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Abstract. The aim of this paper is to determine the monogenity of the
family of cyclic sextic composite field& - k£ over the field@ of rational
numbers, wheré& is a cyclic cubic field of prime conductprandk a qua-
dratic field with the field discriminant;, such tha{p, d;) = 1. Examples

of our theorems are compared with the experiments by PARI/GP.
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1. INTRODUCTION

Let L be an algebraic number field over the fi€Mof rational numbers of the extension
degree[L : Q] = n. Let Z;, be the ring of integers i.. ThenZ;, has an integral basis
{ajti<j<n such thatZy, = Z - oy + -+ + Z - o, @s aZ-module of rankn, where Z
denotes the ring of rational integers. We call it Dedekind-Hasse’s problem to determine
monogenity of a number field. [5, 13, 17].
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Definition. If there exists an integerin a field L such that
ZLZZ-l—i—Z-f—I—---—I—Z-g"*l:Z[g]’
then the ringZ;, is said to have a power integral basis or the field monogenic.

Let k be a quadratic field(w) with w = 1+TV5 and K the simplest cubic field(n)
introduced by D. Shanks with a rogiof a cubic equation® = az? 4 (a + 3)z + 1, where
the discriminantix () of a numbenm is defined by

((n—n7)(n — 7702)(77‘7 - 770'2))2 with a non-trivial Galois actiow of K/Q, which is
equal to(a? + 3a + 9)?, specifically7? for a = —1 [14]. ThenZ, = Z|w|, Zx = Z[n]

and the composite sextic field - £ are monogenic. On the other hand, for the sextic
field L' = K - k' with the Eisenstein field’ = Q(e%m), the monogenity could not be
prolonged intal’, namely there does not exist an integén L’ such that the module index
[Zr : Z[¢]] = 1.

In this paper, we consider a generalization of the monogenity for the family of cyclic sextic
composite fields by a cyclic cubic field of prime conductoeind a quadratic field of the
field discriminanty with (p, q¢) = 1.

2. THEOREMS

We claim Theorem 2.1 and Theorem 2.3.

Theorem 2.1. Let L be a cyclic sextic composite field - k£, where K is a cyclic cubic
field K of prime conductop and k a quadratic field of the field discriminaay, such that
(p,dr) = 1. Then

(1) For a fixed quadratic field:, there exist at most finitely many monogenic sextic cyclic
fields L.

(2) For a fixed cyclic cubic field(, there exist at most finitely many monogenic sextic cyclic
fieldsL.

The proof of this theorem is based on the evaluation modulo the ramified prime ideals in
K andk for the identity (2.1) of the sum of three products of two partial differents

R S (I S L (R D (R ) M (e S (S L1 2.1
of a candidate numbef of a power integral basi&;, = Z[¢] [12]. This involves the
followings.

Theorem 2.2[18]. Let L be a cyclic sextic field - k7, whereK is a simplest cubic field of
prime conductop and k7 the maximal real subfield of conductr Then only two sextic
cyclic fieldsk - k& andkg - k- are monogenic.

This has been proved in [9].
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Theorem 2.3.Let L be a cyclic sextic composite field - k4, whereK is a simplest cubic
field of prime conductop and k4 the Gaul? field of conductdr Then only two sextic cyclic
fieldsks - ky andkg - k4 are monogenic.

Proof of Theoren?.1. LetG(K) =< o > andG(k) =< 7 > . Then it holds thatZ;, =
Zx - Zy, where Zx = Z[1,m,1°] = Z[n,n°,n°" ] holds, where; denotes the GauR
periodeGHK ¢P of length(p — 1) /6 for the Galois grougi x corresponding to the cubic
subfield K for a primitive pth root¢ of unity andZ;, = Z[1, w] with w = %. From
(p,dr) = 1, we may assume that the riffy, has a power integral basi|¢] for an integer
& such that
E=a+ fw with «,8 € Zk.

Since it holds thatVy (€ — ¢7) = Ny /(o + fw — a — BwT) = B*dy, 3 should be a
unitin K sinceg is an integer. Thus it holds théy —v77)? = 0(modP) for v € Zx with
v = an+bn® +en® ,a,b,c € Z andPnK = P, wherePs andP denote the ramified prime
ideal ink, and K respectively [10]. Then it is deduced thsig (£ —£7)(€—¢7 )(€—€T))
= +p? . p?-d}. We consider the fundamental relation (2.1) for the partial factorg” of
the differento (€).
(1) Since the three products in (2.1) are invariant by the actiaach of them belongs to
Zk.By&—¢7 =32 ja;(n” —n?""") = 0(mod$) and hence
(E—€9)(€—¢7)T =0(modP?), & — &7 = /dj and(¢ — £77)(¢ — £77)7 should be a
unit in K by the assumptioly;, = Z[¢]. Here fora, 8 € Zr and an idea®l in a field F,
a = 3 or a =2 2 means that both sides are equal to each other as ideals. Taking the norm
from the cubic fieldK

Nr((€=€7)(€ =€) = (=€)~ €)7) = Ne((6 =€)~ €7T)T), (2.2)
it follows that

d3 = e(modp) and hencel$ = +1(modp) (2.3)

for a unite in k. Then for a fixed quadratic subfiekd from (2.3) there exist at most finitely
many monogenic sextic fields = K - k.
(2) Moreover by (2.2) it holds that

p = d(moddy,) and hence? = +1(moddy,) (2. 4)
for a unité in k. Then for a fixed cubic field< of conductorp, from (2.4) there exist at
most finitely many such monogenic sextic fiells O

Remark 2.1. Let k be the GauR field and be a numbero%. with an integera in &\
{#£1,+4,+1 + i}. ThenN,(8) = 1, but 3 is nota unit.

Proof of Theoren?.3. By the formula (2.3) it follows that64 = +1 or +i (modp). Since
p is the conductor of a simplest cubic field, it deduces that7,9 or 13.

The case ofK = kI of conductor?. Put¢ = ni and¢,, = € — ¢7°7 . Then it holds
thaté,, = (n—n7 )i £ Pandé,, = ni —n? (—i) = (n+17 )i (1 £ s < 2). Since
the GauR periog) = ¢, + ¢;* with p = 7 satisfiesf (z) = a® + 27 — boly — il
with 4p = ¢ + 27d?, ¢ = 1(mod 3),c > 0, for n; = 7% Nx(ng + 1) = Nk(ng)



70 Mushtaq Ahmad, Abdul Hameed, Nadia Khan and Toru Nakahara

+20§j§2 71j77j+1(77j + 77j+1) +Nk (111) = 2Nk (119) + (3N (1)) = —1[DK]. Then
1o + 1, are units ink for 1 < j < 2.

The case o = ki = Q(n). The GauR periog = (y+(, ' satisfiess® —3z+1 = 0. Put
£ = mni. Then¢,, = P and¢;, = (n+n;)i. Then byNg (n +17) = =Nk (ny) = —(=1)
1o -+ 1; are units ink. On the other hand, it holds that— 7 = ¢+ (™' — (¢ +¢7?)
= (1= Q¢ = 1) = PP, 0. (i) = (n—n7)(n” = )7 )(n—n") = P5(2i), and
henced, /(i) = P*(2i)3 = 3*(—23). Therefore it is deuced thal;, = (3*)%(—2?)?
o d%’m . d%:k] = dy,. Thus the sextic field, - k; is monogenic.

The case oK' = Q(n) of conductorp = 13 with the Gauf3 periog = ZpeGal(K/Q) ¢P,
wheren satisfiesz® + 22 — 4z + 1 = 0. Assume thatZ;, = Z[¢] for a suitable integer
£ =a+piin Lwitha, € Zg. Thenbyé —¢2 = 0(modog) andé —£7 = 0(modoy,),

¢ — ¢77 should be a unit ir.. However for the partial factaf, = ¢ — 77 = a + i —
(a% +B7(—1)), it should be deduced that;, ({57 ) = (a—a?)?+(3+37)% = E with
aunitE in K. Putry = a—a? andB, = 8+37. Thenl = N (E) = Nk (Np x (or))
= (7§ + B5r) (5 + B5r)7 (w5 + B57)7 2 2° /(70 Bo) (70 by) (0 hy)

= 23\/Nk (7o) Nk (Bs) > 2° because ofre = 0(modP). This is a contradiction. Then
the sextic fieldk, - K is non-monogenic. O

Remark 2.2. On the family of cyclic sextic field€, of prime power conductor, it is proved
that there does not exist any monogenic figléxcept for the three fields, thih cyclo-
tomic field,9th one and the maximal real subfieldi3fth one [8].

3. EXAMPLES COMPARING EXPERIMENTS DUE TAPARI/GP

Among several softwares for Mathematics, PARI/GP is an important tool to work in Num-
ber Theory and related areas [4]. Itis a free software implemented by UnévBmitleaux,
France and can be used through MS Windows and Linux. Recently, (ex) PhD scholars in
Pakistan have completed their main papers on Algebraic Number Theory [2, 6, 18, 15]. In
the initial stage of their research and to verify the validity of claims, PARI/GP is making
an indispensable role. Here we would show a prospective experiment, by which a new
theorem will be developed and the related future work is proposed.

Let K the simplest cubic field)(n) introduced by D. Shanks with a rogtof a cubic
equationz® = az? + (a + 3)z + 1, where the discriminant (r) of a numben is defined
by ((n—n)(n—n°")(n® —n?"))2, which is equal taa2 + 3a + 9)?2, specifically7? for
a = —1[14]. ThenZ, = Z[w] andZx = Z|[n] hold.

Example 3.1.In Theorem 2.2, lef be the composite abelian sextic extension figld k,
where K is the simplest cubic field)(n) of conductor? with the GauR3 period) and

k is a quadratic fieldQ(w) with w = % Then the monogenity of the subfield
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is lifted up to L. The sextic fieldL is generated by = nw, which satisfieg¢/w)3 =
—(&/w)? + 2(52/w) + 1 namely
3 2 3
{(ggﬁégﬁz } . fgffgfg —1=0by&® — 2 —1 = w(—€>+26+2) forw = 185,
We examine the fact for the sextic field
\\ Then PARI/GP gives a power integral basis
gp> nfbasis((x"3-2 * X-1)"2-(X"3-2 *X-1) *(-X"242 *x+2)-(-X"2+2  *x+2)"2)
%1=[1,X,X"2,Xx"3,X"4,X"5],
\\ the field discriminant d_{L} of the sectic field L
gp> nfdisc((x"3-2 * X-1)"2-(X"3-2 *X-1) *(-X"2+2 *x+2)-(-X"2+2  *x+2)"2)
%2=300125 \\ and the prime number decomposition of d_{L}
gp> factor(300125)
%3=[5 3], [7 4] \ namely
d_{L}=5"3\cdot 7°4=d_{k}{[L:k]}\cdot d_{K}{[L:K]}
with d_{k}=5 and d_{K}=7"2.

Since the fieldgs andk are linearly disjoint, that id{ Nk = Q by ged(dg,dx) = 1.
the ring Z1, of the composite field, coincides withZx - Zi, = Z[1,n,7?] - Z[1,w] =
Z[1,1,n%, w, nw, n*w]. Thus foré = nw the representation matrikof {1,¢,£2,¢3, ¢4 €5}
with respect to{ 1, n, 2, 3T, n*w} is equal to

1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 1
1 2 -1 2 4 -2

-2 -2 6 -3 -3 9
9 15 12 15 -25 -20
which is equivalent to

o 1
1 0 0 0 0 O
o o0 o0 o0 1 0
0o 0 1 0 0 1
o 2 0 2 0 -1
0O -2 0 -3 0 3
0 15 0 15 0 =8

and hence whose determinant is equal to 1, namely the matrix A belosgs{&).
Then our result and the output of PARI/GP coincide with each other.

Example 3.2.In Theorem 2.3, leL” be the composite fieldl -k, of the simplest cubic field
K = Q(n) of conductor7 and the Gauss field; = Q(i). Then the ring of integers ih” is
generated by = 7i. Also PARI/GP gives a power integral basisgy+ 2¢ = —i(€*41).
gp> nfbasis((x"3+2 *X)"2+(X"2+1)"2)

%1=[1,X,X"2,Xx"3,X"4,X"5],

\\ the field discriminant d_{L"{\prime}} of

the sextic field L"{\prime\prime}

%% the sectic field L™{\prime}

gp> nfdisc((x"3-2 *X-1)"2-(X"3-2 *X-1) * (X242 *x+2)-(-X"2+2  *x+2)"2)
%2=300125 \\ and the prime number decomposition of d_{L}

gp> factor(-153664)
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%3=[5 3], [7 4] \ namely
d_{L"{\prime\prime}}=(-4)"3\cdot 774
=d_{K}{[L"{\prime\prime}:k[I\cdot d_{K}{[L"{\prime\prime}:K]}
with d_{k}=-4 and d_{K}=7"2.

Using the same notation as in the proof of Theorem 2.3, from

oL (i) = (ni =) (ni =07 @) (ni = (=) (ni =0 (=1)) (=1)(ni =0 (=1))7", itis
deduced that;» = P-P-2i. Infact, for f (z) = 23 +2? —22—1= (z—n)(z—n7 ) (z—07")
it holds that(—2/2)n(—n — n?)(n —n?") = (2/2)(n — 1)(n + 1) = 1 by f(-n) =
n3+n*+2n—1=2(n*—1), because of (1) = —1 and f(—1) = 1. Thus each of théth
factor (ni — % (—i)) and the5th (—1)(ni — n° (—i))°" of o~ (ni) is a unit inL”. Then
our result coincides with the output of PARI/GP.

Based on the experiments, we propose future works.

e Characterize whether there exists a monogenic composite abeliar.fieldK - F' of

degredL : Q] = 12 or does not, wher& is a cyclic cubic field of prime conductgrand
F a biquadratic field(\/dy, v/d,) with (p, d, - d¢) = 1 Hered, andd, with (dg, d¢) =

1 denote the field discriminants of quadratic fiel@¢,/d,) and Q(v/d;), respectively
[12, 8, 1].

¢ Applying the monogenic property of an algebraic number field, investigate
an excellent code in the Coding Theory [16].
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