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Abstract. In this article, the mathematical analysis for an electrically
conducting flow of generalized fractional Burgers’ fluid with permeable
oscillating plate is investigated. The integral transformation approach is
utilized for tracing out the analytical solutions of velocity field and shear
stress with and without magnetic field and porosity. The general solu-
tions have been expressed in terms of product of Gamma functions and
Fox-H function satisfying imposed conditions. The obtained solutions
have been particularized for several limiting cases, such as (i) the solu-
tions are retrieved in the absence of magnetic field, (ii) the solutions are
retrieved in the absence of permeability, (iii) the solutions are retrieved
ordinary differential operator, (iv) the solutions are particularized for frac-
tional Burger, fractional Oldroyd-B, fractional Maxwell fluid and frac-
tional Newtonian fluids . Finally in order to highlight the similarities and
differences among various rheological parameters, the graphical illustra-
tion has been depicted for fluid flows.
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1. INTRODUCTION

There is no denying fact that the conventional Navier-Stokes viscous model (Newtonian)
cannot validate the intrinsic characteristic of rheological (non-Newtonian) fluids. The sev-
eral rheological phenomenons such as stress differences, relaxation, retardation, shear-
thinning/thickening, Weissenberg effects, micro-structure, yield stress, spurt, elongation,
re-coil, fading memory and many others are not characterized in the range of Newtonian
fluid dynamics. The scientists and researchers have diverted their attention for knowing the
similarities and differences between Newtonian and non- Newtonian fluids. Meanwhile the
excellent recent studies have been performed by Irgens [5] and Chaabra and Richardson [6].
The typical non-Newtonian viscoelastic models have been investigated under different cir-
cumstances with various distinct constitutive formulations, for instance second-third-grade
liquid models [33,34], Maxwell liquid model[7,2], Oldroyd-B liquid model [24], Burger
liquid model [21], Microploar liquid model [8], Casson Liquid model [12],Jeffrey liquid
model [38], Walter’s liquid model [9], Brinkman-type liquid model [10], such models have
been analyzed in various studies in medical, environmental and chemical engineering sys-
tems. The fractional derivative is the theory of differentiation to arbitrary non-integers. The
concept of fractional derivative was developed by true researchers namely Abel, Fourier,
Riesz, Liouville, Riemann and few others. The modeling of the problem with fractional
derivatives provides the physical behavior in several applications in electrochemistry, dif-
fusion, electromagnetism, general transport theory and engineering. In nut shell, the Ca-
puto fractional derivative operator is most suitable time fractional derivative which useful
in fluid mechanics. Caputo fractional derivative operator has become most suitable time
fractional derivative, because it delivers full description of memory [24]. The applications
of fractional calculus in rheological fluid include the recent studies here, Masood and Ta-
sawar [31] analyzed fractional generalized Burger fluid with magnetic field in a porous
space. They investigated closed form solutions for velocity field by employing modified
Darcy’s law with limiting cases for Burgers'’ fluids, Oldroyd-B, Maxwell, second grade and
viscous fluids. Jamil and Khan [15] investigated the helical flow of fractional generalized
Burger fluid in cyliderical geometries. They investigated the solutions for linear and an-
gular velocities using Hankel and Laplace transform. They also recovered the solutions
for ordinary differential operator by making fractional parameter equal to one. Jamil [16]
traced out the analytical solutions of first problem of stokes for generalized Burger fluid.
They explored velocity field and the adequate shear stress using Fourier sine and Laplace
transform methods. Tong and Shan [37] analyzed annular pipe for unidirectional and un-
steady flow of generalized Burger fluid by solving two problems, one is axial Couette flow
in a annulus and second is poiseuille flow due to a constant pressure gradient. They found
exact solutions by considering the geometry of two coaxial cylinders. Jamil and et al. [17]
observed the effects of coaxial cylinders for rotational flow of a generalized Burgers fluid
subject to the accelerated shear stress. They found out exact analytical solutions and ex-
pressed them in terms of series form and first and second kind of Bessel functions. llyas
et al. [13] presented exact solutions of Stokes second problem for Burgers fluid subject
to certain conditions for relaxation time. They analyzed the effects of Hartmann number
by applying numerical integration on velocity field and tangential stress with several rheo-
logical parameters as well. In another study, llyas and Shafie [14] studied rotational flows
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of generalized Burgers’ fluid for cosine and sine oscillations with magnetohydrodynamic
in porous medium. They explained the strong effects of oscillating and angular frequency,
Hartmann number and porosity of the medium on their obtained closed solutions Awan et
al. [3] studied coaxial circular cylinders for longitudinal flow of a fractional viscoelastic
fluid by invoking integral transforms. In another study, Awan et al. [4] analyzed the ef-
fects of chemical reaction for viscous incompressible unsteady flow under oscillating plate
with linear concentration and temperature. Nauman [32] investigated analytical solution
by invoking non-integer Caputo time fractional derivatives for unsteady rotational flow of
second grade fluid within cylindrical geometry. Kobra and Alireza [28] investigated the
mathematical model with porosity for steady flow of third grade fluid using numerical ap-
proach on non-linear two-point boundary value problem.

Off course the study of generalized Burgers’ fluid, differentiation to arbitrary non-
integers, magnetohydrodynamic and porosity can be continued but we end here by citing
very recent studies concerned with them [1,11,18,19,22,25,26,27,29,30,35,36]. Motivating
from above discussions, our aim is to investigate the mathematical analysis for an electri-
cally conducting flow of generalized fractional Burgers’ fluid with permeable oscillating
plate is investigated. The integral transformation approach is utilized for tracing out the
analytical solutions of velocity field and shear stress with and without magnetic field and
porosity. The general solutions have been expressed in terms of product of Gamma func-
tions and FoxH function satisfying imposed conditions. The obtained solutions have been
particularized for several limiting cases, such as (i) the solutions are retrieved in the absence
of magnetic field whed/ — 0, (ii) the solutions are retrieved in the absence of permeabil-
ity when® — 0, (iii) the solutions are retrieved for ordinary differential operator when
1 — 1 (iv) the solutions are particularized for fractional Burger, fractional Oldroyd-B,
fractional Maxwell fluid and fractional Newtonian fluids whap — 0,A\y — X3 — 0,

A — A3 — A2 — 0, andAy — A3 — A2 — A — 0 respectively. Finally in or-
der to highlight the similarities and differences among various rheological parameters, the
graphical illustration is has been depicted for fluid flows.

2. STATEMENT AND GOVERNING EQUATIONS OF PROBLEM

We consider the flow of generalized fractional Burgers’ fluid with magnetohydrody-
namic for permeable oscillating plate. The rheological equations for generalized Burgers’
fluid can be characterized as [13,14,17]

52A, 0A, 5?S 0S

T=—pl +S pu\si— Ada— —d— —A1— +pA; =S 2.1
P+ S pha—5 + uds = 250 ~ My THAL=S, (2.1)
where,p, |, S, u, A, Ly A1, A3(< A1), A2, A, an(% the pressure, the identity tensor, the
extra-stress tensor, the dynamic viscosity, the first Rivilin-Ericson tensor, velocity gradient,
relaxation, retardation time, material parameter of generalized Burgers’ fluid and upper
convective time derivative respectively, while upper convective time derivative is stated as,

0S 6S r 6°S & (4S
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Here, % and % are material time derivative and upper convected derivative. The well
known governing equations for an unsteady flow of incompressible fluid are describe as

below:
divv = 0, (2.3)

\Y;

P = divT —oB3V +R, (2. 4)
Where,p,V, o, By, andR the density of the fluid, , the velocity, the electrical conductivity

of the fluid, the applied magnetic field’s magnitude and denotes the Darcy’s resistance
respectively. We have taken a velocity field and extra-stress tensor of the form for this
problem as under

V =V(y,t) =u(y,t)i,S= S(y,1), (2.5)
Keeping initial conditions in mind, we defined as
9S(y, 0)

S(y,0) = 0,V(y,0) =0,

o =0, (2. 6)

implementing equation (2.5) in equation (2.1), yields = 7, = 7y, = 7,. = 0 and the
suitable equation is
02S4y 0S5y ou 0? 0
()\2 pYe + A1 ot -‘rSzy) _3y<)\48152+/\33t+1>u_07 2.7
in which tangential stress i$,,,. As per previously published [34], the generalized Burger
fluid has relation foR is

0? 0

OV (y,t) OV (y,1) pd
+ ()\4 o2 + A3 ot + V(y, t)) = 0, (2. 8)

wherek, ¢ are the permeability and porosity respectively. By considering that flow direc-
tion is free from pressure gradient, balance of linear momentum, absence of body forces
and implementing equation (2.5) into equation (2.4) keeping with equations (2.7, 2.8), we
obtain the governing equations for the generalized Burger fluid as [13,14,17]

du(y,t) 0 0 du(y,t) | %uly,t)
8t (1+/\13t+)\281€2 +M u(y,t)+)\1 8t +)\2 8t2
du(y,t)  , Q’u(y,t)
e
0? 0 O*u(y,t)
—I/()\46t2 + )\35 + 1) B =0, (2.9)

ou(y,t) 0? 0
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o7 (y, ) 07 (y,t)
— t)+ A A =0 2.10
(T(ya )+ 1 ot + A2 912 y ( )
Where, M = "%‘0 is applied magnetic fieldp = £2, is porous medium and; = L,

is kinematic viscosity of the fluid. Meanwhile, using the concept of non-integer order
derivative, so called Caputo fractional operator, we investigated governing equations for
the generalized Burger fluid in the form of non-integer order derivative or Caputo fractional

derivative as
ou(y,t) oY 0%
o 1—0—)\1@-{-)\27&621& +

O%u(y,t) 0?Yu(y,t)
M (u(y, 1)+ A1 510 + A2 520 )

+P (u(y, t) + A3

%Y v 0u(y,t)

9 u(y,t) 9V u(y,t)
o T M )

En BIs: +A3—+1

du(y,t) (/\4 92 ov )
oty

"w— (T(y, t)+ A (2. 12)

0Y7(y, ) *7(y,t)
atw + )\2 at2w > - 07

Where,% is so called Caputo fractional operator described as [20]

uly,t) /t ' (y, t)dy
Jo I

0 1—¢)(t—><)w’0<X<1' (2. 13)

3. STATEMENT OF THE PROBLEM

Here an electrically conducting incompressible generalized fractional Burgers fluid is
considered with porous medium occupying the space above an oscillating plate which is
situated perpendicular to the y-axis. The plate is saturated under an influence of magnetic
field By and permeability. At the momemt= 07 the plate moves to oscillations in its
own plane with velocity (0, t) = ugH (t)cos(Qt) or u(0,t) = uoH (t)sin(2t). Owing to
shear, the fluid above the plate is gradually moved, while the fractional governing equations

are given by the equations (2.11) and (2.12) and corresponding to the imposed conditions
are:

ou(y,0 8%u(y,0
u(y,0) = (ayt ) _ a(tz ) _0, y>o, 3. 14)
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w(0,t) = uoH (t)cos(Qt) or u(0,t) = uoH (t)sin(), t >0, (3. 15)
u(y,t), 8u(;i’ 0) — 0 as y — oo and t > 0. (3. 16)

In order to have analytical solutions of fractional differential equations (2.11-2.12) and
above imposed conditions (3.14-3.16), we shall apply integral transform methods

4. ANALYSIS OF THE PROBLEM

4.1. Mathematical analysis of velocity field.

Case-I: Cosine Oscillations(0, t) = ugH (t)cos(§2t)

Apply the Laplace transform to equation (2.11) and having in mind the imposed condi-
tions (3.14-3.16), we arrive at

%u(y,s) (s+ M+ ®)(1+ YA +s2)\)

= u 4. 17
ot2 (1 + S?,/}A:‘ 4 SQw)\4)l/ U(y,8)7 ( )
subject to the imposed conditiong0, s) = &> and u(y, s) — %‘Z’S) —0as y—

oo andu(y, s) = L (u(y, t)> . the solution of the equation(4.17) is obtained as

Ty, s) = sio g (s+ M+ D)1+ s¥A1 + s2¥ )
bo)= @ rge P (14 s¥A3 + s2¥ A4V

In order to justify the initial and boundary condition, we present equation (4.18) equiva-
lently as

_ _ sug sug = (—1)E & 17 X &
u(y,s) = 2 + Q2 82+Q2 Z €1|\f Z & 52::0 &3 A

£2=0

), (4. 18)

(& - &+ DDA+ &+ ST+ & + T (& — & +1)
X 8521 w£1 b —pEa+Ea—ibEs ) (4 19)

Inverting equation (4.19) by means of Laplace transform, and expressing final expression
of velocity field in terms of Fox# function [20,23] and convolution theorem, we get

(CoA)E o (-
SRV 2 &o!

u(y, t) = uoH (t)cos(Qt) + ugH(t) »
£1=1

> L _& & (_M_(I))§4 e (_1)55 t B
XZ&)’!( /\1> 542220 & Z &l /OcosQ(t D)

§5=0

£2=0
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o (—51,0)( 1.0)(=5.0) (1= =£5.,0)(—€4,0)
o | g (0.1 62—61, ( - %, )(4—* )( £4,0)
( & 0)( & %w&w&—&w)
(4. 20)

st 25— F s +va—Ea—vls—1 g5,

4.2. Mathematical analysis of the shear stress
Apply the Laplace transform to equation (2.12) and having in mind the imposed condi-
tions (3.14-3.16), we arrive at
) 4. 21)

Fyos) = Ou(y,s) (14 s¥YA3 + s2¥ )y
T\ 8) =~ Ay 14 s¥ A + 529

differentiating equations (4.18) with respégt’ partially, we obtain simplified expression

. s) pSug
s)=—
i $2+ Q02 (1+ 5923 + 5200y

<1 + Sw)\g + S2w>\4>

as
\/(s + M+ D)1+ 5PN + 52 )Ng)
v

(4. 22)

14 Sw)\l + SQw)\Q
In order to avoid lengthy and cumbersome calculation, we present equation (4.22) equiva-
_ 1SUQ — (M)" & (M -9)
52+QQ\/> Z ( 51 ) &ZZO 52' 532=0 531

?(yas)_
— (D% & -1 PV =N VAL
2 &Z_O@(‘Al) gzs(ﬁ

1“(1+51_1)F(1+51) (ba+ 27T — &)T(1 + &)
TSI — & + DT (6 — & + 1)

lently as

TE G )T 6+
(4. 23)

1

=V —Pla—tEs eyt
Inverting equation (4.23) by means of Laplace transform, and expressing final expression

of shear stress in terms of Fox-H function and convolution theorem, we get

pug H (t) i ((—y)gl) i (—A1)e2 Z
&3

T(yat) = - | |
\/; &1=1 &t £2=0 & £3=0

%) (_1)54 o _1<_/\2>55 t B
Z & gszz:o &l N /OcosQ(t 0)
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(852,0) (= 2.0) (1-&— 51 0) (1—€2—£5,0) (—£4.,0)

s |(0,1), (& - 952,0) ( & - $.0) (1= 9572,0) (~€1,0)
(6 — €2,0) (T2 + 0o + & + 161 + Vs +2,—0)

B —Va+Ea—YEa—YEs—YEs—1 5. (4. 24)

Case-II: Sine Oscillations(0, t) = ugH (t)sin(Qt)

_ = /S & ()
) = e H(sin€) 1o H0) 37 = 5

£2=0

1 T (M -0 X (—1)8 [t
XZ!(_)\T> z_:( €ar | 2(55)! /osmﬂ(t_é)

€5=0 ~° €4=0 £5=0
e |y (CEOEF0(-30)(1-F —6.0)(-€.0)
ST 05 0.1) (62— €1,0), (5 $,0) (6= %.0) (1-%.0)

(—€4,0) (% — § + & + v — &, v)

st 3= F et —€—uts—1 g5 (4. 25)

(y,t) =~ WOH i(

1=1

on

(51{1;0)(—%70)(1 €a— 851 0) (1-62-5.0) (—€4,0)
0.1), ( : )7(53—%,0) (1-95720) (& —&.0)
(—€0,1) (=% + 06 + & + v + V6 +2,—)

A
1,5 4
><H577 7##)\3

2t —EatEs —bEa—wbs —vEe—1 5. (4. 26)
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5. RESULTS AND DISCUSSIONS

In this section, we highlight the main features and concluding remarks for the present
mathematical analysis of magnetohydrodynamic and permeability. The analytical solutions
of velocity field and shear stress with and without magnetic field and porosity have been
established by employing discrete Laplace transform with its inversion. The general so-
lutions have been expressed in terms of product of Gamma functions and fmction
satisfying imposed conditions. The equations (4.23-4.26) are the analytical solutions of
generalized fractional Burger flow with magnetic field and permeability. In brevity, the
generalized fractional Burger model has several special cases which depends upon con-
cerned rheological parameters, for instance, letfihg— 0 in equations (4.23-4.26) then
the solutions are termed in the absence of fluid magnetic field, m&kirg0 in equations
(4.23-4.26) then the solutions are termed in the absence of fluid porosity, puttirgl
in equations (4.23-4.26) then the solutions are termed in the ordinary differential operator,
setting\, — 0in equations (4.23-4.26) then the solutions are termed for fractional Burger
fluid, substitutinghy, — A2 — 0 in equations (4.23-4.26) then the solutions are termed for
fractional Oldroyd-B fluid, employingy — A3 — A2 — 0 in equations (4.23-4.26) then
the solutions are termed for fractional Maxwell fluid, applyg,— A3 — Ao — A1 — 0
in equations (4.23-4.26) then the solutions are termed for fractional Newtonian fluid and
finally taking 2 — 0in equations (4.23-4.26) then the solutions are termed for first prob-
lem of stokes investigated by llyas and Sharidan [14, see equation 20]. In short, the main
features concerned with results are enumerated below

e Figurel is prepared for time parameter, it is observed that as time increases then ve-
locity field and shear stress are increasing function of time. Meanwhile it is noted that both
velocity field and shear stress have qualitatively identical behavior of fluid flows over the
boundary.

e Figure2 is depicted to show the impact of viscosity on fluid flow, an interesting fact
is achieved that velocity field and shear stress have increasing behavior of fluid flow as
smaller value of viscosity is increased. In general, this phenomenon meets with true facts
of shear thickening and shear thinning.

e The influence of relaxation time, retardation time and material parameters are shown
in figures3 and4. Here, it is noted that velocity field has reciprocal trend of fluid flow.
Meanwhile, velocity field is increasing and decreasing with respect to rheological parame-
ter vice versa.

e Figure. 5 elaborates that effects of magnetic field on fluid flow, the variation in mag-
netic field decreases the velocity field and increases the shear stress. This may be due to the
fact that resistive force is generated by applied magnetic field which is alike a drag force.
Consequently, velocity field and shear stress have opposite trend due to applied magnetic
field which slows down the motion of fluid flow.
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e Figure. 6 is plotted for porosity; here velocity field and shear stress show scattering
behavior reciprocally.

e Comparison of four ordinary and fractional models namely (i) Burger fluid model,
(i) Oldroyd-B fluid model, (iii) Maxwell fluid model and (iv) Newtonian fluid model is
shown in Fig. 7. It is noted that either ordinary or fractional Newtonian fluid moves faster
in comparison with remaining other models. It is also noted that all ordinary models have
sequestrating behavior and fractional models have scattering one.

e Once again comparison of only ordinary and fractional Burger model with and without
magnetic field and porosity is prepared in Réglt pointed out that either ordinary or frac-
tional Burger fluid model without magnetic field and porosity moves faster in comparison
with remaining other models with and without magnetic field and porosity. On the other
hand, models with magnetic field have sequestrating behavior and models with porosity
have scattering behavior over the whole domain of plate.

6. CONCLUSION

The mathematical analysis of fractional Burger fluid under the influence of magneto-
hydrodynamics and permeability is carried out successfully. The analytical solutions of
velocity field and shear stress with and without magnetic field and porosity have been es-
tablished by employing discrete Laplace transform with its inversion. The following main
points are extracted from the mathematical study of fractional Burger fluid:

e The general solutions have been investigated for velocity field and shear stress and
expressed in terms of product of Gamma functions and Fox-H function.

e The velocity field and shear stress are increasing function with respect to time and
viscosity.

e The magnetic field, porosity, relaxation time, retardation time and material parameters
have reciprocal behavior on the velocity field and shear stress.

e The comparative analysis of fractional Burger fluid for four ordinary and fractional
models has been carried out for velocity field and shear stress having several similarities
and differences on the fractional Burger fluid flow.
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