \sigma \right)}{\left(\sigma + 2 \right) \left(\sigma + 1 \right)} \right\} \left| \eta' \left(k \right) \right|^{q} + \epsilon \left\{ 1 - \frac{2 \left(2^{-\sigma} + \sigma \right)}{\left(\sigma + 2 \right) \left(\sigma + 1 \right)} \right\} \left| \eta' \left(j \right) \right|^{q}. \quad (2.25)$$ Using (2. 25) in (2. 24) and then the resulting inequality in (2. 23), we get the appropriate inequality. $\hfill\Box$ **Corollary 2.16.** Expect the conditions of Theorem 2.15 are convinced and $\rho(\theta) = \frac{1}{k - \epsilon j}$, $\theta \in [\epsilon j, k]$, ensuing inequality grips $$\left| \frac{\eta\left(\epsilon j\right) + \eta\left(k\right)}{2} - \int_{\epsilon j}^{k} \eta\left(x\right) dx \right| \leq \frac{k - \epsilon j}{4} \left[\epsilon \chi\left(\sigma\right) \left| \eta'\left(j\right) \right|^{q} + \left(1 - \chi\left(\sigma\right)\right) \left| \eta'\left(k\right) \right|^{q} \right]^{\frac{1}{q}}, \quad (2.26)$$ spot $\chi(\alpha)$ is defined in Theorem 2.12. **Remark 2.17.** Assuming $\sigma = \epsilon = 1$ in (2. 26), we get the result craved in [17, Theorem 1] for convex functions decided on [0, k]. ## REFERENCES - [1] M. K. Bakula and M. E. Özdemir, Hadamard type inequalities for m-convex and (α, m) -convex functions, J. Inequal. Pure Appl. Math. 9, No. 4 (2008) Art. 96, 12 pages. - [2] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11, No. 5 (1998) 91-95. - [3] S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math. 33, (2002) 45-55. - [4] S. S. Dragomir and G. Toader, *Some inequalities for m-convex functions*, Studia Univ. Babes Bolyai Math. **38**, (1993) 21-28. - [5] S. S. Dragomir, Generalization, Refinement and Reverses of the Right Fejer Inequality for Convex Functions, Punjab Univ. j. math. 49, No. 2 (2017) 1-13. - [6] D-Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables, Applied Mathematics and Computation 217, (2011) 9598-9605 - [7] D-Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted midpoint formula and higher moments of random variables, Applied Mathematics and Computation 232, (2014) 68-75 - [8] H. Kavurmacı, M. Emin Özdemir and M. Avcı, *New Ostrowski type inequalities for m-convex functions and applications*, Hacettepe Journal of Mathematics and Statistics **40**, N. 2 (2011) 135 145. - [9] M. A. Latif, Estimates of Hermite-Hadamard Inequality for Twice Differentiable Harmonically-Convex Functions with Applications, Punjab Univ. j. math. 50, No. 1 (2018) 1-13. - [10] M. A. Latif, S. S. Dragomir and E. Momoniat, Some -analogues of Hermite-Hadamard Inequality for sconvex Functions in the Second Sense and Related Estimates, Punjab Univ. j. Mmath. 48, No. 2 (2016) 147-166. - [11] M. A. Latif, Sever Dragomir and Ebrahim Momoniat, Some Weighted Hermite-Hadamard-Noor Type Inequalities for Differentiable Preinvex and Quasi Preinvex Functions, Punjab Univ. j. math. 47, No. 1 (2015) 57-72. - [12] V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993 (Romania). - [13] M. E. Özdemir, M. Avci and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett. 23, No. 9 (2010) 1065–1070. - [14] M. E. Özdemir, H. Kavurmaci and E. Set, Ostrowski's type inequalities for (α, m) -convex functions, Kyungpook Math. J. **50**, (2010) 371–378. - [15] M. E. Özdemir, M. Avcı and H. Kavurmacı, Hermite–Hadamard-type inequalities via (α, m) -convexity, Comput. Math. Appl. **61**, (2011) 2614–2620. - [16] M. E. Özdemir, E. Set and M. Z. Sarıkaya, Some new Hadamard's type inequalities for coordinated m-convex and (α, m) -convex functions, Hacet. J. Math. Stat. **40**, (2011) 219-229. - [17] C. E. M. Pearce, *Inequalities for differentiable mappings with application to special means and quadrature formulae*, Applied Mathematics Letters **13**, (2000) 51-55. - [18] E. Set, M. Sardari, M. E. Özdemir and J. Rooin, On generalizations of the Hadamard inequality for (α, m) -convex functions, Kyungpook Math. J. **52**, (2012) 307-317. - [19] G. Toader, Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca (1985) 329–338.