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Abstract. Three dimensional incompressible second grade fluid flow be-
tween two parallel horizontal permeable plates is developed and analyzed
theoretically. The flow turns into three dimensional due to the application
of sinusoidal normal injection at the stationary plate lying downside and
its resultant removal by suction over the higher plate in moving with uni-
form velocity. The equations of motion are solved through regular pertur-
bation method. The dependence of velocity components along main flow
direction through parallel porous plates on flow parameters such as slip
parameter, Reynolds number, suction/injection parameter and non Newto-
nian parameter are discussed graphically. It is noted that slip enhances the
main flow component of velocity.
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1. INTRODUCTION

In current years, the laminar flow control problem has achieved considerable position
due to its importance in the reduction of drag and hence to develop the vehicle power by
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a considerable amount. To stable the boundary layer artificially, numerous methods have
been offered. Boundary layer suction method is an effective approach of decreasing the
drag coefficient which causes huge energy losses. Ahmad and Sarma [1] considered three
dimensional free convected viscous fluid flow and heat transfer passing through a porous
medium. Chaudhary et al. [2] analyzed three dimensional Couette flow of viscous fluid
along transpiration cooling and noted the effects of suction/injection velocity on the flow
field, skin friction and heat transfer. Chauhan and Kumar [3] examined heat transfer effects
in a three dimensional Couette flow passing through a channel partly filled by a porous
substance. Natural convection Couette flow with radiative mass and heat transfer effects
passing through a porous medium in the slip flow regime was presented by Das et al. [4].
Gersten and Gross [5] studied the effect of transverse sinusoidal suction velocity on viscous
fluid flow and heat transfer above a porous plane. Guria and Jana [6] investigated unsteady
three dimensional fluctuating Couette flow with heat transfer and found that the main flow
velocity component decreases with increase in physical parameter, however, the cross flow
velocity component increases with increase in physical parameter. Also Guria and Jana
[7] discussed Hydrodynamics effect on the three-dimensional flow past a vertical porous
plate. Jain and Gupta [8] investigated free convection three dimensional Couette flow along
transpiration cooling in slip flow regime under the influence of heat source.

In the recent years channel flows in slip flow regime have received the attention of many
investigator because of their applications in technology and engineering. It is well known
that the laminarization of boundary layer over a profile decreases the drag and therefore
the motor power requirements by a very substantial amount. Slowed fluid elements with
the boundary layer are detached over the slits and holes in the plane inside the body and,
therefore, the alteration from laminar to blustery flow initiating increase of drag may be
prevented or deferred [9]. Numerous researchers [10, 13] also considered three dimen-
sional viscous fluid flow past a porous plate taking different physical conditions. Sharma et
al. [11] investigated effect of radiation on heat transfer in three dimensional Couette flow
with suction or injection. It is noted that Prandtl number has a greater effect on the temper-
ature dissemination than the injection or suction parameter. Singh [12] taken the problem
of transpiration cooling with the application of the transverse periodic suction/injection ve-
locity. Sumathi et al. [14] have studied three-dimensional fluctuating Couette slip flow past
porous plates with the existence of magnetic field in transverse direction. Above investiga-
tions have been examined in viscous fluid. Even though the Navier-Stokes equations can
handle the viscous fluids flows, but these are inadequate to describe the non-Newtonian
fluids flow properties.

The application of normal periodic suction/injection velocity for the flow of a second
grade fluid between parallel plates in slip flow regime have not discussed in the literature.
Therefore, in the present work, slip effect on three dimensional flow of a second grade fluid
between two horizontal parallel porous plates with periodic suction/injection is analyzed.
A uniform suction velocity at the plane leads to two dimensional flow [5]; however, due
to changing of suction velocity in normal direction on plane wall, the problem becomes
three dimensional. The problem is solved by using regular perturbation method. The fi-
nal results are examined for various non-dimensional parameters such as suction/injection
parameter «, non-Newtonian elastic parameter /', Reynolds number Re and slip param-
eter v. The paper is arranged as follows: Section 2 gives problem construction, Section
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3 gives approximates solutions, Section 4 incorporates results, while Section 5 comprises
conclusions.

2. PROBLEM CONSTRUCTION

The suction/injection velocity [5] is of the form

v (z") =V (1 —|—6COS7T2) , 2.1

the equation for model of second grade fluid is
f = —pf—i— /JAvl + alAVQ + (XQA?, (2 2)

in which p, p, I and «; (i = 1,2) denote the pressure, the dynamic viscosity, the identity
tensor and material constants respectively. The Rivlin-Ericksen tensors A; and A respec-
tively are defined as,

Ay = grad7—|— (gradv)T, 2.3)
ﬁz = dd—‘z‘;l + Zlgde + (gradv) Tzzlvl, '

where ”T” denotes the transpose. The material parameters meets the following conditions.

a1 >0, a1 +a2 =0, u>0. 2.4
The equations of continuity and momentum are defined by
divV =0, @.5)
P = divT. 2. 6)
Thus, the following system of equations governed the given problem:
ov*  ow*
=0, 2.7
y* + 0z* 2.7
L ou* N L ou* 0u* N 0%u*
v w = e
* O%u* x_ 9%u*
VT EoE T W g g
+Ol1 *ay(;Su* o2 *85/3;* ) (2 8)
TV g T W g

" ov* 4w ov*
PAY oy 92"

op* 9% 0%v*
- +u + +

ay* ay*Q Oz*2
* 930* x 930" 33v* * 930*
UV gy T W grgym T gyrge TW grm
ov* 9%v* ou* 9% u* ow* 9°w* ov* O7w*
aq 5ay* ay*z 232}* ay*2 +2dy* 0y*2 + 2" 051*2 9 (2 9)
9%v*

ou* _9%u* ou* 9%u* ov* §%v* ov*
+82* dz* Oy* + Oy* 0z*2 + dy* 0z*2 Oz* Oz*Oy*
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" ow* ot ow*
P oy* 0z*

Op* N 0Pw* N ow* N
62* H 8:1/*2 62*2
* 930* x_93w* x_ 93w* * 03w*
w 3%*3 +v 82*83/;2 +v 8z*8y*22 +w 0z*3 ,
ow* 9%w* ou* _9%u” ow™ d*w* ow™ 9%v”*
(65} + By* 61}*622* + Ay~ ay*zaz* + 5 az*28Z*2 + ayxz 52+2 B} (2 10)
ou* 9%u* ov* 9%v* ou* 9%u”* ow* 9 w™
+28z* 9272 +28z* 92%2 + 2% Oy2 + 2% Oy*2

subject to the conditions

u* (0, 2%) = fy*g;‘:, v*(0, 2*) =T} (1 —&-ECOSW%) , w* (0, 2%) =0,

. (2. 1D
w* (h, 2*) = U, v* (h, 2*) = Vo (1 +scos7r%) , w* (h, 2*) = 0.
Introducing the following dimensionless parameters:
y* Z* ,Y* u* U* w*
= —_—, = — — U= —, == —
y h ) h ) /y h U ) U) U ?
V, hU o p*
= 2 Re=—"—K=—p=—u 2.12
« U ) € v ) ph2 7p pU27 ( )

where o, 7y, Re and K denote suction/injection parameter, slip parameter, Reynolds number
and elastic parameter respectively. Then the Egs. (2.7) — (2.11) become

ov  Ow

— 4+ — =0, 2.13
dy * 0z ( )
ou ou 1 (0%u n 0%u LK A3u n A3u n AB3u n A3u
V—FW—=— | — + —= V—= +w v w—s |,
Oy 0z Re \0y? 022 oy3 0z0y? Oydz2 073
(2. 14)
ov n ov
U(f?y Yo,
B Op N 1 (0% N 0%v N
n Oy Re\0y? 022
8%v 83v 8%v 8%v v 8%w du 9%u
UTyB + w826y2 + U8y822 + Wazs + 9z 0z0y + Eazay—’— (2 15)
@&+@82w +287u@+2@82w+67u82u+87u& :
Oy 0y? 0z 0y? Oy Oy? Oy Oy? Oz 022 Oy 022
ow n ow
V— + Ww——
dy 0z
dp 1 [(0*w O*w

- e
0z Re<3y2 3z2>
a3 o3 a3 fol ow 9?2 ou 02
wTyg +v8y1é) +v8y(9l;]2 +w(’)zg] + 71;/]331(})1; + 87;8@/524»
K 2 2 2 2 2 2 (2. 16)
5@6w+8wﬂ+2@0u+gﬁu+iﬂu+@8w
0z 022 0z 022 0z Oy2 0z 0y?

0z 022 By 922
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subject to non-dimensional boundary conditions
u (0, z) = 'yg—z, v(0, 2) =a(l+ecosmz), w (0, z) =0,
u(l, z)=1v(1, z) =a(l4+ecosmz), w(l, z) =0.

The velocities in the x—, y— and z—directions are represented by u, v and w respectively.

2. 17)

3. SOLUTION
In this part the regular perturbation solution for the velocity field is obtained.

3.1. TRANSVERSE SOLUTION. Since 0 < ¢ < 1, hence we consider the solution of
the type

9(y, 2) = g0 (y) +eg1 (y, 2) +°g2 (y, 2) + -+, (3. 18)
here g represents one of u, v, w and p. The cross flow solutions v; (y, z), w; (y, z) and
p1 (y, z) are independent of w, the component of main flow velocity. The equations of
motion will be of the form

8’01 8w1
P i .1
2y + EP 0, (3. 19)
8’01 8]71 1 821)1 32’01 831)1 33’1}1
B o T K .2
“ Oy Oy + Re <8y2 + 022 +ha oy’ + oyoz2 )’ (3-20)
8w1 8]?1 1 82’11}1 32’11}1 83w1 (93’[01
= K —+ — . 3.21
« Oy 0z  Re < Oy? + 072 e oy? + 0y0z? ( )

subjected to the boundary conditions
v1 (0, 2) = acosmz, wy (0, 2) =0, vy (1, 2) = acosmz, wy (1, 2) =0. (3.22)

The suction/injection velocity comprises of basic constant distribution v, along a super
imposed weak periodic distribution v, cos 7z, hence the normal components of velocity
v1 (y, z), w1 (y, ) and pressure component p; (y, z) are also separated into small and main
periodic components. Therefore we consider that

v1 (y, z2) = w11 (y)cosmz, (3. 23)
1

wy (y, 2) = ——vjsinmz, (3.24)
7r

p1(y, 2) = pu(y)cosmz. (3. 25)

93, 99

Where 7 represents the derivative with respect to ”y”. It is noted that the components
of velocity (3.23) — (3.24) satisfy the equation of continuity (3.19). Substituting Egs.
(3.23) — (3.25) into Egs. (3.20) and (3.21) to get

1
Ka (v — 70},) + e (vf) — mv11) — avly = piy, (3. 26)
\ 1
Ka (vi] — 70f)) + Te (v]] — m0ly) — avlfy = 7°piy. (3.27)

Eliminating the pressure p;; from Egs. (3.26) and (3.27) to get

KR (v —2m0f] + mholy) + 0 + 7oy — 20%0)) — R (vf] — 70f;) =0, (3.28)
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where aRe = R. Assuming K << 1, and taking

v11 = v110 + Kvinn + O (K?) (3.29)
then solution of Eq. (3.28) becomes

v11 = Sg@iﬂ'y + S467Ty + S5631y + Sﬁeszy +
( 57677[7; + Sgeﬂ-y + Sgesly-l- )

510632y +vy (Sllesly + 512652y) (3. 30)

S3e™™ + Sye™ + SseS 4 SgeS2V+
v1 (y,2) = S7e~™ 4 Sge™ + SgeS1v 4 cos Tz, (3. 31)
K Say S S

S10€%2Y 4y (S11€°1Y + S12e52Y)

—Ssme™™ + Syme™Y + S5S1€S1y + S@SQBSQYJ
1 —Syme™ ™Y 4 Sgmwe™V+
wy (y,2) = —— SoS1e31Y + §10S5e52Y sinmz, (3.32)
s +K S S.-
+y (S1151€51Y + S12.52e52Y)
+ (811671 4 S1pe®2Y)

the constants S; (i = 1,2,3, -, 12) are defined in Appendix.

3.2. SOLUTION OF MAIN FLOW. In the case when € = 0, the problem become two
dimensional flow, and therefore

d3u0 d2u0 dUO
KR —R— =0 3.33
T dy dy ; (3.33)
subjected to the boundary conditions
up (0) = augy(()) L uo (1) = 1. (3. 34)
Since K << 1, so assuming
ug (y) = uoo (y) + Kuer (y) + O (K?). (3. 35)
The solution of the problem (3.33) — (3.34) is
” (y):1+M+K(Sl T Syaef 4 yS, eRy) (3. 36)
0 R AR—1 3 5 ) .

where the constants S13, S14 and S15 are defined in Appendix. When ¢ # 0, the equations
of motion (2.14) — (2.16) governing the flow and boundary conditions (2.17) are perturbed
taking
u(y, z) = uo (y) +eur (y,2) + O () , (3.37)
v(y,2) = v (y) +evi(y,2) + O (e?), (3.38)
The first order equation subjected to the boundary conditions are
8u1 8u0 1 82U1 5‘2u1 5‘3u1 33u1 83u0
el - K
“ Oy T Oy  Re < Oy> + 072 + “ oy? Oydz2
uy (0,2) =0=1wuy (1,2). (3. 40)

) , (3. 39)
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The solution of Eq. (3.39) can be expressed as u; (y, z) = u11 (y) coswz. Then

6QU11 8u11 2 8UO (9 () 6U11 6SU11
— — =R — - K—~ KR — . ,
g oy TmThem G, TR )T dy o
(3.41)
The corresponding boundary conditions (3.40) become
U1 (0) =0= Uil (1) . (3 42)

Since the Eq. (3.41) is third-order having only two boundary conditions. Therefore, we
define the solution of Eq. (3.41) as follows:

uny (y) = o (y) + Kuann (y) + O (K?). (3. 43)

Then the solution of the problem will be

Ry _ _R
e e
u (y7 Z) = 1+ m + K (513 + Sl4eRy + y515eRy> + (3. 44)
5’1665121 + 51765211 + Slge(R_”)y-i-
e | SigeBt™Y 4 Gope(BH51)y 4 Gy o(B+S2)y 4 | cosmrz,
KF(y)

where
( ) = Sage 1y+527esly—|— 528 ye 51U+ 529 y632y+

gsoe(R 7T)y+ Sn e(R+7r)y+ 532 (ZR+Sl)y+ 523% %R+S2)
22

+g34 ( RS 27r> e(R=m)y 4 530 (y _ R;2ﬂ> e(R+my | (3. 45)
22 22 23

The constants S; (i = 16,17,18,--- | 37) are defined in Appendix.

4. RESULTS AND DISCUSSION

In this study, fully developed steady laminar flow of an incompressible second grade
fluid through two parallel horizontal porous plates with sinusoidal suction/injection in slip
flow regime is modelled and examined analytically. The higher plate is moving with con-
stant velocity U with the positive x-axis while other plate is kept fixed. The effects of
several dimensionless parameters on main flow velocity are shown graphically (Figs.1-4).
The effects of suction/injection parameter o and Reynolds number Re are shown in Fig. 1
and Fig. 3 respectively. It is noted that the velocity declines exponentially along growing
suction/injection parameter or Reynolds number. For greater value of Reynolds number or
suction/injection there is more decline. The maximum and minimum velocities arise on the
plates, which are actually the velocities of the plates. The Fig. 2 gives the effect of non-
Newtonian parameter K on the main flow velocity component u. This figure reveals that
the main flow velocity component increases exponentially with the increase of K. Effect
of slip parameter - on velocity component w is depicted in Fig. 4. It is noted that the slip
parameter enhances the velocity.
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5. FINAL REMARKS
In the light of above conversation following deductions are prepared:

(1) The velocity component u decreases with increasing either suction/injection pa-
rameter or Reynolds number. However it decreases with an increase in non New-
tonian parameter.

(2) Slip parameter enhances the main flow velocity.

(3) Reynolds number provides a mechanism to control the main flow velocity.

(4) No-slip results are recovered when v = 0.

APPENDIX

The constants elaborate in this paper are,

o _R-VETIE R+ VREAAT
1= y P2 = )
2 2

Ss = (e"(—e"1818y +e%2818; + eM1t7 818y — e92F7 G, Sy + eSS —
et 8 — ™S+ 2T S — €52 Sy + 5152 Gy 4 €™ Sy —
€S1+7r527r)a/(_651 S155 + €S2S1SQ + €Sl+27r5152 — 652+2ﬂ5152 +
e 8 + 528 — 2T Sy — 2e51 12T G 4 S1H2T Gy S22 g
—e51 Sy — €72 Sy + 267 Som + 251 T2 H TG — 512G —
eSg+27rS2ﬂ_ + 6517'1'2 o 6S2’/T2 o 651+27r7r2 + 65’2-1-27r,n_2)7

63151‘52 — 6525152 — 651+7r5152 -+ 652+7T5152
Sy = +9m — eS8 — eSS 4 eI FETTG o/
Som + eS Som + GSQ—HFSQTF — 6S1+SQ+WSQ7T

—e%t 5159 + €52 5159 + 651+27r5152 — 6S2+27T5152 + edt Sim
+652517T - 26”517T - 2681+52+7‘-Slﬂ‘ + 651+27TS17T + 652+27r517'r

—eSl SQ’]T - GSZSQ’JT + 26”527’( + 2€Sl+52+7TSQ7T ’
_eS1+27TS2,n_ _ 652+27T527T + 6517.[.2 _ 6527{2 _ eS1+27T,R_2 + eSQ-‘rQ‘IT,R_Q

S. = - (( —Som — €52 851 + 2e™ Sy — €27 Som+ ) a) /
2€Sg+7'r52ﬂ. _ 6S2+2ﬂ827.r + 7T2 _ 68271'2 _ 6271'7.‘_2 + €S2+27T772
6S15152 — 6525152 — eSl+2ﬂS1SQ + 6S2+2ﬂ5152 — 651517&'—
528w + 2e™ Sy + 2515247 G r — S1H2T G S22 Gt
€51 S5 + e5289m — 2™ Somr — 25115247 Gy 4 5127 G 1
+BS2+2WSQ7T _ 6517'['2 + 632772 + 651-&-271'772 _ 652+27r772
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(27 (e S16) e ) = (S1+m) (e +e"T)) + (2(e%r —e ™)1 —
(—e " +e ) (S1+m)) (27 (e9282 + e ") = (Sp+ ) (w4 €™T)))),
(2 (5 — e ) 7= (—e ™ +¢7) (51 4 7)
(2 (=™ (1 +51) S11 — €92 (14 82) S12) ™ — (—S11 — S12) (e "7 + €™ 7))
— (— (— T+e ) (=511 — S12) + 2 (—651511 — 652512) 7r)
(27 ( 516, +e ) = (S1+7) (e + e’r7r)))/(—(2(es2 —e M —
(—e T +€") (S2+m) (2 (eslSl +e ™) = (S1+7) (e +em))
+(2( —e M) r—(—e T +€")(S1+ 7))
(2r (e¥282 +e7 ™ T) = (Se+m) (e w4+ €™7))),
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Syy = ReSsS1aR+ RSso (R +S1) My + Re(S5S15 + B (So — SsR))
Sys = ReSeSiuR+ RSay (R+ Sa) Mz + Re (SsSis + 8 (Sio — SsR)) |
Ss4 = ReRS3515, S35 = ReRS4S15, S36 = Re (RS5S515 + £511) ,

S37 = Re(RSeS15+ BS12),

= et il I DL
M, = (ﬂQ—(R+Si)2);i:1,2.
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FIGURE 1. Main flow velocity u along y for different values of a.
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FIGURE 2. Main flow velocity u along y for different values of K
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FIGURE 3. Main flow velocity u along y for different values of Re
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FIGURE 4. Main flow velocity w along y for different values of ~



