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Abstract. In this analysis motion of an incompressible fractional Oldroyd-

B fluid [IFOBF] in an annulus is studied. The movement in fluid is created
by the motion of the both cylinders. &t = 07), the inner cylinder exerts
rotational shear which is time dependent and outer cylinder moves with
time depended linear velocity. The analysis of velocity field and shear
stress are made with the help of integral transform techniques. For sim-
plicity and better perception, generaliz&dand G functions are used to
represent the obtained results. These solutions are satisfied all the imposed
conditions. By imposing favourable limits, general solution is reduced
to ordinary Oldroyd-B, Maxwell, second grade and Newtonian fluids for
the same motion. From the final expressions of velocity fields and shear
stress, we recover the previously obtained results by choosing some lim-
its. Finally, the effect of parameters and their comparison are explained
graphically.
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1. NOTATIONS

i dynamic viscosity (Kg/m sec)
v kinematic viscosit;(i"—i)
v velocity (m/sec)
S extra stress tensgr; )
T shear stresg’;)
g1 the dimension of this constant depends on the parardeter
g2 a constant whose dimension(ifss%y)
d Positive real number
n fractional parametésec”)
fractional parametefsec?)
Ry inner cylindefm)
R, outer cylindefm)
s Laplace transform parameter
A relaxation parametésec)
A, retardation parametégec)

2. INTRODUCTION

During the past decades, researchers show considerable concern to the flow problems
of Non-Newtonian fluids (blood, cosmetic fluids, paint, polymer, sludge, certain oils and
greases, etc) as compare to Newtonian fluids. It is due to broad applications of non-
Newtonian fluids in food industry, petroleum industry, chemical engineering, geophysics,
biological analysis etc. Fluids have a large number of applications in our practical life[13,
25, 32]. Marshall [24] consider the porous medium into account and studied about the
flow of viscoelastic fluids. The Non-Newtonian fluids have nonlinear stress-strain rela-
tionship. The behaviour of various viscoelastic fluids can not be studied by using New-
tonian fluid model. So, Non-Newtonian fluids [35, 36] are essential to study because
they involves in many aspects of life. Since non-Newtonian fluids have complex struc-
ture and typical properties therefore a number of fluid models presented in literature. The
Dunn et al. [6] studied the fluid of differential type in critical review sense and Ra-
jagopal et al. [28] worked on the rate type fluid models. Among them the rate type
fluids model have special concentrated by researchers due to their several technological
applications|[2, 3, 4, 10, 12, 15, 16, 17, 18, 19, 20, 27, 41, 43] .

Fluid in translating, oscillating or rotating cylindrical system is very important and in-
teresting [33]. The analysis and exact solutions for generalized second grade fluid can be
seenin [1, 8, 9, 29, 30, 37, 39] within an annulus and over a flat plate. The study of the
mechanism of viscoelastic fluids is very critical. It has a lot of applications in many walks
of industry, such as chemical industry, bio engineering and oil exploitation.

Viscoelasticity is the property of fluids which has major effect on the motion of the fluids
or movement of the bodies through fluids even at micro level. It is practically verified that
differential equations with non-integer order is very reasonable to describe the viscoelas-
ticity and some other properties of the fluids. Thats why fractional calculus approach has
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FIGURE 1. Geometry of the flow problem

been used mostly in flow problems for last few years. Some investigations with fractional
derivatives can be seen [4, 31, 42]

In (1923) Taylor [38] investigate his famous result related to stability of viscous fluids
through annulus of two cylinders. A successful attempt for finding solutions for the he-
lical flow of unsteady fluids was made by Srivastava [34]. Some important material and
applications related to this work can be seen [11, 14, 21] as per interest of readers.

In this article our task is to determine the velocity field and shear stress of an [IFOBF] in
an annulus of coaxial moving cylinders having infinite length and to recover some previous
results. At the moment = 0"), inner cylinder pulled by rotational shear which is time
dependent and the outer cylinder moves with some velocity. The well known integral
transforms namely Laplace and Hankel are used to solve the above flow model. The final
results are expressed in the form of generaliRednd G functions. As limiting cases
results for Oldroyd-B, Maxwell, second grade and Newtonian fluids are also established
with ordinary and fractional derivatives.

3. GOVERNING EQUATIONS
For the considered flow, let velocity and stress tensor are [12]
v=Vv(rt) =w(rt)ey, S=9S(rt), 3.1)
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whereey indicates the flow direction in cylindrical coordinate system. Initially an [IFOBF]

in an annulus of concentric circular cylinders are at rest. (tA= 07), cylinders start
moving. Inner cylinder moves by the application of stress on its boundary which is time
dependent and outer cylinder moves with time dependent velocity. The constraint of incom-
pressibility for above flow model is satisfied ultimately. In addition, we assume, initially
fluid and cylinders are at rest

v(r,0) =0, S(r,0) = 0. (3.2

The governing equations for the said fluid are [27, 18],

d\ ow(r,t) 0 % 10 1 .
(1+Aat) at —V(l-i-ATat) (87’2+r87_72) w(r,t), (3 3)

0 0 0
<1 + A8t> T(r,t) =p <1 + AT@t) <6’7‘ - i) w(r,t), (3. 4)

The system of governing equations for [IFOBF], expressing the similar motion, is obtained
by replacing the ordinary derivative from Egs. (3. 3 ) and ( 3. 4 ), with the fractional
differential operator [23, 26]

1 d t_g(* .
. T(1—7) dt Jo (tg_(-,-gw dTv 0 S 0 < ]-7
Dig(t) =

(3.5)
#9(), v=1,
wherel'(-) is the Gamma function.
Finally, the governing equations for [IFOBF] model are [41]
Ow(r,t) 2 190 1
n N ) YD =/— 4+ 2 = _ — .
(1+ A"D}) o v(14+ A)D}) <8r2 + i w(r,t); (3.6)
o 1
L+ 4D 7(:0) = o1+ AD) (57— 3 ) i) @.7)
T T

Whenn , v — 1, then above fractional model Egs. (3. 6) and ( 3. 7)) reduced to ordinary
model Egs. (3. 3) and (3. 4), because

_d

Dlg="4. 3.8)

4. FLOW THROW AN ANNULUS

We assume, dt = 0), the fluid between coaxial cylinders of radili . and Ro.( > Ri.)
are at rest. At = 0"), both cylinders start moving, outer cylinder moves with some
velocity got and the inner one start rotating around axis due to torsional shear stress on its
boundary which is time dependent and defined as

9 1
T(Ric, t) = Er(d—&- 1)Rn,7d71 ( — A"’t); O<n<l1l, d>0, (4.9)
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the well known generalize® function is defined as [22]

Ry ,(0,t) = L_l{ (sfsj 0)}

DAY 0, Re(s) >0, |Z|<1. (4. 10
*Zm, e(f —7) >0, Re(s) >0, ‘87)< - (4.10)
m=0
The initial and boundary conditions are
w(r,0) = 8“];’ O o, 7(rn0)=0, 1€ (R Rad, 4. 11)
and
nnHn YN 9 1
L+ A" D) 7 )=y, = L+ AID]) (5 = = ) w(r )=,
=gt t>0, d>0, , (4. 12)
w(Rgc,t) =got , t>0. (4. 13)

Eq. (4. 9) is the solution of Eq. (4. 12 ). For the solution of above problem there exits
a class of methods in literature but we use most efficient, systematic and powerful integral
transform techniques.

4.1. Calculation of the velocity field. By the implimentation of integral transformation,
Egs.(3.6),(4.12), (4. 13) implies

92 19 1
nntl\ o — TN — +-— — — w
(s + A"s" ™) w(r,s) =v (1+Als )<8r2 + B T2>w(r,s), (4. 14)
o 1\_ _ gl'(d+1)
(87‘ T>w(R1c,8) - M5d+1 (1 n AZS’Y)’
— 92
W(Rac, s) = 2 (4. 15)

wherew(r, s), W(R1., s) andw(Rs., s) represent the Laplace transformsu(r, ¢),
w(Rye,t) andw(Ra,., t) respectively and is Laplace parameter. The Hankel transform of
w(r,s)isw, (r.,s), and defined as [7, 40]

Rac
Wy (re,s) = / rw(r, 8)Biw(r, T, )dr, (4. 16)
Ric
where
Biw(r,r,) = Ji(rr,)Yo(Ricr,) — Jo(Rier, ) Yi(rr,), (4.17)

andr, are the positive roots aB(Ra.,7) = 0, J,(.) andY,(.) represent bessel functions of
the first and second kind of order r By, (r, 7¢) is multiplied with Eq. (4. 14 ) and then
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integrate fromR; . to Rs. with respect ta-, using Eq.( 4. 15 ) and the predefined identity
[20]

Ra. 52 10 1 o 2 0 1
/Rlc r<57“2 + ror 7“2) w(r, s)Bru(r,r )dr = —riw, (re,s) + — e (5?” a T)

X @(7‘, S) |7“=R1c + Rgcrgm(RQC, S) [YQ (Rlcrg )JQ (Rgcrg ) —Jo (f%lCT’€ )Y2 (RQCT£ )]

2 2
= 1w, (r )+M£ [1sdH1 (1+A”s’7)
4 Rour gi}% [Ya(Rucr ) Ja(Racr,) — Jo(Ricr ) Ya(Roer,)] (4. 18)
we obtained
Drr(re. ) = 2g17(d + 1) 1
W S T T (s + Ast L § vrE +vriAls)]
+ vRacregs [Ya(Ricr,) J2(Rocr,) — Jo (Rlcri)YQ(chrg)}
Y
1+Als (4. 19)

X .
[s2(s + Ansmtl 4 vrg + vrZAfs7)]
for more suitable, we can rewrite above equation as

291 T(d+1) 2¢:T(d+1) L+ A" +vrgAY st

D (re; $) = prred gdtl prred  sd(s + AT £ urd +vrZAs7)
g2 Roc
+= re [Ya(Rier, ) J2(Roer,) — Jo(Ricr, ) Ya(Rocr, )]

1 1+ A"s"
- _ 4. 20
8 LQ s(s+ Ansntl 4 vr? +vrZAlsY) | ( )

Since Inverse Hankel transformation [15]
2 . r2Ji(Roer ) Brw(r,r

eJ1 (R 1w (n7e) Wy (1, 8). (4. 21)

™
_75 J3(Racr,) — J3(Racr,)

=1

Applying inverse Hankel transform given by Eq. (4. 21) to Eq. (4. 20 ) and using well
known result

Bac 4 (Ry.\®
/ (7“2 — R202>Blw(r, re)dr = — ( 20) (4. 22)
Ric 71—7'5 Rlc
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we get

2 2
w(r,s) = 2 (r— Ry \ (Bac\"Tld+1) moil(d+1)
2p r Ry s+l I

y Z J%(Rgcrs)Blw(r, Te)
=1 Tf[JQQ(Rlcrs) - JIQ(RQCrs)]
14+ A" +v T?AZS’Y_1 w2 gaRoc
sd(s + Ansmt +vrg +vriAlsY) 2

i T§J12 (chrg ) Biw (7, T&)
B (Rrer,) — T2 (Raer, )]

x [Ya(Rier)Jo(Roer,) — Jo(Ricr ) Ya(Racr,)]

1 14 A"
— — . 4. 23
[32 s(s + Ansm 4 vrf + I/T?AZSV)} ( )
By using identity [17]
1 —vr2\*
(8 + An8n+1 + 1/71 + VTgA’YSV) = AT/ ZZ 0 Zn 0 nl([ n)! (T)
n s'ynflfl

Equation (4. 23 ) becomes

W(r,s) = IL (r B Ri) <R15>2F(d+ 1) 7gl(d+1)

24 r Ro. sd+1 A"

¢
o~ JP(Rocr, )Blw r,Te) —urg
) Z 7’§[J2 (Rlcrg) R2cr Z Z n! E n An

e=1
S'yn—é—d—l + Ansn-‘r'yn—é—d—l 4 ]/A;y,rgsfy(n+1)—é—d—2
(s 4 A=)ttt
722 R i re Ji (Racr ) B (r,7¢)
2 1 [JQQ(Rlcrs) - JIQ(RQCTE)}

.
x A

X [Y2(R15T5)J2(R20T5) - J2(R16rs)Y2(R20rf)] [512

o ¢ —yr? ¢ n—0—2 +yn—0—2
1 14 vre 57 + A"y
- — A" . 4.2
An ;; nl(f —n)! ( An ) ! (s 4 A=)ttt } (4. 29)

To find the required velocity field, we apply discreet inverse Laplace transform instead of
lengthy calculations of residues and contour integrations, using definition of generalized
Gy, ¢(o, t) function which is defined as [22]

Gy, c(o,t) :Ll{(slijo—)C} _

0o z C+Z t(CJri)éfjfl . o
;Fc G EOTICT =y R — 9 > 0 Rels) >0, ‘sé‘<1. (4. 26)
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Finally we find

1 [ Ric 2 R%C d 7T91F<d+1 = J%(RQCT )Blw(rvré)
e () (e e

Ry, A e JQ(RMT ) — Jf(Rgcrg)]

¢
vr 12
Z Z ( 5) (€ — n)lAZ" x |:G777’Y7l€d1,€+1 (ZA77 1) + A7

£=0 n=0
_ 2 _ 7T292R2c
XGypayn—t—d—1,041 (A7) + V1A Gy a1y —e—a—2,041 (—A77, 1) S —
< r J1 (Racr ) Braw(r, ¢)
Yo(Ri.r,)Jo(Raoer,) — Jo(Ricr. ) Yo (Ra.

S I ) Vi)

o £ 2 £

1 0! —ure

Pt ()

£=0 n=0
X (Gn,m—Z—uH (=A7"t) + NGy ryn—t—2.041 (=A77, 1) )} (4. 27)

Alternating form of velocity field is

1 2 2 I 1 e J2 Roe Bl 7
U)(T,t) = <R10> (r — RQC)gltd _ g1 <d+ ) Z 1( > /rg) 1 (’l" Tf)
T

Ry, IuAW paet T&[J%(Rlch) - J12(R2¢7n§)]

¢
vr Yl
X Z Z ( 5) n!(¢ — n)!AZn X [GnﬁnedMH (—A".1)

£=0 n=0

+ A"Gysm—t—d—1,041 (A7) + VgAY Gy g1y ——d—2,041 (—AT7E)

c 2 1 > J2 R B ) )
+ 922R2 2 <T - Rlc)t + — Z 21 ( QCTE) h; (T TE)
Ro.” — Ry r An [JQ (Rlcrg) - Jl (R20T5 )]

¢
VT2 ’
8 Z Z n!(l —n)! ( A’f) A [((I)l - CI)2VT§)G77’7717473,£+1

£=0 n=0
(—A n,t) (An(I)l - (I)ZVAZT?)Gn,"/n—E—?)-i-’y,Z-&-l (—A_n,t) - q)g

X Gyyn—t—2,041 (A" t) — ©oN"Gyyyym—i—2,041 (—A7, 1) ]7 (4. 28)

2
_ 2 J2(Rier 292R2c Ric
whered; = 7TT§g2V7J (Faer and®, = o (ch> .

4.2. Calculation of the shear stress.
From Eq.(3. 7), we get

AID}) (0
r(r,t) = ”((11: AfDlzf)) (87’ - i) w(r, 1) (4. 29)
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using the Laplace transformation, Eq. (4. 29 ) implies

_ _p(AHATSY) (O 1

7(r,s) = 7(1 s \ar " r w(r, s) (4. 30)
using Eg. (4. 23)in Eq. (4. 30), we obtain

sHHL(1 4 Ansm)

i J12 (R2CT§)BZ11J(T7 Tf) 1
< [J3(Rier) — Ji (Raer )] s%(s + Ans"Hl 4+ vrg + vrgAls7)

Ri.\?2 1
e ot () ety

7‘? J? (Raer, ) Baw(r, e)

2RC°°
_WTQ; 22

¢=1
x [J3(Ruier,) — J2(Roer,)] [Ya(Rier,) Ja(Raer,) — Jo(Ruer, ) Ya(Roer,)]
Y87 vy
[521(1++A1§f’s”) os(s+ AfzanrllJ:_AV;% +urZATs) | (4. 31)
where
Bay(r,1) = Jo(rr )Ya(Ruer,) — Jo(Rier ) Ya(rr). (4. 32)

By using Eqg. (4. 24) in Eq. (4. 31) and then applying discrete inverse Laplace transform
and keeping in mind Eqgs. (4. 26 ) and ( 4. 10 ), we obtain tangential stress of the form

7(r,t) = g1I'(d + 1) <R:C)2 (1>Rn,_1—d (A7 t) + g l(d +1)

An AN
4
= JH ch’f’ )Baw (T, 7¢) > L —VTE 0
NG
X; TB(Ryor,) — T2 (Raer, )}%I; A ) nl(l—n)l

e rg J? (Raocer, ) Baw(r, 7¢)

_ e goRo.
el —d— —A U,t —
X Gn,’y {—d—1,04+1 ( ) ; [JQQ(RlcQ) _ J%(Rgcrﬁ)]

X [YQ(Rlc’r’&)gh(RQc’l"&) — JQ(RlC’I“ )YQ(RQC’I“ )]

¢
vr o
X [Rn,2 (A" t) + AJRy 42 (A7) ZZ ( f) (£ —n)!

£=0 n=0

A (Gm”e““ (A7) + AJG (1m0 (A7) ﬂ (*.39

5. THE SPECIAL CASE

5.1. One cylinder at rest other one is moveslIf we substitutel = 0 = g» into Egs. (4.
28) and ( 4. 33 ), we recover the solutions obtained by Kamran et al. [17] represented by
Egs. (4. 23)and (4. 32).
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6. THE LIMITING CASES

6.1. Ordinary Oldroyed-B fluid. Imposen,y — 1to (4. 28) and ( 4. 33), then we get
velocity fields and shear stresses for ordinary Oldroyed-B fluid

d ? 2 T(d+1) S J2(Roer ) Biuw
woB(nt):glt(Rlc) (T_R%) mgil'(d +1) Z (Racre) Biuw(r, 7¢)

RQC r uA ) 7‘5 J (Rlﬂ" ) J%(RQCT'&)]

l
X ZZ ( V"”g) (gg' n) A X |:G17”_Z—d—1,£+1 (_A_l,t)

£=0n=0

+ AG1 14n—t—d—1,041 (AT E) + VTEAT'Gl,n-&-l—Z—d—Zé—i-l (-A710)

g2Roc > R2r7' )B1uw (7, 7’5)
TR _R.? (T ) Z R “J2(R
Roc” — Ric 1 1eT¢) i( 2cT¢)]
¢
X ZZ _VT§ A (D — ourd)G
ol TL' — ’I’L A r 1 2VTe 1,n—0-3,0+1
(=A71 ) + (ADy — ‘I)QVAH“?)GLn—é—Q,eH (—A1t) — @,
X Gip—p—2041 (A1) = PoAGy n—p—1,041 (—A71,2) }7 (6. 34)
R\’ (1 1 mgiI(d+ 1)
TOB(’I“, t) = gll—‘(d—f' 1) . K Rlﬁflfd (—A ,t) + T
¢
e J RQC’I“ ng(T 7“5) > L —l/?"? f'
Al
% ; T2 (Ryer,) — T2 (Raer)] 2;; A ) nlf—n)r

Gin—t—d—1,041 (A1 1) —

120 gQRQ(: i rgJIQ(R2CT5)B2w (7", 7“5)
2A [J3(Racre) = JF (Raer,)]

X [Ya(Riery)do(Racr,) — Jo(Ricr, ) Ya(Racr,)] [RLQ (=A711)

—ur o
AR (= ZZ( 5) =i

£=0 n=0

X <G1,n—€—2,€+1 (A1) + A G101 (AT ) ﬂ (6. 35)

If we substituted = 0 andg, = 0 into Egs. (6. 34 ) and ( 6. 35), we recover the
solutions obtained by Fetecau et al. [10, Egs. (17) and (19)].

6.2. Fractional Maxwell fluid. LetA) — 0in Eqgs. (4. 28)and (4. 33), similar solution
for fractional Maxwell fluid is
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td R\ R2 T T(d+1) S J2(Roer, )Biw(r, 7
oot =50 () (= 58) = X bt s
1t \ Rac r f = reldz (Raer,) — Ji(Roer )]
2 V4
ALK 3 B
x Z ( > { —tmd—1,e41 (FAT ) + AGy a1 (AT E)
=0

ggRgc R%C 1 > Jl (RQC’I“ )Blw(T, 7“5)
+ (r - b+ Z 7

Ro.? — R1.2 r 2(Rier,) — JE(Racr, )]

¢
X Z ( ) [ <I>2W§)Gn,—e_3,z+1

(—A M) £ ATDL Gy g (AT L) — By

—urg

X Gy —o—2041 (A7 8) — ®oA" Gy y—p—2,041 (A7) }7 (6. 36)

Ri\?( 1 _ rg10(d + 1
TrMm(rt) = g1 T'(d + 1)( rl > (M>Rn,d1 (=A7"t) —I—%

V4
= J12 (R2CT5 ) Baw (1, TE) - —Wg - 7T2N92R2c
X Gp—t—d-141 (—A"t) = ——
2 [ (Frer,) — e ] 2 \ T ) Gt CAT) =55
> TQJQ(RQCT )Bow (. 7¢)
x Y Ao S [Ya(Ruer ) Jo(Racr,) — Jo(Raer ) Ya(Raer,)]

< [(Rier) — T2 Roer, )]

x [Rn A Z( ¢ ) 201 (—A"’,t)}. (6. 37)

0

o
I

6.3. Ordinary Maxwell fluid. Letn — 1inEq. (6. 36)and (6. 37),

o0

won (r,t) = ﬂ R\’ " RS, _mgpl(d+1) Z Jt (Racr) Biu (1, 7¢)
om(r, 21 \ Raw r pA P re[J3(Ricr,) — JE(Racer, )]

> [ —vr? ‘
X < 5) [G1,—5—d—1,z+1 (AN t) + AG1 —r—a 1 (Ali)}

g2 o > £ (Rocr, ) Biu(r,1¢)
+ vz =
R202 - R102 (T r ) gz:: RlCT ) J (RQCrg )}

4
—vr
X Z ( 5) [ @2VT§)G17—£—37€+1

(—A 1775) + AP 1Gr1—0—3,041 (_A_lvt) — &y

X Gi—p—apq1 (AT ) — ®oAGY o101 (ATE) |, (6. 38)
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A

P4
e} RQCT‘ B2w(7’ 715) [e’¢) 71/7’2 »
Z G1,—t—d— —AN ¢
Rlc"" — J3(Rocr,)] > A 1—t—d—1,041 ( 1)

£=0

Ric\* (1 _ T(d+1
Tom(r,1) glr(dJFl)( Tl ) (A>R1,—d—1 (A1) er

%1192 Roc i 5J1 (R2c7'g)32w(7’7 Te)
2N o [J3(Rier) — J7(Raer,)]

X [YQ (Rlcré )JQ (Rgcré ) — J2 (Rlcrg )YQ (RQCT'g )]

oo /. a\*!
x {Rl,_g (—A‘l,t)—z< er> Gzt (—A‘l,t)} 6. 39)

£=0

6.4. Fractional Second grade fluid. ~ Applying A7 — 1 andn — 1 into Egs. (4. 23)
and (4. 31), and proceed as in section of velocity field and shear stress we get

L (Ric) R3 Td+1) &
wFSG(Tat)ZQ( 1‘) <’I"—2C>g1td_7rgl(+)
I T L

R2c =1

‘]12(R20T )Blw(’/‘ ’/‘5 0 |:
—vr?) |G ( I/AT’I" ,t)
TE[JQZ(RICT ) Jl (Rgcr ZO 5 1—,—yl—~y—dl+1 "

F VARG eraern (—VATTE ) ]
¢)

71'292foc > Tng (RQC’I’ )Blw(T T

T By (e
(

£=1
X [Ya(Rier,)Ja(Racr, ) — Ja(Rier)Ya(Raer,)]

. [t_ S (o) Gr i ( yArrs,t)} (6. 40)
£=0

R\’ . J(Ryer)Bow(r,re) & ot
TFSGW)( r ) gt 4wl (d+ 1) Z B Frer,) = ()] 2 (778)
=1 =0

Roe n 72J7(Raer, ) Bow(ryre)
a LAY Q,t _ L Hg2it2c 3 3
X |: 1—~y,—yl—~y—dl+1 ( v Trg ) :| 92 ; [JQZ(Rlch) — J%(RQCTE)]

Altl v > ot
X [YQ(Rlc'rg)JQ(R2cT5) - JQ(Rlcrg)YQ(RQCTE)] {t + (=) — Z (—1/7"5)
£=0

X (Gl'y,'yé'yl,ZJrl ( VA;Z’I’& y t) + Azalfv,fwefl,f+1 ( VA;ZTE ) t) >:| (6 41)

By makingvA) = «into Egs. (6. 40 ) and ( 6. 41 ) we get the solution for second grade
fluid with fractional derivatives.The reduced form of velocity field and shear stress are
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6.5. Ordinary second grade fluid. Lety — 1in Eq. (6. 42), (6. 43)
1 R ¢ ? RQC I'd+1
wOSG(Tv t) = ( ! > <7" - ;)gltd — 71’91(/)0)

2 2 2
X |:G0,—Z—1—d,6+1 (*Oﬂ’&,t) +ar;Go,—r—1-a,e4+1 (arg,t)]

+ 77292R20 i TEJ12 (R2c7"5 ) B (7, TE)
> 2 TB(Rur,) - B (Facr, )

X [YQ (Rlcrg )JQ (Rchg ) — J2 (RlCTE )Y2 (RQCT€ )]

X [t—Z( V'f"g) Go,—r—2,041 (_M?’t)} (6. 44)
=0
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t) = t F d 1 E E
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2 T M92R2c > Jl (RZCT ) Bauw (7, TE)
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6.6. Newtonian fluid. Let A", A) — 0into Egs. (4. 28) and (4. 33), we find
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7. NUMERICAL RESULTS AND DISCUSSION

In this analysis motion of an IFOBF in an annulus of concentric cylinders is studied.
The movement in fluid is due to the motion of both cylinders. The analysis of velocity field
and adequate shear stress are made by using most efficient and powerful integral transform
techniques. For the simplicity and better perception, generalizedd G functions are
used to represent the obtained results. These solutions are satisfied all the initial and bound-
ary conditions. By imposing favourable limits, similar solutions for ordinary Oldroyd-B,
Maxwell, second grade and Newtonian fluids for fractional and ordinary derivatives are
also obtained.



Exact Solution for Some Rotational Motions of Fractional Oldroyd-B Fluids Between Circular Cylinders

53

t=1.0s

w(r)

1 1 1 1
03 0.342 0.384 0.426 0.468 0.51

T
(b)
T T T T
t=1.0s
o0 t=15s

orleeet=2.0s 4

= 0.05]

T(r)

1 1 1 1
0.3 0342 0.384 0.426 0.468 0.51

T

FIGURE 2. Variation in

velocity field w(r,t) and
shear stress(r,t) given

by Egs. (4. 28 ) and
(4. 33), for different
values oft and [R,. =

0.3,Ree = 051,91 =
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15,A. = 4,7 =0.9,v =

0.1,p=1,v=0.01,d =

1]

w(t)

T(r)

(@
T T T T
gl=-6
oo o] =24
eeogl=-2

0.4

0 1 1 1 1
03 0.342 0.384 0.426 0.468 051

=01 b

gl=-6
Y 4 ool =24
eoogl=-2
1 1 1 1
03 0342 0384 0426 0.468 051

T

FIGURE 3. Variation in

velocity field w(r,t) and
shear stress(r,t) given

by Egs. (4. 28 ) and
(4. 33), for different
values ofg; and [R,. =

0.3, Ry = 0.51,t =

1s,g0 = —-0.01,A =

15,A. = 4,7 =0.9,7 =

01,0 =1,v=0.01,d =

1]

Furthermore, we recover the solution obtained by Kamran et al. [17] represented by
Egs. (4. 23) and (4. 32), by takin= 0 = ¢, into Egs. (4. 28 ) and (4. 33) and If
we substitutel = 0 andg, = 0 into Egs. (6. 34) and ( 6. 35), we recover the solutions
obtained by Fetecau et al. [10, Eqgs. (17) and (19)].
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FIGURE 4. Variation in
velocity field w(r,t) and
shear stress(r,t) given
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FIGURE 5. Variation in
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0.3,Rec = 0.51,t =
2.2s,91 = -=-3,92 =
—0.01A = 45A, =
10,y = 0.,p = 1,v =
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Now, here are results obtained from above analysis. The velocity profiles and shear
stress are illustrate in Figures 2 - 11. Figfor effect oft¢, Figs. 3 and 4 for the effect of
g1 andg, on the fluid motion. Figs. 5 and 6 for the effect of fractional parametensd-y
on the fluid motion. Figs. 7 and 8 shows the effect of the relaxation time and retardation
time on the fluid motion. Figs. 9 and 10 shows the effect of the kinematics and dynamic
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FIGURE 7. Variation in

velocity field w(r,t) and

shear stress(r,t) given

by Egs. (4. 28 ) and
(4. 33), for different
values of A and [R,. =

0.3, Ry = 0.51,t =

35,91 = —-0.5,g2 =

—0.003y = 0.1,A, =

3,n =02, = 1L,v =
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viscosity on the fluid and Fig. 11 shows the effect of power parameter. Sl units system is

(2n—1)m

used within all figures, and the roots are approximated, oy N

e Itis found that velocity field and absolute shear stress increases with the passage

of time.
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A, and [R;. = 0.3, Ry, = values ofx and [R;. =
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o Retardation parametéy,., kinematic viscosity and constang, shows the similar
behaviour like time for velocity field and absolute shear stress.

e The velocity and absolute stress of the fluid decreases as fluid becomes more thick.

¢ Fluids velocity and absolute value of stress are decreasing functions of fractional
parametery and constang; .
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FIGURE 10. Variation in
velocity field w(r,t) and
shear stress(r,t) given
by Egs. (27) and (32),
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FIGURE 11. Variation in

velocity field w(r,t) and

shear stress(r,t) given

by Egs. (27) and (32),
for different values ofd

and [R1. = 0.3,Ra. =

0.51,t = 1.1s,91 =

—1,g2 = —0.01,y =

0.1,A=15n=09,u =

1,v=0.01,A, =4]

e The Velocity field is increasing function of Relaxation paramdtemd exponent
d but shear stress in absolute value have opposite effect.
e The behaviour of fractional parametgis opposite to\.
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