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Abstract. We aim to introduce a new subfamily of Janowski spiral-like
functions of complex order, based on Srivastava-Owa fractional calculus
operator. For functions in this new subfamily, we establish a necessary
and sufficient condition, Marx-Strollker type inequalities as well as
distortion and radius inequalities. A Fekete-Sz@goblem for this new
subfamily is also investigated. The results presented here, would extend,
unify and improve some recent results in literature.
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1. INTRODUCTION

LetA = {z € C: |z] < 1} whereC is set of all complex numbers. We I&tthe family
of all functionsf (z) analytic inA and normalized by (0) = f' (0) — 1 = 0. By II, we
mean the family of all functiong (z) analytic in theA with p(0) = 1. For fixed numbers
A, YT with —1 < T < A < 1, we denote byl [A, Y] (see [15]) the class of all Janowski
functionsp (z) analytic inA such that

1+ As(z)
wheres (z) is the familiar Schwarz function satisfying0) = 0 and|s (z)| < 1,Vz € A.
Note that,IT[1, —1] = II : the familiar class of Caratheodary functions with positive real
part andII[1 — 24, —1] = II(0) : the class of Caratheodary functions with{p (2)} >
J, (0 <6 < 1). Janowski [15] also defined the clasggB\, Y] andS* [A, Y] of convex
and starlike functions respectively. Als®[1, —1] = C andS* [1,—1] = S*, which are
the familiar classes of convex and starlike functions respectively. We owed the following
concepts of fractional calculus to Srivastava and Owa [23] (see also [1, 4, 11, 12, 13, 20]
for applications).

(z € A)
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Definition 1.1. For f (z) € ¥, we define the fractional integr&t; > of ordera (o > 0)

as
PRI S A 500
Qz f(Z) - F(Oé) /0 (Z _7)1,ad75

where the multiplicity ofz — )" can be removed by demanding thag (z — ~) is real
when(z —v) > 0.

Definition 1.2. For f (z) € ¥, we define the fractional derivati¥e& of ordera (0 < a < 1)
as
ari) = & (ga-t _ b d[Ffe)
sz(z) - @ (Qz f(Z)) - F(l _ a) dZ/O (Z _’y)adp}/u

where the multiplicity ofz — )" can be removed by demanding thag (z — ~) is real
when(z —v) > 0.

Following Definition 1.2, we have

Definition 1.3. For f (2) € ¥, we define the fractional derivatie? ™ of ordern + « as

m n—+1 z

d
dan ad?,
0<a<l, nENO—NU{O})7
where the multiplicity ofz — +)~“ can be removed by demanding thag (» — v) is real

when(z —v) > 0.

Now in view of the above definitions, we note that

r 1
Q%" = _Tm+1) 2" (> 0,m > 0),
F'm+1+a)
r 1
Qg™ ﬂzmﬂ“, 0<a<l,m>0),
F'm+1-—a)
and
r 1
Queym — (m +1) 2T (0<a<lm>0n€eNy,m—n#-1-2

F'm+1-—n-—a)
Thus for any reat, we have
I'(m+1)

Qa m:
T T(m+1-a)

2T (a>1m—a#—-1.—2,..).

With the aid of above definitions, Owa and Srivastava [19, 23] (see also [8]) introduced

—3,...

the fractional calculus operator (called as Srivastava-Owa fractional calculus op&xator)

for f (z) € ¥, as follow

r2—a)r'(n+1)
0o —T(2— ona — 2"
f(2) (2—a) Z+Z nJrlfa) anZ

Note that
Qf(z)=f(2), and Q'f(z)==2f(2).

).
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Moreover, fora # 2,3,4, ... andj # 2, 3,4, ... we note that

C-qre-HTm+n?
F'n+l1-—a)T(n+1-p) "7

O (Qf () = 0% (QF () =2+ 3 -

and
QQf(2) =2(Q°f (2) =T (2—a)2° 002 f (2) +202M1f (2)] . (L. 1)

We also recall the following concepts, which we shall require in our later investigation. Let
f,g € ¥, then we say thaf is subordinated tg, notationally f < g, if for some analytic
functionss (z) there holds

f(z)=9(s(2)), (z€4),
wheres (z) is the Schwarz function withy (0) = 0 and|s (z)| < 1, Vz € A. Note that, if
g(z) is univalent inA, then f < g can be put equivalently in the form

7(0) = g(0) andf (A) C g(4), = € A.

Using the Srivastava-Owa fractional calculus operatogl&aet al. [8] introduced the class
SH[A, Y] (-1 < T < A < 1) of Janowski starlike functions as follow

2(Q°f (2)
Q> f (2)
For functions in this class, they [8] obtained coefficient bounds, distortion inequalities and

some other interesting inequalities, for details we refer to their cited paper.

On inspiring from the work of C@lar et al. [8], we introduce the clas$; (7,0, A, T)

of Janowski spiral-like functions of complex ordgr= 0) by means of Srivastava-Owa
fractional calculus operator as follow.

Let f € U, then bySZ (7,b, A, T) we denote the family of all functions given as

bfo; (z(ng((,:)))/ - 1) =p(z) € H[A’T]}

wherer is real with|7| < 5,0 € C* = C— {0}, z € Aanda # 2,3,4, - --. Observe that
one can also define the claS$ (7, b, A, T) with the help of identity (1.1) as follow

bi;r (Q+W_l) —re EH[A7T]}.

Various well-known classes appear as a special case of this new class. Indeee; or
b = 1, weretrieve the clasS} [A, Y] of Cajlar etal. [8]. AlsoS;y (0,b, A, T) = Cy [A, Y],
S5 (0,b6,A,7) = S [A, Y] which are special classes (with = 0) of a class consid-
ered in [22]. MoreoverSg (7,b,1,—1) = S7 (b) ([5]), SF (7,b,1,—1) = C™ (b) ([5,
6]), S§ (0,b,1,—1) = S* (b) ([17]) andS; (0,b,1,—1) = C (b) ([25]): which are, respec-
tively, the familiar subclasses of spiral-like, Robertson, starlike and convex functions of
complex ordeb # 0. FurthermoreSy (0,1,1 — 2, —1) = §* (y) andS5 (0,1,1 — 2, —1) =
C () are the classes of starlike and convex functions of ofd@r < v < 1) respectively
[2, 14] (see also [10]).

From now, we assume that# 2,3,4,...,n € Ny = {2,3,4,..},b € C* = C — {0},
—1 <Y < A <1,andr is real with|7| < 7, unless otherwise stated.

Sé[A,T]:{fE\I/: :p(z)EH[/LT];foroz;«é2,3,47...}.

S;(T,b,A,T):{J‘E\IlzlJr

sg(T,b,A,r)z{fexp;H
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2. NECESSARY AND SUFFICIENT CONDITION FORS} (7,b, A, T) AND ITS
CONSEQUENCE

Here, we prove a necessary and sufficient condition for the d4%s,b, A, T). We
also obtain some Marx-Strohbker type inequalities as an interesting consequence of this
condition. We begin with the following result.

Theorem 2.1. Let f € U, thenf € S% (7,0, A, T) if and only if
o ! be " cos T(A—T)z
(Z(Qf(z)) — 1) < 147z ) T#0, (2. 1)
Qaf (2) be™" cos TAz, T =0.

Proof. First, we obtain the necessary condition. Let (2.1) holds, then the subordination
principle yields

(Z (Qozf (Z))/ - 1) _ { be T Cl(ji;g\(;)T)b(Z% T 7& 0,

Qof(z) be™ cosTAs (2), T =0.
wheres (z) is analytic inA. Consequently
o / 1+As(z)
L (z(ﬂ /(2) _1): LA,
be~i cosT Qo f (z) 1+As(z) T=0.
Hencef € S (7,b, A, ). Conversely, assumge S’ (,b,A, T). Then forY # 0
L1 ( (@ (=)

—1) =p(z) €eII[A,Y].

be~iT cos T Q2 f (2)
Now in view of above equality, the boundary functipn(z) € II[A, Y] can be written as
1+ As(z2)
pi(z) = 1+ Ts(z)
Thus we get
- 1 Z(Qaf(z))/_l 14+ As(2)

be—T cos T Qo f(z) 1+ Ts(2)]

or
z(Qf (2)) 1) - be~ " cosT (A — ) s(2)
Qo f(2) o 1+ Ts(2) '

Hence by virtue of subordination, we find that
z(Qf (2)) 1) < be~TcosT (A —T) 2
Qo f(2) 1+ 7Tz '
ForY = 0, there comes
2(Q°f (2) ) i
—————2 1| <be " cosTAz.
( Q> f (2)

This completes the proof. O

Next, we prove the Marx-Strofdicker type inequalities fa$ (,b, A, T) . The follow-
ing lemma we owe to Jack [14], which we need to establish the result.
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Lemma 2.2. [14, Jack’s Lemmal.et s(z) is a non-constant analytic function ifA with
s(0) = 0. If |s(z)] attains its maximum on the circle| = r at z;, then

218 (21) = ks(z1), fork > 1 (ke R).
Theorem 2.3. Let f € 8% (1,b,A, 1), then

- xr
\(r (2 — ) 227100 f (2)) T e T — 1] < 1, T#0,

1
’log (0(2—a) 227100 f (2)) 7 era| < 1, T =0.

Proof. Let s (z) is define by

e 'T cosT(A=T)
FG) _f arrs)T T, T 40,
z €b67i7 cos7‘/\s(z)7 T = 0,

be T cos T(A—T)

where(1 + Ts (2)) T andebe” " cos7As(2) has valuel atz = 0. Thuss (z) is
analytic inA with s (0) = 0 and consequently

(z (©°f () 1) _ e T
Q> f (2) be~ T cosTAzs' (2), Y =0.

Now by virtue of subordination, we find that(z)| < 1, Vz € A. In particular, assume on
contrary to this, and let; € A such thats (z;)| = 1. Then from Jack’s lemma, we easily
conclude that, s’ (z1) = ks(z1) (21 € A), for some reak > 1. Thus

(z ) 1) [ et _ (s () g F(A), T A0,
Qo f (=1) be T cosTAks (21) = G (s (21)) € G (A), T =0.

But, this contradicts assertion (2) and heficé)| < 1, Vz € A. Now it follows that

‘(Qf(d)() 1’

—iT

Ts (2)] = [T] <1, T #0,

z

1
log <];(Z)>b o= ls(2)| <1, T=0.

Or, equivalently

T
\(r (2= @) 227100 f (2)) P o) — 1] < 1, T#0,

1

’10g (C(2—a) 2212 f (2)) e Tesrt| < 1, T =0.

This completes the proof. O

For some recent work related to Marx-Strélcker type results, see [18].
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3. DISTORTION AND RADIUS INEQUALITIES FORS, (7,b, A, T)
In this section, we aim to obtain some distortion and radius inequalities:for, b, A, T) .
Theorem 3.1. Letf € 8% (1,0, A, T), thenfor|z| =r (0 <r < 1), T #0,
M(r,b, 7,0, A, T) < QS f (2)] < N(r,b, 7,0, A, Y),

where
1—a 1-7 [|b]4+R(b) cos T (AQTT) cos T
M(r,b, 7,0, A, T) = " ( r) — ,
F(2—a) (1 +Tr )\b| R(b) COBT( T )cosr
1—a 14 77) [[6]+R(b) cos 7] (455~ ) cos 7
N(r,b,7,0,A,T) = — (1+ I
I (2 — Oé) (1 TT‘) [|b]—R(b) COST( T )cosr
and forY =0,
11—«
r —r|b]AcosT ~ 1O < r r|b|A cos T
This result is sharp.
Proof. Forp (z) € II[A, Y], Janowski [15] proved that
1—AYr? (A=7)r
- > v
'p (2) 1—-7_2p2| — 1-—7_2p2° 70,
p(z)—1 < Ar, T=0.
Thus by definition ofS’ (7, b, A, T), for T # 0 there comes
14 1 Z(Q"f(z))/_l _1—A'I'7"2 (A=")r
be~TcosT \ Qf(z) 1—-"22 |~ 1-7_%r2’

which implies

z(Q¥f (2)) 1T [T +be " cosT (A —T)|r? - |b] cosT (A =) r
Qe f(z) 1—7_2r2 - 1—72r2
Now upon simple manipulation, the preceding inequality gives
o !
my (r) <R <W> <ma(r), B 1)
where
—YT[T+R(®)(A=T)cos? 7] r? — |blcosT (A —T)r
ma (1) = A+7Tr)(1-1r) ’
and
=Y [T+ R()(A=T)cos? 7] r? + [b]cos T (A — T)
ma (r) = 1+ 7Tr)(1—1r)
Since

IO ANINT I
R (2 D) =gty .
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Thus, we get

my (r) 0 mg ()
< —log|Q“ < =7
< o log Q% (2)] < 7
Now upon integration frond to r, the above inequality yields

A-T A=T

_ [|6]+ R (D) cos T]( )cosr [|b]+R(b) cos‘r]( )cos‘r
rd =1 S <jan () < LT -

A—T

(1+TT)[|b\—§]‘E(b)cos7—]( o
or

A—T

(1 — ) IP1=50) cos 71 (3 ) con

)COST

M(r,b, 7,0, A, T) < QS f (2)] < N(r,b, 7,0, A, T).
For Y = 0, the result is obvious. This completes the proof. O

Remark 3.2. For sharpness, take the extremal function given as

(A=T)be T cos

z(1+72) T  ;T#0
Qof (=) = |
Zebefw COSTAZ; T =0.
L o (A=T)be 77 cos 7
o T (14 12) ; T#0
Q2 f () = _
F(zlfa)zl_“ebefw cosTAz, T=0.

Remark 3.3. (i). For b = 1, 7 = 0, we receive immediately the distortion inequalities of
Caglar et al.[8].
(ii). Onlettingb=1—- 3 (0 < B < 1), 7 = 0, we obtain

1-a 11—«
L a-r)TPCT) < 00 () < ——— (1-9)(45%) .
F(Q—a)(l Tr) = |QZf(Z)|_F(2—a) (14+7r) i T #0,
Le,(l,ﬁ),\ < 109 (2)] < Le(lfﬁ)/\. T—0
F(Q_a) - z _F(2_a) ’ :
(iii). Also, forb = 1,7 = 0, A = 1, T = —1, we receive immediately the distortion

inequalities of classeS* (with « = 0) andC (with o = 1), see[10].
The next theorem presents the radius of largest disk in whic}) is starlike.

Theorem 3.4. Let f € S (7,b,A,T), then the radius of starlikeness- for |z| = r <
rs« (0 <r < 1)is given by

2
b] (A — ) cos T + \/|b\2 (A—"T)?cos? 7 4+4T [T + R (b) (A — T) cos? 7]

This result is sharp.

rsx =

Proof. From (3.1), we have

2(Qf (2)) 1—=Y[Y+R(®)(A—=T)cos?7]r? — |blcosT (A —T)r
()2 - |
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Now the right hand side of the preceding inequality is positive-fer rg«, if

b (A — ) cos T — \/|b\2 (A—"T)?cos? 7 4+ 47T [T + R (b) (A — T) cos? 7]
2T [T+ R (b) (A = T) cos? 7] '
The desired result follows now at once. O

rsx —

Remark 3.5. The sharpness can be seen for the function given as
be T cos T(A—T)

Q% (z)=2(1+7Tz) T
4. FEKETE-SZEGO TYPE PROBLEM FOR THE CLASSS? (7,b,A, T)

Now we investigate the Fakete-Setype problem for the clasS; (v, b, A, T) . First
we recall the following.

Lemma 4.1. [3] Lets (2) = s12 + 5222 + 532% + ... (2 € A) be Schwarz function, then
for any real¢

-6 o<1
s2—¢si| < 1 —1<¢<1
¢ o>1

These estimates are sharp and attainsdor- 1 or ¢ < —1iff s(z) = z or one of its
rotation. If -1 < ¢ < 1 then equality occurs iff (z) = 22 or one of its rotation. Equality

also occurs forp = —1iff s(z) = Zl(fgi) (0 < X <1) or one of its rotation while, for
¢ = 1iff s (z) = =222 (0 < A < 1) or one of its rotation.

Lemma 4.2. [3] Lets (2) = s12 + 5222 + 532% + ... (2 € A) be Schwarz function, then
for any complex numbef

|52 — (/ﬁsﬂ < max {1, |¢|}
This estimate is sharp and attains fofz) = z or s (z) = 22.
Theorem 4.3. Let f € S’ (7,b,A,T) andY # 0. Then
0]

las] < ?(2—04)(A—T)COST7 4.1)
lag| < %(6704275a)(A*T)COST(1+|b|(A*T)COST)‘ 4.2

Also, for any reakp

—|b|(A—T)COST(W>U ¢ < o1,
jas = ga3| <& PI(A-T)eost (C=92=) o <9<, (4.9

|b] (A—T)COST(%)J ¢ > o2,

where

a:b(A—T)e_”COST[?<3_3)+1]_T (4. 4)
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and

o3 () [ ] e (2 [ )

Furthermore, ifp is a complex number, then

lag — ¢a3| < [b] (A —T)cosT (W) max {1, |o|} (4.5)

whereo is defined by (4.4).

Proof. For f € 8% (1,b, A, T) andY # 0, then (2.1) implies
2(Q2f (2) (2)) . be~ T cosT (A — ) s(2)
T0er(m) T+ Ts(z)

wheres (z) is the Schwarz function satisfying(0) = 0 and|s(z)| < 1 for z € A. On
substitutings (2) = s12 + 222 + s32° + ..., with simple calculations we get

'2-a) re-—a)\’ , @2-a) )
2| =—/———m= 4| —= 12 —/———=
[F(S—a)] a2z (I‘(?)—a) Gt \TE )7 "
= be TcosT[(A—T)s1z+ (A—T)(s2—TsT) 2" +..].
Now equating coefficients of like powers ofjives us
N I'(3-a)
as = 5 |:b€ COS T (A — T) <IM> 81:|
. TI'4—a) —ir 2 2 —2ir 2 2 2
az = m[be cosT (A —T) (s2 — Ys7) +b*e > cos® 7 (A — ) 31}-
Thus usings;| < 1 and Lemma 4.1
las] < % (2—a)(A—"T)cosT,
lag| < % (6 —a®—5a) (A—T)cos7 (L+b| (A —T)cosT).
Simplification also leads us to
lag — ¢a§| < |b] (A —TY)cosT (W) |2 — asl| (4. 6)
whereo is given by (4.4). Hence, from Lemma 4.1 the first inequality in (4.3) is established,
when
i ¢ (33—«
A=T)e ™" = 1| -Tr<-1
b( e COST|:3<2a>+:| < -1,
or

3—a (T —1)e™
<o = —1].
$so1=3 (2@) [b(AT)COST 1}
Similarly by application of Lemma 4.1, the third inequality in (4.3) is established, when

b(A—T)e T cosT |:§ <g_z> —l—l] -T>1,
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or
3—a (T+1)e™
> g9 = _
$202=3 (2—a) [b(A—T)COST
Now the second inequality in (4.3) follows at once by Lemma 4.1, when
o1 < ¢ < oo,
Moreover, applying Lemma 4.2 to (4.6) for the complex numbehe inequality in (4.5)
is straightforward. This completes the proof. d

Remark 4.4. The functionaki; — ¢a3 is also known as Hankel determinant with Fekete-
Szeg parameter and read aHg’(l), (see[18] and the citation therein). For some recent
results see alsf9, 16, 21, 24]

Remark 4.5. Note that, our result (Theorer3) with (« = 0 = 7) brings improvement
over the corresponding results of Srivastava e{22, Theoreml with A = 0]. Since
2[b|(A—1T)

1-1r 7
Remark 4.6. On assigning specific values to the involved parameters in Thetferane
can deduce the Fekete-Sidgequalities for the classes, [A, Y], S; [A, Y], C[A, Y],
S*[A Y], 87 (b),CT(b), S (b),C(b),C(y) and S* (v).

JHbl(A=T)<j+ (=01 —-1<T<A<I).

5. CONCLUSION

In this paper, we have introduced a certain new family of starlike functions of complex
order by using the well known Srivastava-Owa fractional calculus operator. For functions
in this family, we have thoroughly investigated various properties like, necessary and suffi-
cient condition, Marx-Strotdcker type inequalities, distortion and radius inequalities, and
Fekete-Szeiy problem. Various earlier works, appeared as special cases to our reported
results. We hope that, the present work may motivate various researchers working in this
field.
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