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Abstract. The focus of our this article is to familiarize a new concept of
operators including, interval-valued Pythagorean fuzzy hybrid weighted
averaging (IVPFHWA) aggregation operator, interval-valued Pythagorean
fuzzy ordered weighted averaging (IVPFOWA) aggregation operator and
interval-valued Pythagorean fuzzy weighted averaging (IVPFWA) aggre-
gation operator. We also discuss some of their basic properties includ-
ing idempotency, boundedness, commutativity and monotonicity. We also
give some examples to develop these proposed operators. The advantage
of the propose operators is that these operators provide more accurate
and precise results as compare to the existing method. Finally, we ap-
ply these operators to deal with multiple attribute group decision making
(MAGDM) by using the Pythagorean fuzzy numbers.
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1. INTRODUCTION

Fuzzy set is introduced by Zadeh [38]. In fuzzy set Zadeh only discussed membership
function. After the extensions of fuzzy set theory Atanassov generalized this concept and
introduced a new concept called IFS. In [1, 2, 3, 16, 18, 20] many scholars worked in
intuitionistic fuzzy set theory. In [4, 5, 6, 7] K. Atanassov presented the idea of IFS. Actu-
ally Atanassov introduced this new concept which is a generalized form of the FS. In [11]
Gau and Buahrer familiarized the concept of another set called vague set. After the appear-
ance of vague set, Hong and Choi, Chen and Tan [15, 9] respectively, developed some basic
techniques to handle MADM using vague set. In [8] Burilo and Bustin developed a relation
between the two famous sets called vague set, and IFS. They also mathematically proved
that these sets are equivalent. In [5] K. Atanassov and Gergov presented the idea of the IV-
IFS, which is a generalization of IFS. In [32] Yager familiarized the model of Pythagorean
fuzzy set. The most important and central research topic is aggregation operators. There
are many scholars worked in this area and introduced several operators. In [34] Yager and
Kecprzyk, in [33, 35, 36, 37] Yager, in [30] Xu and Da in [10] Chen and Chen, in [12, 13]
Chiclena et al., in [22] Harrera et al. in [25, 26] Xu, in [21] Tan and Chen, worked in
this field. Like the other scholars, Mitchell also worked in this area. In [17] he introduced
the notion of IOWA operator. In [27] Xu introduced the concept of some new averaging
aggregation operators including, IFOWA operator and IFHA operator. In [14] Yager and
XU also worked in this field and familiarized specific new types of geometric operators
including, IFHG operator, IFOWG operator, IFWG operator, and discussed the importance
of the IFHG operator to MCDM problems under the IF information. Like other scholars,
in [24] Wei worked in the field of aggregation operators and introduced the notion of the
two new type’s aggregation operators such as, I-IFOWG operator and I-IIFOWG operator.
In [39] Zhao et al. also worked in this area and introduced Specific types of new operators.
Z. S. Xu. and R. R, in [31] presented the notion of DIFWA operator and UDIFWA opera-
tor. This idea used by Wei in [23] defined DIFWG operator as well as UDIFWG operator.
Yager and Filav in [35] introduced the notion of the I-OWA operator, which is the extension
of the OWA operator and the IIFHA operator. Z. S. Xu, in [28, 29] familiarized the notion
of IIFHG operator, IIFOWG operator, and IIFHA operator, IIFOWA operator, IIFWA oper-
ator and also proved the importance of IIFHA operator to MADM problems. X. Peng and
Y. Yang, in [19] developed some properties of interval-valued Pythagorean fuzzy numbers.

Thus keeping the advantages of the above mention aggregation operators in this arti-
cle we introduce the notion of some new operators based on IVPFNs, such as, IVPFHA
operator, IVPFOWA operator and IVPFWA operator and apply them to group decision
making. We also discuss some of their basic properties including idempotency, bound-
edness, commutativity and monotonicity. We also give some examples to develop these
proposed operators. These operators provide more accurate and precise results as compare
to the existing method.

The remainder paper can be constructed as. In Section 2, we present some straightfor-
ward explanations connected to our later sections. In Section 3, we familiarize IVPFWA
operator, IVPFOWA operator and IVPFHA operator. In Section 4, we developed the ad-
vantage of the propose operator. In Section 5, we have conclusion
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2. PRELIMINARIES

Definition 2.1. [19] Let K be a universal set, then an interval-valued Pythagorean fuzzy
setI in K can be defined as:

I = {〈k, µI (k) , υI (k)〉 | k ∈ K} , (1)

where

µI (k) =
[
µa

I (k) , µb
I (k)

] ⊂ [0, 1] , (2)

υI (k) =
[
υa

I (k) , υb
I (k)

] ⊂ [0, 1] . (3)

Also

µa
I (k) = inf µI (k) , (4)

µb
I (k) = sup µI (k) , (5)

υa
I (k) = inf vI (k) , (6)

υb
I (k) = sup vI (k) . (7)

And also

0 ≤ (
µb

I (k)
)2

+
(
υb

I (k)
)2 ≤ 1. (8)

If

πI (k) =
[
πa

I (k) , πb
I (k)

]
, for all k ∈ K, (9)

then it is said to be the interval-valued Pythagorean fuzzy index ofk to I, where

πa
I (k) =

√
1− (

µb
I (k)

)2 − (
υb

I (k)
)2

, (10)

and

πb
I (k) =

√
1− (µa

I (k))2 − (υa
I (k))2. (11)

Definition 2.2. [19] Let λ =
([

µa
λ, µb

λ

]
,
[
υa

λ, υb
λ

])
be an interval-valued Pythagorean

fuzzy number, then

S (λ) =
1
2

[
(µa

λ)2 +
(
µb

λ

)2 − (υa
λ)2 − (

υb
λ

)2
]
, (12)

and

H (λ) =
1
2

[
(µa

λ)2 +
(
µb

λ

)2
+ (υa

λ)2 +
(
υb

λ

)2
]
, (13)

be the score function and accuracy degree ofλ respectively.

Definition 2.3. [19] Letλ =
([

µa
λ, µb

λ

]
,
[
υa

λ, υb
λ

])
, λ1 =

([
µa

λ1
, µb

λ1

]
,
[
υa

λ1
, υb

λ1

])
, λ2 =([

µa
λ2

, µb
λ2

]
,
[
υa

λ2
, υb

λ2

])
be the three interval-valued Pythagorean fuzzy numbers andδ >
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0, then the following operational laws hold:

δλ =

([√
1−

(
1− (µa

λ)2
)δ

,

√
1−

(
1− (

µb
λ

)2
)δ

]
,
[
(υa

λ)δ
,
(
υb

λ

)δ
])

, (14)

(λ)δ =

([
(µa

λ)δ
,
(
µb

λ

)δ
]
,

[√
1−

(
1− (υa

λ)2
)δ

,

√
1−

(
1− (

υb
λ

)2
)δ

])
, (15)

λ1 ⊗ λ2 =


[

µa
λ1

µa
λ2

, µb
λ1

µb
λ2

]
,




√
(υa

λ)2 + (υa
λ)2 − (υa

λ)2 (υa
λ)2,√(

υb
λ

)2 +
(
υb

λ

)2 − (
υb

λ

)2 (
υb

λ

)2





 , (16)

λ1 ⊕ λ2 =







√(
µa

λ1

)2 +
(
µa

λ2

)2 − (
µa

λ1

)2 (
µa

λ2

)2
,√(

µb
λ1

)2 +
(
µb

λ2

)2 − (
µb

λ1

)2 (
µb

λ2

)2


 ,

[
υa

λ1
υa

λ2
, υb

λ1
υb

λ2

]


 . (17)

Example 2.4. Let

λ = ([0.3, 0.5] , [0.4, 0.8]) ,

λ1 = ([0.4, 0.6] , [0.4, 0.7]) ,

λ2 = ([0.2, 0.6] , [0.5, 0.7]) .

andδ = 2, then

(1)

δλ =




[√
1−

(
1− (µa

λ)2
)δ

,

√
1−

(
1− (

µb
λ

)2
)δ

]
,

[
(υa

λ)δ
,
(
υb

λ

)δ
]




= ([0.414, 0.661] , [0.16, 0.64])

(2)

(λ)δ =




[
(µa

λ)2 ,
(
µb

λ

)δ
]
,[√

1−
(
1− (υa

λ)2
)δ

,

√
1−

(
1− (

υb
λ

)2
)δ

]



= ([0.09, 0.25] , [0.542, 0.932])

(3)

λ1 ⊗ λ2 =


[

µa
λ1

µa
λ2

, µb
λ1

µb
λ2

]
,




√
(υa

λ)2 ⊕ (υa
λ)2 − (υa

λ)2 (υa
λ)2,√(

υb
λ

)2 ⊕ (
υb

λ

)2 − (
υb

λ

)2 (
υb

λ

)2







= ([0.08, 0.36] , [0.608, 0.860])
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(4)

λ1 ⊕ λ2 =







√(
µa

λ1

)2 +
(
µa

λ2

)2 − (
µa

λ1

)2 (
µa

λ2

)2
,√(

µb
λ1

)2 +
(
µb

λ2

)2 − (
µb

λ1

)2 (
µb

λ2

)2


 ,

[
υa

λ1
υa

λ2
, υb

λ1
υb

λ2

]




= ([0.44, 0.768] , [0.2, 0.49])

Definition 2.5. [29] Let Θ be the set of all interval-valued intuitionistic fuzzy values and

λj =
([

µa
λj

, µb
λj

]
,
[
υa

λj
, υn

λj

])
(j = 1, 2, ..., n) be a collection of interval-valued intu-

itionistic fuzzy valves, and letIV IFWA: Θn → Θ, if

IV IFWAw (λ1, λ2, λ3, ..., λn)

=




[
1−

n∏
j=1

(
1− µa

λj

)wj

, 1−
n∏

j=1

(
1− µb

λj

)wj

]
,

[
n∏

j=1

(
υa

λj

)wj

,
n∏

j=1

(
υb

λj

)wj

]




, (18)

wherew = (w1, w2, ..., wn)T is the weighted vector ofλj (j = 1, 2, ..., n) with wj ∈ [0, 1]

and
n∑

j=1

wj = 1. ThenIV IFWA is called interval-valued intuitionistic fuzzy weighted av-

eraging operator. Specially ifw =
(

1
n , 1

n , ..., 1
n

)T
, then interval-valued intuitionistic fuzzy

weighted averaging operator is reduced to an interval-valued intuitionistic fuzzy averaging
operator.

Example 2.6. Let

λ1 = ([0.3, 0.4] , [0.5, 0.6]) ,

λ2 = ([0.2, 0.3] , [0.3, 0.6]) ,

λ3 = ([0.3, 0.4] , [0.3, 0.4]) ,

λ4 = ([0.3, 0.5] , [0.2, 0.4]) ,

be the four interval-valued Pythagorean fuzzy values and letw = (0.1, 0.2, 0.3, 0.4)T be
the weighted vector ofλj (j = 1, 2, 3, 4) , then we have

IV IFWAw (λ1, λ2, λ3, λ4)

=




[
1−

4∏
j=1

(
1− µa

λj

)wj

, 1−
4∏

j=1

(
1− µb

λj

)wj

]
,

[
4∏

j=1

(
υa

λj

)wj

,
4∏

j=1

(
υb

λj

)wj

]




= ([0.281, 0.424] , [0.268.0.576]) .

Definition 2.7. [29] An interval-valued intuitionistic fuzzy ordered weighted averaging
operator of dimensionn is a mappingIV IFOWA : Θn → Θ that has an associated

weighted vectorw = (w1, w2, ..., wn)T with wj ∈ [0, 1] and
n∑

j=1

wj = 1, and is defined
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to aggregate a collection of interval-valued intuitionistic fuzzy valuesλj (j = 1, 2, ..., n),
according to the following expression:

IV IFOWAw (λ1, λ2, λ3, ..., λn)

=




[
1−

n∏
j=1

(
1− µa

λσ(j)

)wj

, 1−
n∏

j=1

(
1− µb

λσ(j)

)wj

]
,

[
n∏

j=1

(
υa

λσ(j)

)wj

,
n∏

j=1

(
υb

λσ(j)

)wj

]




. (19)

Whereλσ(j) is thejth largest value ofλj . If w =
(

1
n , 1

n , ..., 1
n

)T
, then the interval-valued

intuitionistic fuzzy ordered weighted averaging operator is reduced to the interval-valued
intuitionistic fuzzy averaging operator.

Example 2.8. Let

λ1 = ([0.4, 0.5] , [0.3, 0.4]) ,

λ2 = ([0.3, 0.6] , [0.2, 0.4]) ,

λ3 = ([0.3, 0.4] , [0.3, 0.5]) ,

λ4 = ([0.4, 0.5] , [0.1, 0.3]) ,

and letw = (0.1, 0.2, 0.3, 0.4)T be the weighted vector ofλj (j = 1, 2, 3, 4) . First we
calculate the score function ofλj , we have

S (λ1) = 0.1, S (λ2) = 0.15,

S (λ3) = −0.95, S (λ4) = 0.25.

Thus

S (λ4) > S (λ2) > S (λ1) > S (λ3)

Hence

λσ(1) = ([0.4, 0.5] , [0.1, 0.3])
λσ(2) = ([0.3, 0.6] , [0.2, 0.4])
λσ(3) = ([0.4, 0.5] , [0.3, 0.4])
λσ(4) = ([0.3, 0.4] , [0.3, 0.5])

IV IFOWAw (λ1, λ2, λ3, λ4)

=




[
1−

4∏
j=1

(
1− µa

λσ(j)

)wj

, 1−
4∏

j=1

(
1− µb

λσ(j)

)wj

]
,

[
4∏

j=1

(
υa

λσ(j)

)wj

,
4∏

j=1

(
υb

λσ(j)

)wj

]




= ([0.341, 0.485] , [0.247, 0.424]) .

Definition 2.9. [29] TheIV IFHA operator ofn dimension is a mappingIV IFHA :
Θn → Θ, which has an associated vectorw = (w1, w2, ..., wn)T

, such thatwj ∈ [0, 1]
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and
n∑

j=1

wj = 1. Furthermore

IV IFHAw,w (λ1, λ2, λ3..., λn)

=




[
1−

n∏
j=1

(
1− µa

λ̇σ(j)

)wj

, 1−
n∏

j=1

(
1−

(
µb

λ̇σ(j)

))wj

]
,

[
n∏

j=1

(
υa

λ̇σ(j)

)wj

,
n∏

j=1

(
υb

λ̇σ(j)

)wj

]




, (20)

whereλ̇σ(j) be thejth largest of the weighted intuitionistic fuzzy valuesλ̇j

(
λ̇j = nwjλj

)
,

w = (w1, w2, ..., wn)T is the weighted vector ofλj (j = 1, 2, ..., n) such thatwj ∈ [0, 1]

and
n∑

j=1

wj = 1, andn is the balancing coefficient, which plays a role of balance. If the vec-

tor (w1, w2, ..., wn)T approaches
(

1
n , 1

n , ..., 1
n

)T
, then the vector(nw1λ1, ..., nwnλn)T

approaches(λ1, λ2, ..., λn)T
.

Example 2.10. Let

λ1 = ([0.3, 0.5] , [0.3, 0.4]) ,

λ2 = ([0.3, 0.5] , [0.2, 0.4]) ,

λ3 = ([0.3, 0.4] , [0.3, 0.4]) ,

λ4 = ([0.4, 0.5] , [0.1, 0.2]) ,

and letw = (0.1, 0.2, 0.3, 0.4)T be the weighted vector ofλj (j = 1, 2, 3, 4), then

λ̇1 = ([0.132, 0.242] , [0.617, 0.693]) ,

λ̇2 = ([0.381, 0.425] , [0.275, 0.480]) ,

λ̇3 = ([0.348, 0.458] , [0.235, 0.333]) ,

λ̇4 = ([0.558, 0.670] , [0.025, 0.076]) .

Now we can find the scores ofλ̇j (j = 1, 2, 3, 4), we have

S
(
λ̇1

)
= −0.467, S

(
λ̇2

)
= 0.025

S
(
λ̇3

)
= 0.118, S

(
λ̇4

)
= 0.563

Then

λ̇σ(1) = ([0.558, 0.670] , [0.025, 0.076]) ,

λ̇σ(2) = ([0.348, 0.458] , [0.235, 0.333]) ,

λ̇σ(3) = ([0.381, 0.425] , [0.275, 0.480]) ,

λ̇σ(4) = ([0.132, 0.242] , [0.617, 0.693]) .
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IV IFHAw,w (λ1, λ2, λ3, λ4)

=




[
1−

4∏
j=1

(
1− µa

λ̇σ(j)

)wj

, 1−
4∏

j=1

(
1−

(
µb

λ̇σ(j)

))wj

]
,

[
4∏

j=1

(
υa

λ̇σ(j)

)wj

,
4∏

j=1

(
υb

λ̇σ(j)

)wj

]




= ([0.308, 0.399] , [0.290, 0.429])

3. SOME AVERAGING AGGREGATIONOPERATORSBASED ON INTERVAL-VALUED

PYTHAGOREAN FUZZY NUMBERS

In this section, we introduce the notion of interval-valued Pythagorean fuzzy weighted
averaging operator, interval-valued Pythagorean fuzzy ordered weighted averaging opera-
tor and interval-valued Pythagorean fuzzy hybrid averaging operator. We also discuss some
desirable properties and give some examples.

3.1. Interval-Valued Pythagorean Fuzzy Weighted Averaging Aggregation Operator.
Interval-valued Pythagorean fuzzy weighted averaging aggregation operator and some of
their properties are already defined in [19] but here we give some examples to improve the
proposed operator.

Definition 3.1. Let λj =
([

µa
λj

, µb
λj

]
,
[
υa

λj
, υb

λj

])
(j = 1, 2, ..., n) be a collection of

interval-valued Pythagorean fuzzy valves, thenIV PFWA can be defined as:

IV PFWAw (λ1, λ2, λ3, ..., λn)

=




[√
1−

n∏
j=1

(
1−

(
µa

λj

)2
)wj

,

√
1−

n∏
j=1

(
1−

(
µb

λj

)2
)wj

]
,

[
n∏

j=1

(
υa

λj

)wj

,
n∏

j=1

(
υb

λj

)wj

]




, (21)

wherew = (w1, w2, ..., wn)T is the weighted vector ofλj (j = 1, 2, 3, ..., n) , with wj ∈
[0, 1] and

n∑
j=1

wj = 1.

Example 3.2. Let

λ1 = ([0.3, 0.4] , [0.5, 0.7]) ,

λ2 = ([0.2, 0.6] , [0.3, 0.6]) ,

λ3 = ([0.3, 0.6] , [0.3, 0.5]) ,

λ4 = ([0.4, 0.7] , [0.2, 0.6]) ,
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be the four interval-valued Pythagorean fuzzy values and letw = (0.1, 0.2, 0.3, 0.4)T be
the weighted vector ofλj (j = 1, 2, 3, 4) , then we have

IV PFWAw (λ1, λ2, λ3, λ4)

=




[√
1−

4∏
j=1

(
1−

(
µa

λj

)2
)wj

,

√
1−

4∏
j=1

(
1−

(
µb

λj

)2
)wj

]
,

[
4∏

j=1

(
υa

λj

)wj

,
4∏

j=1

(
υb

λj

)wj

]




= ([0.330, 0.632] , [0.268, 0.576]) .

Theorem 3.3. (Commutativity):

IVPFWAw (λ1, λ2, ..., λn) = IVPFWAw

(
λ´1, λ

´
2, ..., λ

´
n

)
, (22)

where
(
λ´1, λ

´
2, ..., λ

´
n

)
is any permutation of(λ1, λ2, ..., λn) andw = (w1, w2, ..., wn)T the

weighted vector ofλj , λ´j wherej = 1, 2, ..., n.

Proof. Straightforward. ¤

Theorem 3.4. (Idempotency): Ifλj = λ for all j (j = 1, 2, ..., n) , then

IVPFWAw (λ1, λ2, ..., λn) = λ. (23)

Proof. Straightforward. ¤

Example 3.5. Let

λ1 = ([0.3, 0.4] , [0.6, 0.7]) ,

λ2 = ([0.3, 0.4] , [0.6, 0.7])
λ3 = ([0.3, 0.4] , [0.6, 0.7]) ,

andw = (0.2, 0.3, 0.5) be the weighted vector ofλj , then

IV PFWAw (λ1, λ2, λ3)

=




[√
1−

3∏
j=1

(
1−

(
µa

λj

)2
)wj

,

√
1−

3∏
j=1

(
1−

(
µb

λj

)2
)wj

]
,

[
3∏

j=1

(
υa

λj

)wj

,
3∏

j=1

(
υb

λj

)wj

]




= ([0.3, 0.4] , [0.6, 0.7]) .

Theorem 3.6. (Boundedness): Letλj =
([

µa
λj

, µb
λj

]
,
[
υa

λj
, υb

λj

])
(j = 1, 2, ..., n) be a

collection of interval-valued Pythagorean fuzzy valves and letw = (w1, w2, ...wn)T be the

weighted vector ofλj (j = 1, 2, ..., n) ,such that
n∑

j=1

wj = 1,then

λmin ≤ IVPFWAw (λ1, λ2, λ3, ..., λn) ≤ λmax.

Proof. Straightforward. ¤
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Theorem 3.7. (Monotonicity): Ifλj ≤ λ´j for all j (j = 1, 2, ..., n) , then

IVPFWAw (λ1, λ2, ..., λn) ≤ IVPFWAw

(
λ´1, λ

´
2, ..., λ

´
n

)
. (24)

Proof. Straightforward. ¤

Example 3.8. Let

λ1 = ([0.3, 0.5] , [0.5, 0.7]) ,

λ2 = ([0.4, 0.5] , [0.6, 0.7]) ,

λ3 = ([0.2, 0.4] , [0.6, 0.8]) ,

and

λ´1 = ([0.3, 0.6] , [0.3, 0.5]) ,

λ´2 = ([0.5, 0.7] , [0.2, 0.6]) ,

λ´3 = ([0.6, 0.8] , [0.4, 0.5]) ,

be the three interval-valued Pythagorean fuzzy values and letw = (0.2, 0.3, 0.5)T be the
weighted vector of then we have

IV PFWAw (λ1, λ2, λ3)

=




[√
1−

3∏
j=1

(
1−

(
µa

λj

)2
)wj

,

√
1−

3∏
j=1

(
1−

(
µb

λj

)2
)wj

]
,

[
3∏

j=1

(
υa

λj

)wj

,
3∏

j=1

(
υb

λj

)wj

]




= ([0.295, 0.454] , [0.578, 0.748]) .

Again

IV PFWAw

(
λ´1, λ

´
2, λ

´
3

)

=




[√
1−

3∏
j=1

(
1−

(
µa

λj

)2
)wj

,

√
1−

3∏
j=1

(
1−

(
µb

λj

)2
)wj

]
,

[
3∏

j=1

(
υa

λj

)wj

,
3∏

j=1

(
υb

λj

)wj

]




= ([0.528, 0.742] , [0.306, 0.528]) .

3.2. Interval-Valued Pythagorean Fuzzy Ordered Weighted Averaging Aggregation
Operator.
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Definition 3.9. Let λj =
([

µa
λj

, µb
λj

]
,
[
υa

λj
, υb

λj

])
(j = 1, 2, ..., n) be a collection of in-

terval valued Pythagorean fuzzy valves, then an IVPFOWA operator can be define as:

IV PFOWAw (λ1, λ2, λ3, ..., λn)

=




[√
1−

n∏
j=1

(
1−

(
µa

λσ(j)

)2
)wj

,

√
1−

n∏
j=1

(
1−

(
µb

λσ(j)

)2
)wj

]
,

[
n∏

j=1

(
υa

λσ(j)

)wj

,
n∏

j=1

(
υb

λσ(j)

)wj

]




, (25)

wherew = (w1, w2, ..., wn)T be the weighted vector withwj ∈ [0, 1] and
n∑

j=1

wj = 1 and

λσ(j) is thejth largest value ofλj .

Theorem 3.10. Let λj =
([

µa
λj

, µb
λj

]
,
[
υa

λj
, υb

λj

])
(j = 1, 2, ..., n) be a collection of

interval valued Pythagorean fuzzy valves, by applying the IVPFOWA operator, then their
aggregated value is also IVPFV.

Proof. Proof is easy so it is omitted here. ¤

Theorem 3.11. (Commutativity):

IVPFOWAw (, λ1, λ2, ..., λn) = IVPFOWAw

(
λ´1, λ

´
2, ..., λ

´
n

)
, (26)

where
(
λ´1, λ

´
2, ..., λ

´
n

)
is any permutation of(λ1, λ2, ..., λn) , andw = (w1, w2, ..., wn)T the

weighted vector ofλj , λ´j wherej = 1, 2, ..., n.

Proof. Straightforward. ¤

Theorem 3.12. (Idempotency): Ifλj = λ for all j (j = 1, 2, ..., n) , then

IVPFOWAw (, λ1, λ2, ..., λn) = λ. (27)

Proof. Straightforward. ¤

Theorem 3.13. (Boundedness): Letλj =
([

µa
λj

, µb
λj

]
,
[
υa

λj
, υb

λj

])
(j = 1, 2, ..., n) be a

collection of interval-valued Pythagorean fuzzy valves and letw = (w1, w2, ...wn)T be the

weighted vector ofλσ(j) (j = 1, 2, ..., n) , such that
n∑

j=1

wj = 1, then

λmin ≤ IVPFOWAw (λ1, λ2, λ3, ..., λn) ≤ λmax. (28)

Proof. Straightforward. ¤

Theorem 3.14. (Monotonicity): Ifλj ≤ λ´j for all j (j = 1, 2, ..., n) , then

IVPFOWAw (, λ1, λ2, ..., λn) ≤ IVPFOWAw

(
λ´1, λ

´
2, ..., λ

´
n

)
. (29)

Proof. Straightforward. ¤
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Example 3.15. Let

λ1 = ([0.4, 0.6] , [0.3, 0.7]) ,

λ2 = ([0.3, 0.6] , [0.2, 0.7]) ,

λ3 = ([0.3, 0.8] , [0.3, 0.5]) ,

λ4 = ([0.4, 0.9] , [0.1, 0.3]) ,

be the four interval-valued Pythagorean fuzzy values and letw = (0.1, 0.2, 0.3, 0.4)T be
the weighted vector ofλj (j = 1, 2, 3, 4) . First we calculate the scores ofλj (j = 1, 2, 3, 4) ,
thus we have

S (λ1) = −0.03, S (λ2) = −0.04
S (λ3) = 0.19, S (λ4) = 0.43

Thus

S (λ4) > S (λ3) > S (λ1) > S (λ2)

Hence

λσ(1) = ([0.4, 0.9] , [0.1, 0.3]) ,

λσ(2) = ([0.3, 0.8] , [0.3, 0.5]) ,

λσ(3) = ([0.4, 0.6] , [0.3, 0.7]) ,

λσ(4) = ([0.3, 0.6] , [0.2, 0.7]) .

Thus

IV PFOWAw (λ1, λ2, λ3, λ4)

=




[√
1−

4∏
j=1

(
1−

(
µa

λσ(j)

)2
)wj

,

√
1−

4∏
j=1

(
1−

(
µb

λσ(j)

)2
)wj

]
,

[
4∏

j=1

(
υa

λσ(j)

)wj

,
4∏

j=1

(
υb

λσ(j)

)wj

]




= ([0.344, 0.703] , [0.228, 0.601]) .

3.3. Interval-Valued Pythagorean Fuzzy Hybrid Weighted Averaging Aggregation Op-
erator.

Definition 3.16. An interval-valued Pythagorean fuzzy hybrid averaging operator of di-
mensionn is a mappingIV PFHA : Θn → Θ, which has an associated vectorw =

(w1, w2, ..., wn)T
, such thatwj ∈ [0, 1] and

n∑
j=1

wj = 1. Furthermore

IV PFHAw,w (λ1, λ2, ..., λn)

=




[√
1−

n∏
j=1

(
1−

(
µa

λ̇σ(j)

)2
)wj

,

√
1−

n∏
j=1

(
1−

(
µb

λ̇σ(j)

)2
)wj

]
,

[
n∏

j=1

(
υa

λ̇σ(j)

)wj

,
n∏

j=1

(
υb

λ̇σ(j)

)wj

]




, (30)
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whereλ̇σ(j) is thejth largest of the weighted Pythagorean fuzzy valuesλ̇j

(
λ̇j = nwjλj

)
, w =

(w1, w2, ..., wn)T is the weighted vector ofλj (j = 1, 2, ..., n) such thatwj ∈ [0, 1] and
n∑

j=1

wj = 1, andn is the balancing coefficient, which plays a role of balance. If the vector

(w1, w2, ..., wn)T approaches
(

1
n , 1

n , ..., 1
n

)T
, then the vector(nw1λ1, nw2λ2, ..., nwnλn)T

approaches(λ1, λ2, ..., λn)T
.

Theorem 3.17. Let λj =
([

µa
λj

, µb
λj

]
,
[
υa

λj
, υb

λj

])
(j = 1, 2, ..., n) be a collection of

IVPFVs, by the applying of IVPFHA operator, then their aggregated value is also IVPFV.

Proof. Proof is easy so it is omitted here. ¤

Example 3.18. Let

λ1 = ([0.4, 0.7] , [0.3, 0.4]) ,

λ2 = ([0.3, 0.6] , [0.2, 0.4]) ,

λ3 = ([0.3, 0.7] , [0.3, 0.5]) ,

λ4 = ([0.4, 0.8] , [0.1, 0.3]) ,

be the four interval-valued Pythagorean fuzzy values and letw = (0.1, 0.2, 0.3, 0.4)T be
the weighted vector ofλj (j = 1, 2, 3, 4) , thus

λ̇1 = ([0.259, 0.485] , [0.617, 0.693]) ,

λ̇2 = ([0.269, 0.547] , [0.275, 0.480]) ,

λ̇3 = ([0.327, 0.744] , [0.235, 0.435]) ,

λ̇4 = ([0.493, 0.897] , [0.025, 0.145]) .

Now we can find the scores ofλ̇j (j = 1, 2, 3, 4) .

S
(
λ̇1

)
= −0.279, S

(
λ̇2

)
= 0.032

S
(
λ̇3

)
= 0.208, S

(
λ̇4

)
= 0.513

Thus

S
(
λ̇4

)
> S

(
λ̇3

)
> S

(
λ̇2

)
> S

(
λ̇1

)

Hence

λ̇σ(1) = ([0.493, 0.897] , [0.025, 0.145]) ,

λ̇σ(2) = ([0.327, 0.744] , [0.235, 0.435]) ,

λ̇σ(3) = ([0.269, 0.547] , [0.275, 0.480]) ,

λ̇σ(4) = ([0.259, 0.485] , [0.617, 0.693]) .
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Thus

IV PFHAw,w (λ1, λ2, λ3, λ4)

=




[√
1−

4∏
j=1

(
1−

(
µa

λ̇σ(j)

)2
)wj

,

√
1−

4∏
j=1

(
1−

(
µb

λ̇σ(j)

)2
)wj

]
,

[
4∏

j=1

(
υa

λ̇σ(j)

)wj

,
4∏

j=1

(
υb

λ̇σ(j)

)wj

]




= ([0.705, 0.793] , [0.109, 0.300]) .

Theorem 3.19. An IVPFWA operator is a specials case of IVPFHA operator.

Proof. Let w =
(

1
n , 1

n , ..., 1
n ,

)T
, then we have

IVPFHAw,w (λ1, λ2, ..., λn) = w1λ̇σ(1) ⊕ w2λ̇σ(2) ⊕ ...⊕ wnλ̇σ(n)

=
1
n

(
λ̇σ(1) ⊕ λ̇σ(2) ⊕ ...⊕ λ̇σ(n)

)

=
1
n

(nw1λ1 ⊕ nw2λ2 ⊕ ...⊕ nwnλn)

= w1λ1 ⊕ w2λ2 ⊕ ...⊕ wnλn

= IVPFWAw (λ1, λ2, ..., λn) .

¤

Theorem 3.20. The IVPFOWA operator is a specials case of the IVPFHA operator.

Proof. Let w =
(

1
n , 1

n , ..., 1
n ,

)T
, andλ̇j = nwjλj = n

(
1
nλj

)
= λj , then

IVPFHAw,w (λ1, λ2, ..., λn) = w1λ̇σ(1) ⊕ w2λ̇σ(2) ⊕ ...⊕ wnλ̇σ(n)

= w1λσ(1) ⊕ w2λσ(2) ⊕ ...⊕ wnλσ(n)

= IVPFOWAw (λ1, λ2, ..., λn) .

¤

4. AN APPLICATION OF THE PROPOSED AGGREGATION OPERATORS TO

M ULTIPLE ATTRIBUTE DECISION M AKING PROBLEM

Algorithm: LetS = {S1, S2, ..., Sn} be a set ofn alternatives, andF = {F1, F2, ..., Fm}
be the set ofm attributes andw = (w1, w2, ..., wm)T be the weighted vector of the at-

tributesFi (i = 1, 2, ..., m) such thatwi ∈ [0, 1] and
m∑

i=1

wi = 1

Step 1: In this step the decisions makers provide the decision information in the follow-
ing form:

Dm×n = [λij ]m×n

(
i = 1, 2, 3, ..., m
j = 1, 2, 3, ..., n

)
.

Step 2: Computeλj (j = 1, 2, ..., n) by using theIV PFWA aggregation operator.
Step 3: Compute the scores ofλj (j = 1, 2, ..., n). If there is no difference between two

or more than two scores, then have we must to calculate the accuracy degrees.
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Step 4: Arrange the scores function of the all alternatives in the form of descending
order and select that alternative, which has the highest score function value.

Example 4.1.Suppose a customer wants to buy a laptop from different laptops, letS1, S2, S3,
represent the three laptops of different companies. LetF1, F2, F3, F4, be the criteria of
these laptops. In the process of choosing one of the best laptops, four factors are consider.
F1 : price of each laptop.F2 : model of each laptop.F3 : design of each laptop.F4 : betree
of the laptop. Suppose the weighted vector ofFi (i = 1, 2, 3, 4) isw = (0.1, 0.2, 0.3, 0.4)T ,
and the interval-valued Pythagorean fuzzy values of the alternativeAj (j = 1, 2, 3, 4) are
represented by the following decision matrix

For IPFWA Operator

Step 1: The decision maker give his decision in table 1.

Table1 Pythagorean Fuzzy Decision Matrix

S1 S2 S3

F1 ([0.3, 0.5] , [0.4, 0.8]) ([0.3, 0.6] , [0.2, 0.7]) ([0.3, 0.5] , [0.5, 0.8])
F2 ([0.2, 0.6] , [0.3, 0.7]) ([0.4, 0.5] , [0.3, 0.6]) ([0.2, 0.5] , [0.2, 0.6])
F3 ([0.3, 0.7] , [0.2, 0.5]) ([0.2, 0.6] , [0.2, 0.7]) ([0.3, 0.7] , [0.4, 0.7])
F4 ([0.4, 0.5] , [0.4, 0.6]) ([0.4, 0.6] , [0.4, 0.5]) ([0.4, 0.4] , [0.2, 0.8])

Step 2: Computeλj , (j = 1, 2, 3)

λ1 = ([0.330, 0.593] , [0.306, 0.602])
λ2 = ([0.344, 0.582] , [0.303, 0.593])
λ3 = ([0.330, 0.548] , [0.269, 0.725])

Step 3: in this step we can find the scores ofλj (j = 1, 2, 3)

S (λ1) = 0.002, S (λ2) = 0.007,

S (λ3) = −0.094,

Step 4: Arrange the scores of the all alternatives in the form of descending order and
select that alternative, which has the highest score function. Sinceλ2 > λ1 > λ3. Hence
S2 > S1 > S3. ThusS2 is the best option for the customer.

For IPFOWA Operator

Step 1: In this step we construct the Pythagorean fuzzy ordered decision matrix.

Table1 Pythagorean Fuzzy Ordered Decision Matrix

S1 S2 S3

F1 ([0.3, 0.7] , [0.2, 0.5]) ([0.4, 0.6] , [0.4, 0.5]) ([0.3, 0.7] , [0.4, 0.7])
F2 ([0.4, 0.5] , [0.4, 0.6]) ([0.4, 0.5] , [0.3, 0.6]) ([0.2, 0.5] , [0.2, 0.6])
F3 ([0.2, 0.6] , [0.3, 0.7]) ([0.3, 0.6] , [0.2, 0.7]) ([0.4, 0.4] , [0.2, 0.8])
F4 ([0.3, 0.5] , [0.4, 0.8]) ([0.2, 0.6] , [0.2, 0.7]) ([0.3, 0.5] , [0.5, 0.8])
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Step 2: Computeλj (j = 1, 2, 3)

λ1 = ([0.299, 0.558] , [0.342, 0.692])
λ2 = ([0.303, 0.582] , [0.232, 0.656])
λ3 = ([0.319, 0.503] , [0.309, 0.745])

Step 3: in this step we can find the scores ofλj (j = 1, 2, 3, 4)

S (λ1) = −0.097, S (λ2) = −0.026
S (λ3) = −0.147,

Step 4: Arrange the scores of the all alternatives in the form of descending order and
select that alternative, which has the highest score function. Sinceλ2 > λ1 > λ3. Hence
S2 > S1 > S3.. ThusS2 is the best option for the customer.

5. CONCLUSION

n this article, we have introduced the notion of IVPFWA operator, IVPFOWA operator,
and IVPFHA operator. We have also discussed some of their basic properties and give
some examples to develop the proposed operators. At the last we presented an application
of these proposed operators.
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