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Abstract. The goal of this study is to extend the applicability of
a homotopy method for locating an approximate zero using New-
ton’s method. The improvements are obtained using more precise
Lipschitz-type functions than in earlier works and our new idea of
restricted convergence regions. Moreover, these improvements are
found under the same computational effort.
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1 Introduction

The convergence region and error analysis of iterative methods are very pes-
simistic in general for both the semi-local and local case [1-5,11-16]. The
aim of the paper is to extend the convergence region using the homotopy
method. This goal is achieved using the same Lipschitz-type functions as be-
fore [4,6-10,13]. We achieve this goal, since we find a more precise location for
the Newton iterates leading to at least as tight Lipschitz-type functions [4,6,7].
Let F': D C By — B5 be differentiable in the sense of Fréchet, D be a convex
and open subset of By and By, By be Banach spaces.
Let F’ is one-to-one and onto, we introduce the Newton operator

Np(x) =2 — F'(z)" ' F(x) (1.1)
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and the corresponding Newton iteration
ZTn+1 = Np(x,) forall n=10,1,2,... (1.2)

where ¢ € D is an initial point. We are concerned with the problem of approx-
imating a regular (to be precised in Section 2) solution w of

F(z)=0 (1.3)
utilizing a homotopy method of the form
H(z,t) := F(x) — tF(zo) (1.4)

where 2o € D is a given initial point and ¢ € [0, 1]. Clearly this is a geometrical
way of solving equation (1.3). Consider the line segment M = {tF(zg) : t €
[0,1]} and the set F~(M). Suppose that F’(z) is one-to-one and onto. Then,
it follows by the implicit function theorem applied in a neighbourhood of x( that
there exists a curve z(t) solving the equation F(x(t)) = tF (o) for t € [1 —¢,1]
and € > 0. This curve solves the initial value problem (IVP)

@(t) = —DF(x(t)) "' F(x0), x(1) = zo. (1.5)

It is well known that (1.5) has no solution on [0, 1], in general. But if it has a
solution, one must follow x(¢) (numerically), which is given by H(z(t),t) = 0
using the operator related to H(.,t). That is consider the sequence {s,} given
by sop=1>s1 >...> s, >...> 0 such that

Tyt = Np(snin) (Th)

is an approximate zero of x(s,1), with

H(z(sn+1), $n41) = 0.

A convergence analysis of Newton sequence {z,} was given in the elegant
work by Guttierrez et al. [10]. Here, we improve their results as already men-
tioned previously.

The study is structured as: The convergence of Newton’s method is presented
in Section 2 whereas Section 3 contains the special cases. Finally, in Section 4,
we present the numerical examples.

1 Convergence Analysis

We need the Definition of an approximate zero.

Definition 1.1 [14] A G—regular ball is open so that G'(x) is one-to-one and
onto. A point xq is a regular approzimate zero of G, provided there exists a ball
G—regular containing a zero w of G and a sequence {x,} converging to w.
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Let Lo, L, L : [0, +00) — [0, 4+0c) be continuous and non-decreasing functions.
These functions are needed for the introduction of the Lipschitz conditions that
follow (see (1.7), (1.9) and (1.11)). We shall also suppose that there exists
z € D so G'(2) is continuous, one-to-one, onto and G’(z)~! exists. We need to
introduce the following two Lipschitz conditions that follow.

Definition 1.2 The function G'(2)"1G’ is Lo— center Lipschitz at z if there
exist positive quantities vy and
Y = (G, 2) (1.6)

satisfying for a € D,vyo(|la — z||) < vo

Yolla—z]|
16" ()} (G' (@) - G'(2))]| < / Lo(r)dr. (L.7)

Definition 1.3 The function G'(z)~'G" is L—-center Lipschitz restricted at z,
if there exist positive quantities v and

5 :=7(G, 2) (1.8)
satisfying for a,b € Dy := DN U(z, %)
Y(lla =zl + 7lla—0b]) <v

and

F(la=zll+7lb—all) _
IG"(2)7H(G' (1 = T)a + 7b) = G'(a))[| < / L(r)dr  (1.9)

Flla—z||
for all 7 € [0, 1].
Definition 1.4 [10] The function G'(yo) G’ is L—center Lipschitz at z if
there exist positive quantities v and
v = (G, 2) (1.10)
satisfying for a,b € D
Y(lla = 2]+ 7lla—bl)) <wv
and

v([la=z[[4Tl[b—all)
16/ (=)~ 1 (G (1 = 7)a + 7b) — G (a))]| < / Lindr  (111)

Ylla—=z]]

for each T € [0, 1].
REMARK 1.5 Notice that (1.11) implies (1.7) and (1.9). We can certainly
take vo = v = 0, Lo(T) = L(7) = L(7) for each T > 0, so for all T € [0, ]

Yo (1) < ~(71) (1.12)
and

() <A(7), (1.13)
since Do C D.
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In what follows we shall assume that

Yo(7) < A(7). (1.14)
If instead of (1.14)
(1) < y0(7), (1.15)

holds then the following results are true with L replacing L in all of them.

LEMMA 1.6 Suppose that vy is the least positive number such that

/UO Lo(t)dr = 1. (1.16)

Then F'(x) is one-to-one, onto and

vollz—=| ! v
| F' () F'(2)|| < <1 7/0 LO(T)dT> for all x € U(z, %) (1.17)

The set U(z, ZJTE) is called the ~yg—ball of z. We define similarly, the ¥ and ~vy—
balls. As in [10], we assume the existence of ¢ : [0,9) — [0,+00) satisfying
?(0) = 1, where

F(F,z) = ¢(F(F, 2)||z — z||)7 for each x in U(z, %) (1.18)

Moreover, for b= b(F,z) := ||F'(2) " F(2)|| we set
a:= a(F,z) := 7b. (1.19)

By simply using (1.17) instead of the less precise estimate (since vo(7) < v(7))
-1

Yollz—=ol| v
| E(2) L F (20| < <1 — /0 L(T)d’]’) for all z € U(xo, §) (1.20)

as well as 7, v instead of ~, v, respectively, we can reproduce the proofs of the
results of [10] in this setting.

The following result improves Theorem 1 in [10] which in turn generalizes
the corresponding result by Meyer [13].

THEOREM 1.7 Suppose: F'(xo)"'F is L— and Lo— Lipschitz restricted at
xg € D;

a(F,xp) < /Ov L(t)rdr (1.21)

and

U(x0,7) C D, (1.22)

where @ is given by (1.19) and v is the smallest positive number such that

/U L(t)dr = 1. (1.23)
0
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Then, the solution of the IVP (1.5) exists in U(xo, %) for each t € [0,1], where
U1 is the first positive root of gz(t) less than or equal to uf/z where ga(t) =

a—t+ fg L(7)(t — T)dr. Therefore, x(0) is a solution of equation (1.3).
Condition (1.21) is the usual Newton-Kantorovich type criterion [2,3,15].

REMARK 1.8 If Ly(s) > L(s) for all s € [0,9], then the results of Theorem
1.7 hold with L replacing L.

The Theorem 1.7 does not apply, if & > foﬁ L(s)ds. That is why as in [10], we
suppose that the solution of the IVP (1.5) is inside the ¥—ball of 2. Then, we
ask: How many k—steps are needed to approximate the zero xzy of F' = h(.,0)?

THEOREM 1.9 Let xy be an element of the y—ball of z. Set v* = 7||zo — z||
for 0 < wu < v, where v satisfies (1.23). Define function q on [0,7] by

-
- L(r)dr
qt) = ) - : (1.24)
t(1— fo Lo(7)dT)
Let ug be such that
g(ug) =1. (1.25)
Let ¢ > 1 and define function gz on [0,0] by
t —
ga(t)=a—t+ / L(7)(t — 7)dr, (1.26)
0

so that -
Ut /e _ v
min{ui/a - / L(T)(UE/E — T)dT,/ L(t)rdr} > a (1.27)
0 0

with the smallest positive solution of equation gz (t) = 0 is not exceeding Uf /e
Set
b plu)(a+ fy L) —7)dr +v°)
(1= fo¥" Lo(r)dr)(1 = [ Lo(7)d)
_ foumE E(T)(Ué/a —7)dr + UL /e
1— fouL/E Lo(7)dr

)

where @ is given in (1.18). Moreover, suppose x(t) is the solution of the IVP is
inside the y—ball of z. Let us also define sequence {s,} by

So=1,8,>0,5,-1— 8, > Sp —Sp+1 >0, n >0, lim s,=0, (1.28)

n—s-4oo

where "
1— fo Lo(7)dr

pu)(@+ fy L(r)(v* = r)dr + o)
Set w,, such that F(wy,) = spF(x0). Then, the following assertions hold:

51:1—
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(i) Points w,, and wp41, are such that
Yo(u)llwn1 — wall < @

(i) Newton sequence {x,} generated by (1.28) and w, are such that
Y ()l en — wnll < ug /e

R
(iii) Set N = %. The steps n required for x, to be an approrimate

zero of wy, exceeds or is equal to

1-N
{] , if 8, := max{0,1 —n(1 —s1)},
1-— S1

[logN} _ n

, if s, 1= 57
logsy
logN
|:l092 ( o9 + 1)] , if s, = S%kil.
logsy

s — ]| < g(@)*" o — ],

where 4 = y(F, )|z — @|| < up and g is given in (1.24).
REMARK 1.10 IfL = Ly = L,y = v = 7, then the preceding items coincide
with the ones in [10]. But , if (1.12) or (1.8) hold as strict inequalities, then the
new results constitute an improvement over the ones in [10]. These improve-
ments are deduced using the same effort as in [10], because finding function L
requires finding functions Lo and L. If Lo > L, then, the preceding results hold
with L replacing Lg.

2 Special Cases

We consider specializations of the preceding results in the general (Kantorovich)
case L(s) = 1 and the analytic case L(s) = (1_%)3, respectively. Examples,
where (1.14) and (1.15) hold as strict inequalities in the Kantorovich case can
be found in [2, 3] whereas the examples in the analytic case can be found in [4].
To avoid repetitions, we refer the reader to [10], where a(F,zg),p,v, N, L are
replaced by a(F, ), ®,u, N L, respectively.

Next, we present the a and v Theorems improving the works in [10] which
in turn improved the works by X. Wang [16] and Traub and Wozniakowski [15],
respectively.

THEOREM 2.1 Suppose: F'(xo)"'F is L and Lo— center-Lipschitz restricted
at xo;

a(Fan) < [ CE(r)rar,



Cyclic Vector of the Weighted Mean Matrix Operator 7

where U is given in (1.23). Specialize function Go(p,z,) bY

Ga(rey(£) = 9(t) = (F,x0) — t + / L(r)(t - 7)dr. (2.1)

Then, the following items hold

(i) There exist p1,pz € R with p1 # pa such that g(p1) = glp2) = 0 with g
strictly convexr and

g(t) = (t = p1)(t — p2)b(),
where
1o
w(t) = / / O(L(1 — 0) + Osps + O7t)drdod.
o Jo
and for ro =0, lim, oo 7 = lim,, 4 0o Ng(rp—1) = 1.
(i) Equation F(z) =0 has a solution w which is unique in U(zo, szy)-

(iii) Newton sequence {x,} defined by x,, 41 = Np(z,) ezists, stays in U(zo, ﬁ
and converges to w, so that

[z — @[l < [lrn = pall

(iv) If (t) > “20) ghen

THEOREM 2.2 Suppose:

(i) @ solves F(x) =0 and is a regular solution:

(ii) F'(w)~'F'(w) is L and Lo center Lipschitz restricted for all x € U(w, %)
Then, Newton sequence {x,} generated by o = x,xny1 = Np(z,) con-
verges to w for all x € U(w, %), where up is given in (1.25). More-
over, we have the following:

lz — @ < q(@)*" o — .

REMARK 2.3 If Lo =L = L,y = = 7, the two preceding results reduce to
Theorem 8 and Theorem 4 in [10], respectively, i.e., if (1.14) or (1.15) hold as
strict inequalities, then the earlier results are improved (see also the numerical
examples).
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3 Numerical examples

We provide two examples for the Kantorovich case, where function has no pos-
itive roots. Hence the older results can not apply, but function g has roots, so
the new results apply to solve equations.

EXAMPLE 3.1 Let By = By =R, 29 = 1, D = {z: |z — x| < A}, A € [0,1/2)
and F' defined by

F(x) =2° -\ (3.2)
Then, for Lo(t) = L(7) = L(7) = 1,u0 = 0 = v = 1, we have

Q,W@(T) =3-A\v(r)=2(2-X) and ¥(7) =2(1 + L)

b=>b=
3 3—-A

Notice that
Yo <7y <7%.

The functions g and g are then given, respectively by

o(t) = g - %(1—/\)(2—/\)
and 2 ) )
g(t) = 5 —t+ 5(1 -1+ m).

The Newton-Kantorovich condition (i.e., the discriminant dg of g) is given by
4
dgzl—g(l—)\)(2—)\)<0 for each A € [0,1/2) (3.3)

so function g has mot positive roots. However, function g has positive roots,
since the discriminant

dg=1-— %(1 - N1+ ﬁ) >0 for cach A € I =[0.4619832,1/2). (3.4)

Therefore, our Theorem 2.1 can be used to solve equation F(xz) =0 for all X € I.

EXAMPLE 3.2 Let By = By = C[0,1]. Let D = {a € By : ||z|]| < R} for
R > 0. Define F on D by

F(z)(s) =x(s) — f(s) — (5/0 K(s,t)x(t)*dt,x € By, s € [0,1], (3.5)

where f € By is a fized function and X\ is given by

] A=s)t, ift<s,
K(S’t){ s(1—t), ifs<t
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Then, for each x € D, F'(x) is given by
[F'(z)(v)](5) = v(s) — 35/0 K(s,t)x(t)?v(t)dt,v € X,s € [0,1].

Set xo(s) = f(s) = 1. Then, we have ||[I —F'(xo)|| < 3]6|/8 if [0] < 8/3, then
F'(x9)~! exists and

8
Fl(zo)7Y < .
Moreover,
é
1F ol < 2,
S0 51
b=|F'(xo)"'F < .

Furthermore, for x,y € D, we have

14 3|0|||lz +y
JLeslletul,

14+ 6R|6
< LHOR,
8 8

[1F' () = F' ()] | I

and

< 1+ 3|8|(||=] + 1) 1+3/5|(1+ R)
- 8 8

Let 6 = 1.175 and R = 2, we have b = 0.26257...,5(1) = 2.76875...,7(7) =

1.8875... and (1) = 1.47314...,v9 = v = v = 1. Using these values, we get that
the discriminant dg of g is

17" () = F'(1)]]

[l — 1] < [l —1]|.

dg =1—1.02688 < 0,
but the discriminant dg of g is
dg =1 —0.986217 > 0.

Hence, lim,, ..o x, = x« by Theorem 2.1, where x, is a solution of equation
F(x)(s) =0, where F is given by (3.5).
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