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Abstract. In the current work, the Molodtsov’s idea of soft sets [14] is
applied on the theory of BCK-modules [1]. The aim here, is to introduce
the notion of soft BCK-modules and discuss its basic properties. In this
regard, three theorems for soft BCK-modules isomorphism are developed.
The notion of softX —exactness of BCK-modules is introduced and its
relation with softX —isomorphism is studied. A transitivity between two
soft X —exact sequences is also established.
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1. INTRODUCTION

The limitations of classical methods in dealing with uncertainties in economics, en-
vironmental sciences, engineering models and other fields persuade researchers to think
otherwise. This result in development of fuzzy sets [20], rough set theory [16], probability
theory, and other mathematical tools. However, these methods inherited their own difficul-
ties and limitations. Consequently, in [14], Molodtsov proposed a new approach to deal
with these difficulties, which is referred as the soft set theory. The idea attracted many
researchers and the theory developed rapidly. A detailed theoretical study of soft sets and
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their implementation on decision making is discussed by Maji et al. in [12]. The applica-
tion of soft sets is not limited to these areas only but it also motivated people working in
more abstract areas of mathematics to apply soft sets in their areas. In this regard, Aktas
et al. [3], introduced the notion of soft groups and developed its basic theory. Jun. applied
soft set theory to BCK/BCl-algebras in [10]. Soft rings were introduced by Acar et al. in
[2]. Atagiin and Sezgin, discussed soft substructures of rings, fields and modules in [4].
For other developments in soft set theory, we refer [15, 18, 19].

This paper is intended to apply the theory of soft sets on BCK-modules and thereby
introducing the notion of soft BCK-modules. A BCK-module was presented in [1] as an
action of a BCK-algebra on an abelian group. It has been explored by many researchers for
various ventures (see [5, 6, 7, 11, 17]).

The paper begins with the preliminary concepts from the theories of soft sets, BCK-
algebras and BCK-modules. The presentation of the notion soft BCK-module and devel-
oping its basic theory is one of the prime motives of the current work. Several examples
and results have been presented in this regard. The three isomorphism theorems of soft
BCK-modules are established. Finally, soft exactness of BCK-modules is introduced and a
relationship between soff —exactness and solf —isomorphism aswell as transitivity of
soft X —exact sequences of BCK-modules is established.

2. PRELIMINARIES

In this section, some preliminaries from the soft set theory, BCK-algebras and BCK-
modules are included. All through the sectidn,is referred an initial universel is a
parameters setd C F andP(U) is the power set of/.

Definition 2.1. [13] (Soft Set)
A pair (F, A) is called a soft se{—set) overU, whereF is a mapping given by’ : A —
P(U).
Definition 2.2. [13] Let (Fy, A1) and (Fy, Ay) are S—sets overlJ, (F1, A;) is called a
soft subset of F, As) if
@i): A Cc Ay and
(i): Ve € Ay, Fi(e) and F»(¢e) are identical approximations.
The above relation is denoted b¥}, A;) c (Fy, As). Similarly, the notatior(F, A;) S
(F», Ay) denotes thatFy, A;) is a soft superset s, As).
AlSO,(Fl,Al) = (FQ,AQ), if (Fl,Al) C (FQ,AQ) and (FQ,AQ) C (Fl,Al).
Definition 2.3. [13] Let(Fy, A1) and (Fy, As) be S—sets ovell
(1) The intersection ofFy, A;) and(F», A) is theS—set(F, A), whered = A;NA,
andVe € A, F(e) = Fy(c) () Fa(e). This relationship is denoted Ky, A1) N

(£, Ag) = (I, A). o 5
(2) The union of Fy, A;) and (F, A,) is theS—set(F, A), whereA = A; U A, and
Vee A
- Fl(E) e e A \AQ
F(&'): FQ(S) SEAQ\Al
Fl(S)UF2(6) e€ AN A,
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This relationship is denoted Ky, 4,) U (Fy, Ag) = (I%, /:1).

Example 2.4. LetU = {1, 2,3} and E =Set of Colours. Suppose that = {red, green,
blue} and A, = {green,blue} are two subsets of. DefineF; : Ay — P(U) and
FQAQ*)P(U)by

{1} ife=red :
B e [ {1,3} ife=green
mo- i, g o= {3 g

Then(Fy, A1) and (F3, A2) are aS—sets ovelU. Here,A> C Ay, but F»(e) is not equal
to Fi (e) for all € in A, therefore(F», A3) is notS—subset of F1, 4y ).

Also, (Fy, Ay) N (Fy, Ag) = (F, A) and

{1} if a = green
Fe) = {{23} ifazzlue

Similarly, (F1, Al) (Fy, Ay) = and

(F. A)
{1} if a=red
{1,2,3} if a=green
{123} if a = blue

Next we define a BCK-algebra. Itis an important class of logical structure introduced as
a natural generalization of propositional calculus by K. Iseki and S. Tanaka in [9]. Several
researchers have been investigating it since then.

Definition 2.5. [9] (BCK-Algebra)
A BCK-algebra is an algebraic systefiX, x, 0) that satisfies the following axioms for all
xr1,T2,T3 € X:

Q) ((xl * o) * (T1 * :173)) * (x3 % x9) =0
) (ml * (a1 * 12)) *29 =0

(3) T1 *xT1 = 0

(4) 0xxz1 =0

(5) z1 *xx2 = 0,22 x 27 = 0 impliesz; = x»
(6) T * X9 =O|ﬁ:$1 SJUQ

It can be noted thatX, <) forms a poset. In sequel, the BCK-algelftd, x,0) is
denoted byX. If 91 € X such thatr; < 1 forall z; in X, thenX is called boundedX
is called commutative ift; A o = z2 A 21 holds for allz1, 22 in X, wherez; A 25 =
x9 * (x2 x 21). We refer [8, 9] for undefined terms and more details of BCK-algebras.
Here, we present some examples of BCK-algebra.

Example 2.6. Let X; = {0,1,2,3,4} and “x” be a binary operation onX; defined

aszy x xo = xp — min(zy, ) Yoy, ze € X;. Then it can be seen from Table 1 that
(X1,%,0) forms a commutative BCK-algebra. Indeed, one can extend this example by
taking X; = {0,1,...,n} for any finiten € N.

Example 2.7. Let A be a non-empty set anbl(A) be its power set. The(WP(A),\,?)
forms a bounded commutative and implicative BCK-algebra, where the binary operation
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TABLE 1. Cayley table for BCK-algebraX, , 0)

N
=

“\" is the usual set difference. Indeed, £ = {a;,a2}, thenP(A) = {0,5; =
{a1}, 52 = {az}, A}. ltcan be seen from Table 2 th@®(A), \, #) forms aBC K —algebra.

N[0 S S, A
oo 0 0 0
S|S0 S0
Sy | Sy So 0 0
Al A Sy S 0

TABLE 2. cayley table for BCK-algebraP (A), \, 0)

The next in the sequel, is the notion of a BCK-module. It was introduced as an action
of BCK-algebras on an abelian group by H.A.S. Abujabal, M. Aslam and A.B. Thaheem
in [1]. Interests have been shown by several researchers in the development of its theory.
Some of the developments can be seenin [5, 11, 17].

Definition 2.8. [1] (BCK-Module)
Let (M,+) be an abelian group and be a BCK-algebra. Thed/ is said to be an
X —module if there exists a mappirig, m) — axm from X x M — M such that for all
x1,x9 € X andm,my, mo € M, following conditions are satisfied:

(1) (z1 A zo)m = x1(x2m)

(2) :zrl(ml + mg) =x1mq + 1Mo

(3) 0om=0

(4) 1m = m, if X is bounded.
One can define a righ¥ —module in a similar way. In this paper, ai—moduleM,, is use
to refer a left BCK-module.

Some examples of BCK-modules are presented here.

Example 2.9. [1] A BCK-algebra(X, *,0) which is bounded and implicative forms an
X —module over itself.

Example 2.10. Let (P(A), \,?) be the BCK-algebra defined in Example 2.7. Then the
setM; = {0, S} forms an abelian group w.r.t. the additiont” defined bym; + my =
(m1\ma)U(mae\my) VY mq, mqy € M. Define an action oP(A) on My byzm = xNm
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T+ 10 S
B
SilS 0

TABLE 3. cayley table of groug M1 , +)

forall z € P(A) & m € M;. Thenitis easy to see that; forms anP(A)—module.
Table 4 summarize the action B{ A) on M.

nNio S S, A
0o 0 0 0
S0 S 0 S

TABLE 4. Actionof P(A)on My

Example 2.11. Let (X1, *,0) be the BCK-algebra discussed in Example 2.6 ahd=
{0,1} C X;. Define an operation of addition+" on N; asx; + x5 = max(z * X2, Ta *
x1) V1,22 € Ny. Theniitis easy to see tha@W;, +) forms an abelian group.

Now if an action ofX is defined onV; by xn = min(xz,n) Va € X;,n € Ny, then Table
5 shows thatV; forms anX; —module.

0
1
TABLE 5. Action of X; on Ny

o OO
— Ol N

1 3 4
0 0 0
1 1 1

A subgroupN of an X—module M is called anX —submodule ofM if N is also
an X —module. LetM;, My be X—modules. A mapping’ : M; — M, is called an
X —homomorphism if for anye € X andm,,my € M; the following hold: 1)f(m; +
ms) = f(m1) + f(m2), 2) f(xm1) = zf(mq). An X—homomorphismyf : M; — M,
which is both one to one as well as onto is calledXrisomorphism. Theer f and
Im f, both in usual sense, are submoduled/ffand M, respectively (see [17]). IN is
an X —submodule of anX —module M, then quotient groug//N forms anX —module
called the factorX —module w.r.t the scalar multiplicatiofx:, m + N) — am + N Vz €
X,me M fromX x (M/N) — M/N. (see for details and developments [1, 5, 6, 7, 11,
17)).

3. SOFT BCK-M ODULES

In this section, the notion of Soft BCK-Modules is introduced. Some related examples
will be discussed. The notion of sof —subomdules will be introduced and discussed.
The necessary conditions on summation, intersection and union of an arbitrary family of
soft X —submodules to become a saft-subomdule will also be established.
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Definition 3.1. (Soft BCK-Module)

AnS—set(F, A) over anX —module) is said to be a sof —module 6 X —module) over
M, ifforall e € A, F(e) is an X —submodule ofi/. The collection of allS X —modules
over anX —module)M is denoted bys X (M)

Some examples of soft BCK-modules are produced here.

Example 3.2. Let M; be aP(A)—module defined in Example 2.10 aBd C P(A) = E.
DefineG1 : B — P(Ml) andGQ : B — P(Ml) by

_J %} if e M _J % if e 2 M
Gale) = { 0,4 ifech @O 0.4y ifeom
Then(G,, B1) and (G2, B;) are softP(A)—modules ovei; .
Example 3.3. Let N; be anX; —module defined in Example 2.11 aAd = {red, green}

and Ay = {green,blue} be two subsets of the sBtof all colours. Definef; : A; —
P(Nl) andFy : Ay — P(Nl) by
[ {0} ife=red [ {0}  ife=green
Fl(s){ (0.1} ife=green 2E =0 {01} if e = blue

Then(Fy, A;) and (F», As) are softX; —modules ovetV;. Similarly, if A3 = X in
Example 2.11, thef; : A3 — P(N;) defined below forms a sak; —module overV;.

_ {0} ife¢ N
Fy(e) = { {0,1} ifec Ny
Proposition 3.4. Let (Fy, A;) and(F», A2) be inSX (M). Then
(1) (F1, A1) N (Fy, Ag) isin SX (M).
(2) (F1, A1) U (Fy, Ag) isin SX (M), providedA; N Ay = 0.

Proof. It is clear from Definition 2.3 that 7y, A;) N (Fy, Ay) = (F, A) is a S—set,
where,A = A; N Ay andVe € A, F(e) = Fy(e)()Fa(e). Also from the fact that
intersection ofX —submodules is again aki—submodule (see [1]),F}, A1) A (Fz, As)
is aSX—moduleM. o
Similarly, if A, N Ay = 0, then from Definition 2.3(F,, A;) U (Fy, Ay) = (F, A)
is a S—set such thatF'(c) either equalsFy(¢) or Fy(e) forall e € A} — Ay ore €

Ay — A, respectively. Sincé’; (¢) andF; () are X —submodules of\/, thereforeF (¢) is
an X —submodules of\/. O

Definition 3.5. Let(Fy, A;) and(F, A2) be SX—modules over aX —module)M . Then
(F1, A1) + (Fa, Ag) is defined agS, A x B), whereS(g,0) = Fi(e) + F2(0) V(e,d) €
Al X AQ.

Proposition 3.6. Let (Fy, A1) and (F,, A2) be inSX (M). Then(Fy, Ay) + (Fa, Ag) is
also belongs t& X (M).

Proof. This can be easily obtained from the fact that sunXefsubmodules is again an
X —submodule of\/ (see [1]). O
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Definition 3.7. Let (F3, A1) and (Fy, As) be two SX—modules overX —modulesM;
and M, respectively. Then we defif€;, A1) x (Fz, A2) = (P, A1 x Ay) asP(e,d) =
Fl(E) X Fg((S) for all (6,6) € Ay x As.

Proposition 3.8. Let (F;, A1) and (F», A3) be twoSX —modules ovetX —modulesM;
and M- respectively. ThefFy, A;) x (Fa, As) is a SX—module over theX —module
M1 X Mz.

Proof. This is clear from the fact that the cartesian product of fvemodules is also an
X —module (see[1]). O

It was shown in [1] that direct product of tw —moduels is isomorphic to the cartesian
product. Thereforep can be used instead ef in the above proposition.

Definition 3.9. Let(F}, A;) and (F3, A2) be SX —modules over ak —module)M . Then
(Fy, As) is a softX —submodule § X —submodule) of F;, A,) if

(1) A, C A; and
(2) FQ(&) < Fl(E), Ve € A2.

This is denoted by, Ao) < (Fy, Ay).

Proposition 3.10. Let (Fy, A;) and (F», A3) be SX—modules over arX —module M
such thatd, C A;. Then(Fy, As) < (Fy, Ay) if Fy(e) C Fi(e), Ve € As.

Proof. Itis simple to prove. d

Proposition 3.11. Let (F, A) be aSX —module over anrX —module)M, and consider the
nonempty famil{ (G;, B;)|i € I} of softX —submodules ofF’, A). Then

1) (G, B) < (F, A).

i€l

) ﬁI(Gi, B;) < (F, A).
i€
() U(G:,Bi) < (F,A),if B;nB; =0 Vi,j €.
i€l
Proof. It can be seen from Propositions 3.4, 3.6 and 3.10. O

Proposition 3.12. Let(Fy, A;) and(Fy, A3) be tWOSX—quuIes over aX —moduleM
such that(f3, A>) be softX —submodule of F1, A;). LetM be anX—module andf :
M — M is an X —homomorphism. Thefy (F1), A1) and(f(Fz), A2) are SX —modules

over M, and(f(Fy), A2) < (f(F1), A1)

Proof. Sincef : M — M is an X —homomorphism, therefore/,(F} (¢)) and f(F»(9))
are SX —modules ofM Ve € A; andV § € A,. This implies that botl{ f (1), 4;) and
(f(Fy), Ay) areSX —modules oved . If (Fy, Ay) < (F1, A1), then indeed it follows that
F»(5) and f(Fz(0)) are theX —submodules of? () and f(Fy(d)) Vd € A,, respectively.

Therefore, by Definition 3.9, we immediately conclude thatFs), As) < (f(F1), A1).
O



74 Agha Kashif, Humera Bashir and Zohaib Zahid

4. | SOMORPHISM THEOREM OF SOFT BCK-M ODULES

In this section, we introduce the notion of sadft-homorphisms and sofX —isomo-
rphisms ofX —modules and establish the isomorphism theoremS &r-modules.

Definition 4.1. (Soft X —Hommorphism)
Let (Fl,Al) € SX(Ml) and (FQ,AQ) € SX(MQ), ¢ My — MQ, &6 : A — Ay be
any two mappings. Thei, 0) is said to be a sofK —homomorphism$X —homomorphi-
sm) if it satisfies the following conditions:

(1) ¢ : My — Ms is an X —homomorphism;

(2) 6: Ay — A, is surjective;

() ¢(Fi(e)) = F2(0(¢)), Ve € Ay
In this case, we sayF;, A;) is soft X —homomorphic tq F», A2), and it is denoted by
(F1, Ay) ~ (Fy, As).

In this definition, if¢ is an X —isomorphism and is a bijection, then we say thép, )
is a softX —isomorphism and thdtF;, A, ) is soft X —isomorphic to( F, As), denoted by
(F1,Ar) = (Fy, Ag).

Proposition 4.2. Let (F1, A1) be aSX—module over anX —moduleM; and consider
the S—set(Fy, Ay) over anX —moduleMs. If (Fy, A;) ~ (F», Ay) as anS—set, then
(F27A2) S SX(MQ)

Proof. Let(¢,0) : (F1, A1) — (F», Ay) be anX—homomorphism. Nowy § € A, 3 ¢ €
A; such thayy(e) = 6. Therefore F»(§) = F5(g(¢)) = f(Fi(e)) is an X —submodule of
the moduleM,. This implies(Fs, A2) € SX(Mo). O

Proposition 4.3. Let(Fy, A1) € SX (M) and(Fa, Ag) € SX(Ms). If (¢,0) : (F1, A1) —
(F», Ay) is anSX —homomorphism antF’, A') < (Fy, Ay), then(Fy, 0(A")) < (Fy, Ay).

Proof. Indeed clear, since for al € 6(A’) C As, Fy(e) is a soft X —submodule of
M. O

We conclude this section by presenting the isomorphism theore$i& efmodules.

Theorem 4.4. (1% Iso-Theorem of S X —modules)
Let (Fl,Al) € SX(Ml) and (FQ,AQ) € SX(MQ) If (¢,9) : (Fl,Al) — (FQ,AQ) is
an SX —homomorphism anller ¢ C F'(¢) for all e € A;. Then the following conditions
hold:

(1) If I(e) = F(e)/ker ¢, J(x) = ¢(F(g)),e € Ay, then(I, A;) = (J, Ay).

(2) (I, A1) = (Fy, Ay), providedd is a bijection.

Proof. (1) From [1],ker ¢ is an X —submodule of\/; and therefore)M; / ker ¢ forms an
X —module. Also, sinc&er ¢ is anX —submodule of (), therefore F; (¢) / ker ¢ is also
an X —module, for alle € A;. Indeed,F;(e)/ ker ¢ is an X —submodule of\; / ker ¢.

This implies that(, A;) is aSX —module overM; / ker ¢. Now for alle € Ay, itis easy
to see that/ (¢) = ¢(F1(g)) = F2(0(¢g)) is anX —submodule of\/. Therefore(J, A;) is

aSX—module overMs.

Define¢ : M;/ker¢p — My by ¢(m + kerp) = ¢(m); for all m € M;. Then
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¢ : My /ker ¢ — M, is anX —isomorphism.

Letip : A1 — A; defined byig(¢) = ¢ be an identity mapping. Thei is indeed a
bijection. Now, we have)(I(x)) = ¢(Fi(c)/ ker ¢) = ¢p(Fi(e)) = J(g) = J(ia(c)).
Consequently(¢, ig) is a softX —isomorphismi.e(I, A;) = (J, A).

(2) Defineg : M;/ker ¢ — My by ¢(m + ker ¢) = ¢(m); for all m € M;. Then
¢ is an X —isomorphism fromM; / ker ¢ to M,. Sinced is a bijection andp(I(s)) =
(F(g)/ ker ¢) = ¢(F(g)) = H(0(¢)), we conclude thatl, A,) = (Fy, As). O

Theorem 4.5. Let(F, A) be inSX (M). If (Fy, A;) and(F», A3) are SX —submodules of
(F, A), then(Pl,Al) ~ (QlaAl) and(PQ,Ag) ~ (QQ,AQ), WherePl(e) = Fl(e)/(Mlﬂ
Ms),Q1(e) = (Fi(e) + M2)/Ms, Py(e) = Fa(e)/(My N Ma),Q2(c) = (Fz(e) +
Ml)/Ml, M, = ﬂ€6A1 Fl(E) and M, = ﬂ€€A2 FQ(E).

Proof. Let us denoteK = (.4, Fi(e)) and L = (U.cq4, Fo(e)). Then, M, =
N.ca, Fi(e) is an X —submodule ofM. It is clear thatM; is also anX —submodule
K so thatM; N M, is an X —submodule of” and hence(P;, F;) is a.SX —module over
K/(My N M,). ltis trivial that (@, F1) is anSX —module ovel( K + My)/Mo.

Now, define a mapping : K/(MiNMs3) — (K+Ms) /M by f(k+(MiNMz)) = k+M,
andig : Fy — Fy byig(e) = . Thenf from K/(M;, N M) to (K + Ms)/Ms is an
X —homomorphism, where; is a bijection andf(Pi(¢)) = f(Fi(e)/(M1 N My)) =
(Fl(E) + MQ)/MQ = Ql(é:) = Ql(Zd(ff)) This shows thaJtPl, Al) ~ (Qh Al) .

(P, A3) ~ (Q2, A3) can be proved similarly. O

Theorem 4.6. (2" Iso-Theorem of S X —modules)

Let (F, A) be inSX(M). If (Fy, A1) and (Fy, A2) are SX —submodules ofF', A) such
that Fy(e) = M, forall e € Ay, then(Py, A1) = (Q1, A1), whereP, (¢) = Fi(e) /(M1 N
My), Qi(e) = (Fi(e) + Mz)/Mz, My = (.4, Fa(e).

Proof. Indeed, if we replacdl = M, = Fi(¢) for alle € A; in Theorem 4.5, the proof
of the theorem can be similarly furnished. O

Theorem 4.7. (3"¢ Iso-Theorem of S X —modules)
Let(F, A) be inSX(M). If (Fy, A1) and (F», Ay) are SX —submodules ofF, A), such
thatA; N Ay # @ and Fy(e) C Fi(e)Ve € A1 N Ay, then

(Pa Al N AQ) = (Q?Al N A2)7

where,P(e) = (F()/Ms)/(M:/Ms), Q(z) = F(e)/M; with M; = (Am ) )Fl(s)
and M, = m FQ(E). Y
e€(A1NA3)

Proof. Itis indeed clear that/; andM, are X —submodules ol, andM,; is anX —subm-
odule ofM;. Therefore(M /Ms)/ (M, /M,) forms anX —module (from [1]) and P, A1 N

As) is a softX —submodule over it. Also(@, A1 N As) is a SX—module overM /M;.

Now define the mapping : (M /Ms)/(M,/Ms) — M /M, by

f((m+ Ms) 4+ (My/My)) =m+ M, Vme M
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and an identity mapping; : A; N As — A; N As by ig(e) = . One can see thgtis an
X —isomorphism therefore

f(P(e)) = f((F(e)/Mz)/(My/Ms)) = F(e) /My = Q(ia(€))-
Hence, from Definition 4.1(P, A; N As) = (Q, A1 N As). O

5. EXACTNESS OF SOFT BCK-M ODULES

In the current section, all nonempty sets are considered-asiodules.

Definition 5.1. (Soft X —Exactness)
Let(Fy, A1), (Fs, A2) and(F3, Ag) be inSX (M), SX (Ms) and SX (Ms), respectively.
Then a sequenc@, A;) (#1,6,) (Fy, Ay) ($2:52) (F3, A3) of SX—homomorphisms is
said to be soffY —exact X —exact) at(F», As), if the following conditions are satisfied:

Q) M, 2, My 22, M3 is exact.

(2) Ay LR Ay LR As is exact.
Proposition 5.2. Let(F1, A1), and (F, A2) be in SX (M), and SX (M,), respectively.
If (Fp,Ay) == (41.6,) (Fy, As) — 0. is SX —exact, then(¢1, ;) is SX —homomorphism.
In particular, if 0 — (F;, 4;) (¢1,6,) (Fp, Ay) — 0is SX —exact, then¢1,6,) is a
S X —isomorphism.
Proof. From Definition 5.1, it follows that\/; LN My 22, 0 and Al = Ay b,

0 are X —exact. Therefore(¢,,6,) are X —epimorphisms, which |mpI|e(s¢1,91) is an
X —homomorphism.

In particular, if0 — (Fl,Al) (61.61) (Fp, Ay) — 0 is SX exact, then again from

Definition 5.1,0 — M; N Moy N 0and0 — A, b, Ay 1, 0 areX —exact. This
implies that(¢;, 6, ) areX —isomorphisms, and hen¢é; , 6, ) is aSX —isomorphism. O

Definition 5.3. Let M = 0 and A = 0, then(F;, A;) = 0. We call(F}, A;) is a zero-
SX —module.

Proposition 5.4. Let(F, Ay), (F2, Az) and(Fs, As) be inSX (M), SX (Mz) andSX (Ms),

respectively. If(F, A) 2% (Fy, A9) 2% (B, Ay) is SX—exact with (¢1,61)

X —epimorphism and¢-, 62) X —monomorphism, thef¥s, A,) is a zero$ X —module.

Proof. Indeed in this case, we have the following diagram.
A17°91dF1AQ’I“@QdFQAg,ngMlT(blM27"¢2M3 (5 1)

The X —exactness ofd;’s and M;’s and the fact that¢;, ¢,) are X —epimorphism and
(¢2, 62) are X —monomorphism, forced, = 0 = Ms. This completes the proof. ]

Here we recall from [1], that ifV is an X —submodule of atk —module)M, thenM /N
forms anX —module called quetienX —module.
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Theorem 5.5. Let (F1, A;) and (F», A3) be in twoSX (M) and SX (M,), respectively.
For anyM1 - MQ,Al C Ay andM1 C FQ( )WhereE € A,. If (F17A1) (¢1’91 (FQ,AQ)

is SX —homomorphism, thet — (Fy, A;) —= (¢1.61) (Fp, Ap) =5 (¢2.0) (I,A3/A1) — 0is

SX—exact, wherd (¢ + A1) = Fa(e) = M forall e € A,.

Proof. Since for alle € Ay, My < Fy(e) < Mo, therefore Fy(e) /My < My/M; Ve €
As. Next, we define in a natural wa¥ —homomorphismsps : My — My/M; and
03 : Ay — As /A by;

¢2(m2) =mo + My and 02(&2) =as+ A1 Vmg € My & as € As.

It is clear that in this case,

0 — My 2% My 22 My /My — 0
and

0—>A1 i>142£>142/141—>0

are X —exact.
Finally, we see thapy (Fz(e)) = Fa(e) + My = I(e + A1) = I(02(¢)) forall e € As.
This implies

1,01 2,02
0 — (P, Ar) ‘%) (B, Ap) %) (1, 4,/41) —
is SX —exact O

We conclude the paper with the following result, discussing the transitivity of two
S X —exact sequences.

Theorem 5.6. Let (F;, A;) be aSX—module over BCK-module¥; for i = 1,2, 3,4, 5,
respectively. If

<f>1 01)

(¢p2,02
0 — (Fy, Ay) ‘%) (), Ay) %) (B, A5) —

and
0 — (Fy, Ag) %) (1, 4y) 2%

are SX —exact. Then

Fs5, As) —

(¢s¢279392

¢1,91 04,0
0— (F1,4,) — ( (Fy, As) (Fy, Ay) — ($0.0) (F5,A45) — 0

is SX —exact.

Proof. We have from the hypothesis of the theorem

0— My 25 My 22 My — 0
and

O—>Mgﬁ>M4&>M5—>O
areS X —exact. This clearly implies that

@3 ¢72

0—>M1 M2 M4 Mr—>0
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is SX —exact.
Similarly, from the hypothesis

0 036 [%
0—>A1—1>A23—2>A4—4>A5—>0

is SX —exact.
Sincegy(Fa(e)) = Fsb2(c)) forall e € Ay andgs(Fs(e)) = Fubs(c)) foralle € Az. We
have(bgd)g(FQ(E)) = QI)3(F392(€))) = F49392(€)) foralle € As. This |mp||es

0 — (Fy, Ay) %) (B, Ag) 2259 (g a0) D% (B, A5) — 0

is SX —exact. O
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