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Abstract. The generalized symbols for family ofb-ary(b ≥ 2), univariate
stationary and non-stationary subdivision schemes have been presented.
These symbols are based on Lane-Riesenfeld algorithm. In binary case,
uniform B-splines schemes, Hormann and Sabin family, and Novara and
Romani family of schemes can be derived from our schemes. In higher ar-
ity case, we present the analysis of proposed family in stationary context.
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1. INTRODUCTION

Computer Aided Geometric Design (CAGD) deals with the mathematical description of
shapes for use in computer graphics, numerical analysis and approximation theory. The
important tool of CAGD is subdivision schemes. Subdivision schemes are iterative for-
mulas for generation of smooth curves and surfaces. In recent years, subdivision schemes
have become an integral part of computer graphics in view of their extensive variety of
applications in the field of visualizations, animation and image processing. If the mask of
subdivision schemes are dependent on subdivision levelk then subdivision schemes are
called non-stationary otherwise it is said to be stationary.

Initially Lane and Riesenfeld presented an algorithm [14] for subdividing uniform B-
splines schemes of orderl, with l ∈ N. After that, this algorithm is used in different
variants [5]. The symbol of Dubuc-Deslauriers [9] schemes are also containing the symbol
of uniform B-splines subdivision schemes. The family of subdivision schemes presented
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by Hormann and Sabin [12] is also based on Lane and Riesenfeld algorithm. Ashraf et al,
[1] also used this algorithm for generation of new family of binary subdivision schemes.
Mustafa and Hameed [16] presented parametric family of binary approximating subdivision
schemes using Lane-Riesenfeld algorithm. Mustafa and Bari [17] presented a family of
subdivision schemes for fitting data. Mustafa et al. [15] presented bivariate subdivision
schemes based on cubic polynomial.

In non-stationary context, Conti and Romani [5, 8] presented the mask of stationary
and non-stationary B-spline subdivision schemes. They also presented the conditions for
exponential polynomial reproduction using non-stationary subdivision schemes. Novara
and Romani [18] offered two new families of subdivision schemes and its non-stationary
version using Lane-Riesenfeld algorithm.

1.1. Motivation. After this literature, questions arise in our mind like: Can we generally
use Lane-Riesenfeld algorithm for higher arity? Are we able to make a general formula
which extend Lane-Riesenfeld algorithm in both stationary and non-stationary univariate
schemes? Higher arity subdivision schemes gives better smoothness as compare to the
lower arity subdivision schemes. These prompted us to answer these questions.

In this paper, we offer Lane-Riesenfeld algorithm for higher arity schemes. We also
present general symbols for both stationary and non-stationary, univariate subdivision schemes.
Our symbols are able to reproduce many family of subdivision schemes. Many existing bi-
nary univariate subdivision schemes are presented in a unified way. Uniform B-splines
schemes, Hormann and Sabin [12] and Novara and Romani [18] family of schemes are
generated from these algorithms. In higher arity case, we give the complete analysis of
family of uniform B-splines schemes, family of stationary and non-stationary schemes.

The paper is unfolded as follows. Section 2 is for all the basic concepts of stationary and
non-stationary subdivision schemes. Section 3 is devoted for stationary Lane-Riesenfeld
algorithm. In Section 4, the non-stationary version of Lane-Riesenfeld algorithm is pre-
sented. Section 5 is devoted for tensor product formulas. Visual performance and conclu-
sions are drawn in Sections 6 and 7 respectively.

2. PRELIMINARIES

This section contains all basic concepts of stationary and non-stationary subdivision
schemes that we will use in rest of the paper.

Definition 2.1. [18] Basic concepts of stationary scheme:If the refinement rules remain
same in all levels of refinement then it is called stationary scheme. The refinement rules of
stationary subdivision schemes are

fk+1
bi+h =

∑

j ∈ Z
abj+hfk

i−j , h = 0, 1, 2 · · · (b− 1), (2. 1)

where b is any integer(b ≥ 2), the set of coefficientsabj+h ∈ R, i ∈ Z, k ≥ 0 appearing
in (2.1) is called mask of subdivision schemesSa and is denoted bya. Thez-transform of
the maska = {ai : i ∈ Z} of the scheme can be defined as

a(z) =
∑

i ∈ Z
aiz

i, (2. 2)
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which is also called Laurent polynomial or symbol of the scheme. This symbol is used to
investigate the properties of subdivision scheme, such as convergence, smoothness, poly-
nomial reproduction degree, polynomial generation degree, parametrization and Hölder
regularity.

Definition 2.2. [18] Basic concepts of non-stationary scheme:If the refinement rules are
not same in all levels of refinement then it is called non-stationary scheme. The refinement
rules of non-stationary subdivision schemes are

fk+1
bi+h =

∑

j ∈ Z
ak

bj+hfk
i−j , h = 0, 1, 2 · · · (b− 1), (2. 3)

where b is any integer(b ≥ 2), the set of coefficientsak
bj+h ∈ R, i ∈ Z appearing in (2.3)

is called mask of non-stationary subdivision schemesSak and is denoted byak. Thez-
transform of the maskak = {ak

i : i ∈ Z}, of the scheme can be given as

ak(z) =
∑

i ∈ Z
ak

i zi. (2. 4)

Stationary subdivision schemesSa and a non-stationary subdivision schemes
Sak , k ∈ N0, are said to be asymptotically equivalent[4, 7] if their masks satisfy

lim
k→+∞

ak = a. (2. 5)

We can easily analyze the properties of non-stationary scheme using ( 2. 5 ) and ( 2. 2 ).

3. STATIONARY LANE-RIESENFELD ALGORITHM

Lane-Riesenfeld algorithm is a two step algorithm one is refining and second is smooth-
ing step. Refining step is used to insert new points on the initial control polygon and
smoothing step is used to modifies the obtained points. The limit curves are obtained by
using successive iterations of smoothing steps.

3.1. Construction and analysis of generalized B-splines symbols.A generalized B-
splines symbol for any arity(b ≥ 2) has been presented using the well known Lane-
Riesenfeld algorithm. This algorithm is based on smoothing operator described by a sym-
bol of the form

Sb(z) =
(1 + z + z2 + · · ·+ zb−1)

b
, (3. 6)

and refining factor is defined as

Rb(z) =
(1 + z + z2 + · · ·+ zb−1)2

b
z−(b−1). (3. 7)

By applying Lane-Riesenfeld algorithm on smoothing operatorSb(z) and refining operator
Rb(z), we have

Ab
n(z) = z−[ n

b ](Sb(z))nRb(z). (3. 8)

After substituting the values ofSb(z) andRb(z) we get,

Ab
n (z) =

(1 + z + z2 + · · ·+ zb−1)n+2

bn+1z(b−1)+[ n
b ]

, (3. 9)
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which is the general symbol of(n + 1)th degree polynomial B-spline, whereb is any arity
(b ≥ 2).
By substitutingb = 2 andn = 1, we get the Laurent polynomial of well known 2-point
chainkin’s [2] corner cutting scheme

A2
1 (z) =

1
4
(z−1 + 3 + 3z + z2).

Mask of the scheme is14 [1, 3, 3, 1]. The scheme corresponding to the mask is

fk+1
2i =

1
4

[
3fk

i + fk
i+1

]
,

fk+1
2i+1 =

1
4

[
fk

i + 3fk
i+1

]
.

By substitutingb = 3 andn = 2, we get the Laurent polynomial of 3-point ternary scheme

A3
2 (z) =

1
27

(z−2 + 4z−1 + 10 + 16z + 19z2 + 16z3 + 10z4 + 4z5 + z6).

Mask of the scheme is127 [1, 4, 10, 16, 19, 16, 10, 4, 1]. The scheme corresponding to the
mask is

fk+1
3i =

1
27

[
10fk

i−1 + 16fk
i + fk

i+1

]
,

fk+1
3i+1 =

1
27

[
4fk

i−1 + 19fk
i + 4fk

i+1

]
,

fk+1
3i+2 =

1
27

[
fk

i−1 + 16fk
i + 10fk

i+1

]
.

Similarly whenb = 4 andn = 3, we get the Laurent polynomial of 4-point quaternary
scheme

A4
3 (z) =

1
256

(z−3 + 5z−2 + 15z−1 + 35 + 65z + 101z2 + 135z3 + 155z4 + 155z5

+135z6 + 101z7 + 101z8 + 65z9 + 35z10 + 15z11 + z12).

Mask of the scheme is1256 [1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1]. The
scheme corresponding to the mask is

fk+1
4i =

1
256

[
35fk

i−1 + 155fk
i + 65fk

i+1 + fk
i+2

]
,

fk+1
4i+1 =

1
256

[
15fk

i−1 + 135fk
i + 101fk

i+1 + 5fk
i+2

]
,

fk+1
4i+2 =

1
256

[
5fk

i−1 + 101fk
i + 135fk

i+1 + 15fk
i+2

]
,

fk+1
4i+3 =

1
256

[
fk

i−1 + 65fk
i + 155fk

i+1 + 35fk
i+2

]
.

In Table 1, we present arity, complexity, support and mask of the proposed schemes corre-
sponding ton = 0, 1, 2, 3, 4 and5.
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TABLE 1. Shows the arity, complexity, support and mask of the schemes
corresponding to the different values ofn, herem shows complexity of
the schemes (i.e. 2-, 3-,. . .-point schemes), whileb, S andAb

n stand for
arity, support width and mask of the schemes respectively.

n b m S Mask
0 2 2 2 A2

0 = 1
2 [1, 2, 1]

1 2 2 3 A2
1 = 1

4 [1, 3, 3, 1]

2 2 3 4 A2
2 = 1

8 [1, 4, 6, 4, 1]

3 2 3 5 A2
3 = 1

16 [1, 5, 10, 10, 5, 1]

4 2 4 6 A2
4 = 1

32 [1, 6, 15, 20, 15, 6, 1]

5 2 4 7 A2
5 = 1

64 [1, 7, 21, 35, 35, 21, 7, 1]

0 3 2 4 A3
0 = 1

3 [1, 2, 3, 2, 1]

1 3 2 6 A3
1 = 1

9 [1, 3, 6, 7, 6, 3, 1]

2 3 3 8 A3
2 = 1

27 [1, 4, 10, 16, 19, 16, 10, 4, 1]

3 3 4 10 A3
3 = 1

81 [1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1]

4 3 5 12 A3
4 = 1

243 [1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1]

5 3 5 14 A3
5 = 1

729 [1, 7, 28, 77, 161, 266, 357, 393, 357, 266, 161, 77, 28, 7, 1]

0 4 2 6 A4
0 = 1

4 [1, 2, 3, 4, 3, 2, 1]

1 4 3 9 A4
1 = 1

16 [1, 3, 6, 10, 12, 12, 10, 6, 3, 1]

2 4 4 12 A4
2 = 1

64 [1, 4, 10, 20, 31, 40, 44, 40, · · · 4, 1]

3 4 4 15 A4
3 = 1

256 [1, 5, 15, 35, 65, 101, 135, 155, 155, 135, · · · , 5, 1]

4 4 5 18 A4
4 = 1

1024 [1, 6, 21, 56, 120, 216, 336, 456, 546, 580, 546, · · · , 6, 1]

5 4 6 21 A4
5 = 1

4096 [1, 7, 28, 84, 203, 413, 728, 1128, 1554, 1918, 2128, 2128, · · · , 7, 1]

0 5 2 8 A5
0 = 1

5 [1, 2, 3, 4, 5, 4, 3, 2, 1]

1 5 3 12 A5
1 = 1

25 [1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1]

2 5 4 16 A5
2 = 1

125 [1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1]

3 5 5 20 A5
3 = 1

625 [1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 320, · · · , 5, 1]

4 5 5 24 A5
4 = 1

3125 [1, 6, 21, 56, 126, 246, 426, 666, 951, 1246, 1506, 1686, 1751, 1686, · · · , 6, 1]

5 5 6 28 A5
5 = 1

15625 [1, 7, 28, 84, 210, 455, 875, 1520, 2415, 3535, 4795, 6055, 7140, 7875,

8135, 7875, · · · , 7, 1]

0 6 2 10 A6
0 = 1

6 [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]

1 6 3 15 A6
1 = 1

36 [1, 3, 6, 10, 15, 21, 25, 27, 27, · · · , 3, 1]

2 6 4 20 A6
2 = 1

216 [1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, · · · , 4, 1]

3 6 5 25 A6
3 = 1

1296 [1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780, 780, · · · , 5, 1]

4 6 6 30 A6
4 = 1

7776 [1, 6, 21, 56, 126, 252, 456, 756, 1161, 1666, 2247, 2856, 3431,

3906, 4221, 4332, 4221, · · · , 6, 1]

5 6 6 35 A6
5 = 1

46656 [1, 7, 28, 84, 210, 462, 917, 1667, 2807, 4417, 6538, 9142, 12117, 15267,

18327, 20993, 22967, 24017, 24017, . . . , 7, 1]

Analysis of Ab
n schemes:Aim of this section is to present the analysis of proposed

Ab
n family of schemes. Laurent polynomial (symbol) method [10] is used to compute the

continuity, degree of generation, degree of reproduction of theAb
n-schemes. While Riouls

method [19] is used to compute lower and upper bounds on Hölder continuity and exact
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Hölder continuity can also be computed by using Floater and Muntingh algorithm [11].
Support of the schemes are computed by [13]. For family of binary schemes, we putb = 2
in (3.4). The analysis of family of binary schemes are presented in [12]. Here we present
the general analysis of proposed family.

Theorem 3.2. The schemes corresponding to symbolAb
n is Cn continuous.

Proof. From ( 3. 10 ), we have

Ab
n (z) =

(
1 + z + z2 + · · ·+ zb−1

b

)n+1

b(z), (3. 10)

whereb(z) = 1+z+z2+···+zb−1

z(b−1)+[ n
b

] . Let Sa andSb be the schemes corresponding to the sym-

bolsAb
n (z) andb(z) respectively. Since

∥∥∥∥
1
b
Sb

∥∥∥∥
∞

=
(

1
b

)
max





∑

j∈Z
|bbj |,

∑

j∈Z
|bbj+1|,

∑

j∈Z
|bbj+2|, · · ·

∑

j∈Z
|bbj+(b−1)|



 < 1.

Therefore by [10], the schemeSa is Cn continuous. ¤

Theorem 3.3. Hölder regularity of schemes corresponding to the symbolAb
n is n + 1.

Proof. From ( 3. 10 ) we haveb0 = b1 =, · · · ,= bb−1 = 1, k = n + 1, m = b − 1 and
thusq = 0, 1, 2, · · · b − 1 andB0, B1, · · ·Bb−1 are the matrices with elements(Bq)i,j =
bb−1+i−b j+q. By [11] the Ḧolder regularity is given byr = k − logb(µ), whereµ is the
joint spectral radius of the matricesB0, B1, · · · , Bb−1, that is,µ = ρ(B0, B1, · · · , Bb−1).
For bounds on Ḧolder regularity we calculatemax {ρ(B0), ρ(B1), · · · , ρ(Bb−1), } ≤ µ ≤
max {‖(B0)‖∞, ‖(B1)‖∞, · · · , ‖(Bb−1)‖∞} . Sinceµ is bounded from below by the spec-
tral radii and from above by the norm of the metricsB0, B1, · · · , Bb−1. Somax{1, 1, · · · ,
1} = µ = max{1, 1, · · · , 1}. This impliesµ = 1, the exact Ḧolder regularity of the
scheme corresponding to the symbolAb

n is r = n + 1− logb(1) = n + 1. ¤

Theorem 3.4. Generation degree of the scheme corresponding to the symbolAb
n is n + 1.

Proof. The Laurent polynomial of the scheme defined in ( 3. 10 ) can be written as

Ab
n (z) =

(
1 + z + z2 + · · ·+ zb−1

b

)n+2

b(z),

whereb(z) = b(1+z+z2+···+zb−1)

z(b−1)+[ n
b

] . Hence by [10], generation degree isn + 1. ¤

Theorem 3.5. The schemes corresponding to the symbolAb
n have linear reproduction and

parameterizations depends onn andb.

Proof. By taking the first derivative of ( 3. 10 ) and puttingz = 1, we get
(
Ab

n

)′
(1) =

(n + 2)
∑b−1

i=1 (i). This implies thatτ = (n+2)
Pb−1

i=1 (i)

b , so the parametrization of scheme
corresponding to the symbolAb

n (z) depends onb andn. All even arity schemes have
dual parametrization for odd values ofn and primal parametrization for even values ofn.
All odd arity subdivision schemes have primal parametrization. We can easily verify that
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(
Ab

n

)k
(
αj

b

)
= 0, whereαj

b = e( 2πi
b )j , j = 1, 2, · · · (b−1) and

(
Ab

n

)k (1) = b
∏k−1

l=0 (τ−l)

for k = 0 and1. Then by [10], the scheme corresponding to the symbolAb
n have linear

reproduction and parameterizations depends onn andb. This completes the proof. ¤

3.6. Construction of family of b-ary (b ≥ 2) schemes.Here we present a general symbol
which generates different families of subdivision schemes like Hormann-Sabin family and
many other families ofb-ary subdivision schemes. This algorithm is defined as a combina-
tion of generalized B-spline with the kernel

Hb
n (z) = Ab

n(z)Kn (z) , (3. 11)

whereAb
n(z) is defined in(3.4) andKn(z) from [12] is defined as

Kn (z) = −n + 2
8

z−1 +
n + 6

4
− n + 2

8
z. (3. 12)

Hormann and Sabin’s [12] proposed a family of stationary subdivision schemes with cubic
precision to increase the degree of polynomial reproduction of B-splines scheme. This
family of schemes is special case of our proposed algorithm. If we putb = 2 in (3.11), we
get the polynomial

H2
n (z) =

(1 + z)n+2

2n+1z1+[ n
2 ]

(
−n + 2

8
z−1 +

n + 6
4

− n + 2
8

z

)
. (3. 13)

By substituting the different values ofn, we get the family members of Hormann and Sabin
family. In Table 2, we present the results ofHb

n family. In general proposed familyHb
n (z)

defined in ( 3. 11 ) isCn continuous, generation degree isn + 1, the family of schemes
have linear reproduction w.r.t primal parametrization for evenn and dual parametrization
for oddn.

TABLE 2. Here we present analysis of proposed families ofHb
n schemes

for b = 2, 3, 4 and5. Hereb, C, Gd, Rd, τ , andP are arity, continuity,
generation degree, reproduction degree, shift parameter and parame-
trization.

b C Gd Rd τ P
2 Cn n+1 3 τ = n+2

2 Primal for evenn
Dual for oddn

3 Cn n+1 1 τ = n + 2 Dual∀ n
4 Cn n+1 1 τ = 6n+12

4 Primal for evenn
Dual for oddn

5 Cn n+1 1 τ = 2n + 4 Dual∀ n

4. NON-STATIONARY LANE-RIESENFELDALGORITHM

In this section, we present non-stationary version of Lane-Riesenfeld algorithm. Let

υk =
1
2

(
ei t

2k+1 + e−i t

2k+1

)
= cos

(
t

2k+1

)
, with t ∈ [0, π) ∪ iR+.
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Define an arbitraryυ0 ∈ (0,+∞) as

υ0 = cos
(

t

2

)
=





cos
(

α
2

) ∈ (0, 1) if t = α, α ∈ (0, π),
1 if t = 0,

cosh
(

α
2

) ∈ (1,+∞) if t = iα, α ∈ R+.

We also define

υk+1 =
(

1 + υk

2

) 1
2

,

remember that ift = 0 thenυk = υk+1 = 1, similarly we have

lim
k→+∞

υk = lim
k→+∞

υk+1 = 1. (4. 14)

4.1. Non-stationary generalized B-splines symbol.In non-stationary context, the gener-
alized B-splines algorithm is described using smoothing factor defined by

Sk
b (z) =

(1 + z + z2 + · · ·+ zb−1)
bυk+1

, (4. 15)

and refining factor defined by

Rk
b (z) =

(1 + z + z2 + · · ·+ zb−1)2

bυk
z−(b−1) +

(
1− 1

υk

)
.

The non-stationary generalized B-splines algorithm is defined byn successive applica-
tions of the smoothing operator followed by one application of the refine operator at k-level
symbol

Ak
b,n(z) = z−[ n

b ](Sk
b (z))nRk

b (z). (4. 16)

In case of binary scheme, we putb = 2 in ( 4. 16 ) and after simplification, we obtain
the general formula of non-stationary binary B-splines schemes [18].

Ak
2,n(z) =

(1 + z)n(z + 2υk + z−1)
2υkz[ n

2 ](2(1 + υk))
n
2

. (4. 17)

Proposition 4.2. Non-stationary Lane-Riesenfeld algorithm is equivalent to the stationary
Lane-Riesenfeld algorithm

lim
k→+∞

Ak
b,n(z) = Ab

n(z).

Proof. We can easily verify the above result using

lim
k→+∞

Sk
b (z) = Sb(z) and lim

k→+∞
Rk

b (z) = Rb(z).

¤
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4.3. Non-stationary family of b-ary (b ≥ 2) schemes.In this section, we present an
algorithm for non-stationary family ofb-ary schemes forb ≥ 2. This algorithm is defined
as

Hk
b,n(z) = Ak

b,n(z)Kk
n(z) + T k

b (z), (4. 18)

whereAk
b,n(z) is defined in(4.16) andT k

b (z) is defined as

T k
b (z) =

(b− 2)(υk − 1)(1 + z + z2 + · · ·+ zb−1)
b(υk + 1)

. (4. 19)

T k
b (z) is used for higher arity non-stationary subdivision schemes andKk

n(z) from [18] is
defined as

Kk
n(z) = unz + (1− 2unυk) + unz−1, (4. 20)

with un is defined as

un =
1

2(υk − 1)
− υk(υk+1)n

((υk)2 − 1)
, (4. 21)

which is the general algorithm of non-stationary family of any arity subdivision schemes.
If we substituteb = 2 in ( 4. 18 ), we have Novara-Romani family [18] i.e.

Hk
2,n(z) = z−[ n

2 ]

(
1 + z

2υk+1

)n (
(1 + z)2

2υk
z−1 +

(
1− 1

υk

))

× (
unz + (1− 2unυk) + unz−1

)
. (4. 22)

By substitutingb = 3 in (4.18), we get general symbol of family of ternary non-stationary
subdivision schemes,

Hk
3,n(z) = z−[ n

3 ]

(
1 + z + z2

3υk+1

)n (
(1 + z + z2)2

3υk
z−3 +

(
1− 1

υk

))

× (
unz + (1− 2unυk) + unz−1

)
+

(
υk − 1

) (
1 + z + z2

)

3 (υk + 1)
,

After substituting the different values ofn, we get family members of ternary non-
stationary subdivision schemes.

Lemma 4.4. For all n ∈ N and∀ υ0 ∈ (0,+∞), the parameteruk
n verifies

lim
k→+∞

un = −n

8
− 1

4
.

Proof. As we know that

un =
1

2(υk − 1)
− υk(υk+1)n

((υk)2 − 1)
,

after simplification we get

un =
(υk + 1)− υk(υk+1

2 )
n
2

((υk)2 − 1)
.

Now first apply the De l’Hopital rule and then use ( 4. 14 ) to get the required result.¤
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Proposition 4.5. The symbol of non-stationaryb-ary subdivision schemes with symbol at
k-level is asymptotically equivalent to the symbol of stationaryb-ary scheme

lim
k→+∞

Hk
b,n(z) = Hb

n(z).

Proof. Using Lemma 4.2, we get

lim
k→+∞

Kk
n(z) = Kn(z).

From Proposition 4.1 and ( 4. 14 ), we obtain the required result. ¤

5. SURFACE CASE

In this section, we have presented the tensor product of pervious work. This section
will consists of two subsections, one is for stationary tensor product and second is for
non-stationary tensor product of the subdivision schemes.

5.1. Tensor product of Lane-Riesenfeld algorithm. A tensor product of Lane-Riesenfeld
algorithm has been presented. Here we present two algorithms one is for the generalized
B-spline stationary tensor product algorithm and second is for the family of higher arity
stationary tensor product subdivision schemes. For this, smoothing factor is defined as

Sb(z1, z2) =
(1 + z1 + z2

1 + · · ·+ zb−1
1 )(1 + z2 + z2

2 + · · ·+ zb−1
2 )

b2
, (5. 23)

and the refining factor is defined as

Rb(z1, z2) =
S(z1z2)(1 + z1 + z2

1 + · · ·+ zb−1
1 )(1 + z2 + z2

2 + · · ·+ zb−1
2 )

zb−1
1 zb−1

2

.

Simplified form of the refining factor is

Rb(z1, z2) =
(1 + z1 + z2

1 + · · ·+ zb−1
1 )2(1 + z2 + z2

2 + · · ·+ zb−1
2 )2

b2zb−1
1 zb−1

2

. (5. 24)

So the tensor product of generalized B-spline algorithm is defined as

Ab
n(z1, z2) = z

−[ n
b ]

1 z
−[ n

b ]
2 (Sb(z1z2))nRb(z1z2).

Simplest form of the above algorithm is

Ab
n(z1, z2) =

(1 + z1 + z2
1 + · · ·+ zb−1

1 )n+2(1 + z2 + z2
2 + · · ·+ zb−1

2 )n+2

b2n+2z
b−1+[ n

b ]
1 z

b−1+[ n
b ]

2

, (5. 25)

which is the general form of generalized B-splines tensor product algorithm for higher arity
(b ≥ 2). If we substitute different values ofb andn, we get the family members of higher
arity B-splines tensor product subdivision schemes.
The tensor product algorithm for the family of higher arity subdivision schemes is defined
as

Hb
n (z1, z2) = Ab

n (z1, z2) Kn (z1, z2) , (5. 26)

whereAb
n (z1, z2) is defined in ( 5. 25 ) andKn (z1, z2) is defined as

Kn(z1, z2) =
(
−n + 2

8
z−1
1 +

n + 6
4

− n + 2
8

z1

)(
−n + 2

8
z−1
2 +

n + 6
4

− n + 2
8

z2

)
.
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This is the general form of tensor product family of higher arity subdivision schemes.

5.2. Tensor product of non-stationary Lane-Riesenfeld algorithm.The aim of this sub-
section is to present the tensor product of non-stationary Lane-Riesenfeld algorithm. This
section contains two algorithms, one is for non-stationary tensor product generalized B-
splines algorithm and other is for non-stationary tensor product of family of higher arity
subdivision schemes. For tensor product of non-stationary Lane-Riesenfeld algorithm, non-
stationary smoothing factor is defined as

Sk
b (z1z2) =

(1 + z1 + z2
1 + · · ·+ zb−1

1 )(1 + z2 + z2
2 + · · ·+ zb−1

2 )
b2(vk+1)2

, (5. 27)

and refining factor is defined as

Rk
b (z1) =

vk+1

vk
Sk(z1)(1 + z1 + z2

1 + · · ·+ zb−1
1 )z−(b−1)

1 +
(

1− 1
vk

)
.

The simplified form ofRk
b (z1) is

Rk
b (z1) =

(1 + z1 + z2
1 + · · ·+ zb−1

1 )2

bvkz
(b−1)
1

+
(

1− 1
vk

)
.

Similarly Rk
b (z2) is

Rk
b (z2) =

(1 + z2 + z2
2 + · · ·+ zb−1

2 )2

bvkz
(b−1)
2

+
(

1− 1
vk

)
.

The refining factorRk
b (z1, z2) for tensor product is

Rk
b (z1, z2) = Rk

b (z1)Rk
b (z2). (5. 28)

The non-stationary tensor product generalized B-splines algorithm is defined as

Ak
n(z1, z2) = z

−[ n
b ]

1 z
−[ n

b ]
2 (Sk

b (z1, z2))nRk
b (z1, z2). (5. 29)

This is the general form of non-stationary tensor product generalized B-splines algo-
rithm. After substituting the different values ofb ≥ 2 and any positive integern, we get
the tensor product version of family of non-stationary B-splines schemes.

Lemma 5.3. The smoothing-refining factor of non-stationary tensor product is asymptoti-
cally equivalent to the smoothing-refining factor of stationary tensor product

lim
k→+∞

Rk
b (z1, z2) = Rb(z1, z2) and lim

k→+∞
Sk

b (z1, z2) = Sb(z1, z2).

Proof. By using ( 2. 5 ) and Proposition 4.1, we get the results. ¤

Proposition 5.4. The non-stationary tensor product of Lane-Riesenfelds algorithm is as-
ymptotically equivalent to the stationary tensor product of Lane-Riesenfeld algorithm

lim
k→+∞

Ak
n(z1, z2) = Ab

n(z1, z2).

Proof. The above result is straight forward by using Lemma 5.1. ¤
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The algorithm of non-stationary tensor product of family of higher arity subdivision
schemes is defined as

Hk
n(z1, z2) =

(
z
−[ n

b ]
1

(
Sk

b (z1)
)n

Rk
b (z1)Kk

n(z1) + T k
b (z1)

)
×

(
z
−[ n

b ]
2

(
Sk

b (z2)
)n

Rk
b (z2)Kk

n(z2) + T k
b (z2)

)
,

whereSk
b (z1), Sk

b (z2), Rk
b (z1) andRk

b (z2) are defined in previous section and

Kk
n(z1) = unz1 + (1− 2unvk) + unz−1

1 ,

Kk
n(z2) = unz2 + (1− 2unvk) + unz−1

2 ,

T k
b (z1) =

(b− 2)(vk − 1)(1 + z1 + z2
1 + · · ·+ zb−1

1 )
b(vk + 1)

,

T k
b (z2) =

(b− 2)(vk − 1)(1 + z2 + z2
2 + · · ·+ zb−1

2 )
b(vk + 1)

,

with un = 1
2(vk−1)

− vk(vk+1)n

((vk)2−1)
, which is the general form of non-stationary tensor product

family of higher arity algorithm.

Proposition 5.5. The non-stationary tensor product family of higher arity algorithm is
asymptotically equivalent to the stationary tensor product family of higher arity algorithm

lim
k→+∞

Hk
n(z1, z2) = Hb

n(z1, z2).

Proof. As we know that

lim
k→+∞

Kk
n(z1, z2) = Kn(z1, z2), lim

k→+∞
T k

b (z1) = 0 and lim
k→+∞

T k
b (z2) = 0.

By using Proposition 5.2, we get the required result. ¤

(a) (b) (c)

FIGURE 1. (a), (b) and (c) present limit curves for close polygons
produced by schemes corresponding toH2

1 , H3
1 andH4

1 .
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6. V ISUAL PERFORMANCE

Here, we present the visual performance and comparison among proposed family mem-
bers. Moreover the numerical reproduction of trigonometric and conic section by our pro-
posed schemes are also presented. The control polygons are drawn by doted lines. The
smooth curves are obtained by our proposed schemes. Figures 1 presents limit curves for
close polygons generated byH2

1 , H3
1 andH4

1 . Figures 1 shows that as arity increases,
smoothness also increases. Figure 2 shows the numerical reproduction of trigonometric
and hyperbolic functions by our proposed family of quaternary approximating schemes.
Similarly, Figure 3 shows that the conic section can be reproduced numerically by our
proposed family of quaternary approximating schemes. Figure 4 and Figure 5 shows the
subdivision curves that contain the conic segments. Figure 6 and Figure 7 shows that the
visual performance of tensor product surface subdivision schemes.

(a) cos(x) (b) sin(x) (c) cosh(x) (d) sinh(x)

FIGURE 2. Reproduction of trigonometric and hyperbolic functions by
scheme corresponding toA4

3.

(a) (b) (c)

FIGURE 3. Reproduction of conics by scheme corresponding toA4
3.
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(a) Initial polygon (b) First level (c) Third level

FIGURE 4. Present limit curves for open polygon produced by the
scheme corresponding toA4

3. The top portions of (b) and (c) represent
the graph ofcosx.

(a) Initial polygon (b) First level (c) Third level

(d) Initial polygon (e) First level (f) Third level

FIGURE 5. Present limit curves for close polygons produced by the
scheme corresponding toA2

3.
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(a) Initial mesh (b) First level
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(c) Second level (d) Third level

(e) Limit surface

FIGURE 6. (a) Shows the initial mesh whereas (b)-(d) show the results
after first, second and third subdivision levels (e) shows the limit surface
produced by the 16-point tensor product binary scheme corresponding to
A2

5.
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(a) Initial mesh (b) First level
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(c) Second level (d) Third level

(e) Limit surface

FIGURE 7. (a) Shows the initial mesh whereas (b)-(d) show the results
after first, second and third subdivision levels (e) shows the limit surface
produced by the 16-point tensor product binary scheme corresponding to
A2

5.

7. CONCLUSION

In this paper, we have presented generalized symbols for univariate stationary and non-
stationary subdivision schemes. In fact, our purposed algorithms are the extension of the



Stationary and Non-Stationary Univariate Subdivision Schemes 41

well-known Lane-Riesenfeld algorithm in both stationary and non-stationary context. We
can generate many families of any arity subdivision schemes. In particular, we have shown
that uniform B-splines schemes, Hormann and Sabin [12] family of subdivision schemes
and Novara and Romani [18] family of schemes are special cases of proposed algorithms.
We also present the analysis of higher arity family of stationary subdivision schemes.
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