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Abstract. Analytically, velocity field solutions for the magnetohydro-
dynamic (MHD) oscillating and rotating flows of Maxwell fluids in a
porous plane have been set up with the help of Laplace transform tech-
nique. A fine uniform magnetic field of strength B0 has been employed in
normal direction to the angular velocity Ω of fluid flow. Expressions for
the Dimensionless velocity field have been given for electrically conduc-
ing, oscillating and rotating flows in a porous plane. A couple of analytical
solutions have been acquired separately for two types of oscillations i.e for
sine and cosine oscillations. In addition these solutions fulfil all proposed
initial and boundary conditions. Graphical illustrations are also consid-
ered to find out the steady-state time for oscillating and rotating flows as
well as influence of magnetic field parameter on velocity of Maxwell fluid
has observed.
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1. INTRODUCTION

The investigation of Maxwell fluids in porous plane, wavering and rotating systems
undergoes exceptional difficulties to mathematicians, numerical investigators, and civil de-
signers [37],[38]. A portion about these reviews are outstanding and connected in pa-
per, nourishment stuff, individual care item, material covering coatings, and suspension
arrangements enterprises [1]-[21]. The non-Newtonian class of fluids have basically char-
acterized with respect to differential, rate and integral type fluids [34, 35, 44, 45]. Among
them, liquids of rate type have gotten extraordinary consideration [40]. In the present in-
vestigation our concern is Maxwell fluids, which is the subdivision of rate-type fluids [22].
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It was used to concentrate different issues because of its straightforward structure. In addi-
tion, it is reasonable to acquire analytical solution from Maxwell fluid [6]. Now-a-days in
technology especially for biotechnology and drug delivery applications magnetohydrody-
namic pump get more attention [5], [7], [15] ,[23], [24], [30] [41], [43]. Problem become
more difficult to solve, when we introduce magnet parameter i.e when we consider magne-
tohydrodynamic MHD with oscillatory, rotating and porous medium [2], [25]. In spite of
this fact, different scientists need aid even now settling on their fascinating commitments in
the field [31],[32],[39]. Salah et al investigate MHD and rotating flow of Maxwell fluid in
a porous medium of an accelerated plate [36]. Khan et al calculate closed form solution of
Stokes second problem for magnetohydrodynamics flow of a Burgers’ fluid over a flat plate
[26]. Liu et al study the magnetohydrodynamic flow of a fractional generalized Oldroyd-B
fluid and calculate the exact solution in terms of Fox H-function [28]. Such investigations
bring exceptional pertinence on Meteorology, Geophysics and Astrophysics [29].
According to best of authors information, till now no review has been accounted to inves-
tigate the unsteady magnetohydrodynamic flow of a rotating Maxwell fluid flowing in a
porous medium of oscillating plane. Therefor, it is recommended to present such an en-
deavor. The goal of our present work is to build up analytical solutions for the velocity field
contrasting with cosine and sine motions for a Maxwell fluid.

2. STATEMENT AND FORMULATION OF THE PROBLEM

Suppose that an incompressible oscillating and rotating Maxwell fluid bounded by
lower plate, which is located at position z = 0. Under consideration fluid is in the influence
of fine electrical conduction and is the upper part of the porous plate z > 0. The porous
plate rotates around the z-axis and accepted as its axis. At first, the fluid in addition plate
is at rest condition then after time t = 0, fluid with plate begin to oscillate in x-axis and
system began to rotate with angular velocity Ω in z-direction. A fine uniform transverse
magnetic field of quality Bo is connected in z-direction. It has been considered that the
outside electric field because of phenomena of polarization of charges and the induced
magnetic field are irrelevant. Alluded to a pivoting frame of interest, the flow governing
equations are being taken into account:

divU=0. (2. 1)

ρ

[
∂U

∂t
+ (U · ∇)U+ 2Ω×U+Ω× (Ω× d)

]
= −∇p+ divS− σB2

0U+R, (2. 2)

in which ρ represents density of the fluid, d is a radial vector in the vicinity of fluid rotation
with d2 = x2+ y2, p is the hydrostatic pressure and R is the Darcy’s resistance. The extra
stress tensor S for a Maxwell fluid satisfies

S+ λ

[
∂S

∂t
+(U · ∇)S− LS− SLt

]
= µA1 , (2. 3)

where L =∇U , µ indicate dynamic viscosity, λ indicate relaxation time and A1 represents
first Rivlin-Ericken tensor given as A1 = L+ Lt.
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Taking into account the Darcy’s resistance for an Oldroyd-B fluid which is true for
following expression [27](

1 + λ
∂

∂t

)
R= − µϕ

κ

(
1+λr

∂

∂t

)
U, (2. 4)

Here ϕ is is the porosity, λr is retardation time and κ is the permeability of the porous
medium [47]. Since we are concern with Maxwell fluid, therefore λr = 0(

1 + λ
∂

∂t

)
R= − µϕ

κ
U, (2. 5)

and velocity field is U =(u (z, t) , v (z, t) ,w (z, t)). From Eq.(2.1) yields w = 0. There-
fore from Eq.(2.2), (2.3) and (2.5)

ρ

(
∂u

∂t
− 2Ωv

)
=

∂Sxz

∂z
− σB0

2u+Rx, (2. 6)

ρ

(
∂v

∂t
+ 2Ωu

)
=

∂Syz

∂z
− σB0

2v +Ry, (2. 7)

where (
1 + λ

∂

∂t

)
Txz = µ

∂u

∂z
, (2. 8)

(
1 + λ

∂

∂t

)
Tyz = µ

∂v

∂z
. (2. 9)

Rx and Ry are Darcy’s resistance in x and y-directions. From Eq.(2.6)-(2.9) we have(
1 + λ

∂

∂t

)(
∂u

∂t

)
+

(
−2Ω +

σB0
2

ρ

)(
1 + λ

∂

∂t

)
u+

υϕ

κ
u =

υ∂2u

∂z2
, (2. 10)

(
1 + λ

∂

∂t

)(
∂v

∂t

)
+

(
2Ω +

σB0
2

ρ

)(
1 + λ

∂

∂t

)
v +

υϕ

κ
v =

υ∂2v

∂z2
. (2. 11)

Joining Eq, (2.10) and (2.11)(
1 + λ

∂

∂t

)
∂G

∂t
+

(
2ι̇Ω+

σB0
2

ρ

)(
1 + λ

∂

∂t

)
G+

υϕ

k
G = υ

∂2G

∂z2
, (2. 12)

where G(z, t) = u(z, t)+ ι̇v(z, t) is the complex velocity function for under consideration
fluid, where as u represent velocity part along x-direction and v is velocity part along y-
direction. Where as σ represents electrical conductivity of under considration fluid, ϕ lies
between (0, 1) is the porosity and k > 0 is the permeability of the porous medium [46].
For the present problem, suitable imposed initial and boundary conditions are

G(z, 0) = 0, z > 0, (2. 13)

∂

∂t
G(z, 0) = 0, (2. 14)

G(0, t) = Vo cos(ωt) or Vo sin(ωt), for t > 0,

G(z, t) → 0 as z → ∞, (2. 15)
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here Vo represents the amplitude of oscillations and ω is the frequency of the oscillations.
To make the problem more convenient we introduce following dimensionless variables [42]

z⋆ =
z
√
ω√
ν
; t⋆ = ωt; G⋆ =

G

V0
and Ω⋆ =

Ω

ω
(2. 16)

into Eq. (2.12) and ignoring the star notation in postscript, we reached to

b
∂2

∂t2
G (z, t) + (1 + cb)

∂

∂t
G(z, t) + (c+ a)G(z, t) =

∂2

∂z2
G(z, t), (2. 17)

G(z, 0) = 0; z > 0, (2. 18)

G(0, t) = cos t or sin t for t > 0 ;G(z, t) → 0 as z → ∞, (2. 19)

where

a =
υϕ

kω
; b = λ ω; c = 2iΩ+M and M =

σB0
2

ωρ
. (2. 20)

3. CALCULATION OF THE VELOCITY FIELD

To figure out the analytical solution of the above problem (2.17)-(2.19), we might
consider the Laplace transforms technique [33]. All calculations will be presented for
the cosine oscillations. On the other hand we shall give final velocity expression for sine
oscillations with out calculations on this paper. Applying the Laplace transform to Eqs.
(2.17)-(2.19), we obtain

bq2G(z, q) + (1 + cb)qG(z, q) + (c+ a)G(z, q) =
d2

dz2
G(z, q), (3. 21)

Gc(0, q) =
q

q2 + 1
; Gc(z, q) → 0 as z → ∞. (3. 22)

The solution of Equation (3.21) fulfilling the given conditions (3.22) is

Gc(z, q) =
q

1 + q2
exp {−z

√
bq2 + (1 + cb)q + (c+ a)}, (3. 23)

and the velocity field Gc(z, t) = L−1{G(z, q)} may be written as in new form by using
convolution theorem

Gc(z, t) = (G1 ∗G2)(t) =

∫ t

0

G1(t− s)G2(z, s)ds, (3. 24)

where G1(t) = δ(t)− sin(t) and G2(z, t) are the inverse Laplace transform of

G1(q) =
q

1+q2 and G2(z, q) =
1
q exp{−z

√
bq2 + (1 + cb)q + (c+ a)}.

Here δ(.) is Dirac Delta function. So as to figure out the inverse Laplace transform of
the G2(z, q) in above equation by using relation (A1) from Appendix and obtain

G2(z, t) = Φ(t− z
√
b){e

−z
√

b(l+m)
2 +

z
√
b(l2 −m2)

4
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×
t∫

0

e
−(l+m)τ

2 .(τ2 − z2b)
−1
2 I1(

(l −m)
√
τ2 − z2b

2
)dτ}, (3. 25)

where

l =
( 1b + c)−

√
( 1b + c)

2 − 4
b (c+ a)

2
,

m =
( 1b + c) +

√
( 1b + c)

2 − 4
b (c+ a)

2
,

I1(·) and Φ(·) are the modified Bessel function of the first kind of order one and the unit
step fuction respectively. Hence Eqs.(A) and (3.4) implies

Gc(z, q) =

t∫
0

(δ (t− s)− sin (t− s))Φ(t− z
√
b){e

−z
√

b(l+m)
2

+
z
√
b(l2 −m2)

4

t∫
0

e
−(l+m)s

2 (s2 − z2b)
−1
2 I1(

(l −m)
√
s2 − z2b

2
)ds}ds. (3. 26)

Since unit step function Φ(·) is independent of variable ’s’ so it can be taken outside the
integral, hence

Gc(z, t) = Φ
(
t− z

√
b
)
e

−z
√

b(l+m)
2

t∫
0

{δ(t− s)− sin(t− s)}ds+ z
√
b(l2 −m2)

4

×
t∫

0

{(δ(t− s)− sin(t− s))

t∫
0

e
−(l+m)s

2

√
s2 − z2b

I1(
(l −m)

2

√
s2 − z2b)ds}ds. (3. 27)

Further calculations leads to

Gc(z, t) = Φ(t− z
√
b) [e

−z
√

b(l+m)
2 {−1 + cos(t) +

t∫
0

δ(t− s)ds}+ z
√
b(l2 −m2)

4

×
t∫

0

{(δ(t− s)− sin (t− s))

t∫
0

e
−(l+m)s

2

√
s2 − z2bI1

×

(
(l −m)

√
s2 − z2b

2

)
ds}]ds. (3. 28)

Similar calculations lead to
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Gs(z, t) = Φ(t− z
√
b)[e

−z
√

b(l+m)
2 sin(t) +

z
√
b(l2 −m2)

4

×
t∫

0

cos (t− s)

 t∫
0

e
−(l+m)s

2 (s2 − z2b)
−1
2 I1

(
(l −m)

√
s2 − z2b

2

)
ds

 ds]. (3. 29)

corresponding to sine oscillations of the porous plane.

4. GRAPHICAL RESULTS AND CONCLUSIONS

In this work, analytical technique used to acquire the velocity expressions for magne-
tohydrodynamic oscillating and rotating flow of a Maxwell fluid through a porous medium
plate. Integral transform technique (laplace) has been taking into account for this purpose.
A magnetic field of uniform strength has been acted parallel to z-direction which is taken
as axis of rotation and analytical velocity expressions have been established for oscillating
as well as rotating flows. Velocity expressions obtained satisfy all initial and boundary
conditions as well as the governing equation.

FIGURE 1. Time needed to approach the steady-state for a cosine vi-
brating plate, for Gc(z, t) set up by Eq. (3.28) for σ = 26, λ = 2, ρ =
610, ω = 1, B0 = 10, υ = 3, ϕ = 0.5, κ = 0.2 ,Ω = 0.5 and varying
values of t.

In consequence, the main results for real parts of velocity having cosine and sine oscil-
lations are being discussed,
• The steady-state time for cosine is t=1.02s, as it results from Fig.1, i.e the variation of
time is not important after t=1.02 s.
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FIGURE 2. Time needed to approach the steady-state for a sine vibrating
plate, for Gs(z, t) set up by Eq. (3.29) for σ = 26, λ = 2, ρ = 610, ω =
1, B0 = 10, υ = 3, ϕ = 0.5, κ = 0.2 ,Ω = 0.5 and varying values of t.

FIGURE 3. The variations of velocity profile Gc(z, t) set up by Eq.
(3.28) for different values of M when σ = 26, λ = 2, ρ = 610, ω =
1, B0 = 10, υ = 3, ϕ = 0.5, κ = 0.2 and Ω = 2.

• The steady-state time for sine is t=1.02s, as it results from Fig.2, i.e the variation of
time is not important after t = 1.02 s.
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FIGURE 4. The variations of velocity profile Gs(z, t) set up by Eq.
(3.29) for different values of M when σ = 26, λ = 2, ρ = 610, ω =
1, B0 = 10, υ = 3, ϕ = 0.5, κ = 0.2 and Ω = 2.

From Fig.1 and Fig.2 it is very clear that direction of velocity is opposite to each other
for cosine and sine oscillations.

• Consequence of magnetic parameter M on real part cosine oscillations of velocity from
Fig.3 elaborate that frequency of oscillations increases with increase in magnetic parameter
M. Also as we keep increasing M velocity field shows some interesting results of damping
velocity.

• Consequence of magnetic parameter M on real part sine oscillations of velocity from
Fig.4 elaborate that frequency of oscillations increases with increase in magnetic parameter
M. Also as we keep increasing M velocity field shows some interesting results of damping
velocity.

• Figure-3 and 4 elaborate that frequency of oscillations increases with increase in mag-
netic parameter M.

From Fig.3 and Fig.4 it is clear that the influence of magnetohydrodynamic parameter
M on the real part of velocity for cosine oscillation is in contradiction to that of the sine
oscillation.
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5. APPENDIX

L−1

[
1

q
e(−α

√
(q+β)(q+γ))

]

= Φ(t− α)


e(

−α(β+γ)
2 ) +

α(β2 − γ2)

4
×

t∫
0

e(
−(β+γ)τ

2 )(τ2 − α2)
−1
2 I1(

(β − γ)
√
(τ2 − α2)

2
)dτ

 . (A1)
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