Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 49(2)(2017) pp. 1-11

(n, k)-Multiple Factorials with Applications

Abdur Rehman
Department of Mathematics,
University of sargodha, Sargodha, Pakistan,
Email: abdurrehman2007 @hotmail.com

Shahid Mubeen
Department of Mathematics,
University of sargodha, Sargodha, Pakistan,
Email: smjhanda@gmail.com

Muhammad Ozair Ahmad
Department of Mathematics,
University of Lahore, Lahore, Pakistan,
Email: drchadury@yahoo.com

Sajid ur Rehman Siddiqi
Department of Mathematics,
Chenab College of Advance Studies, Faisalabad, Pakistan,
Email: sajid.pcs.fsd@gmail.com

Received: 24 October, 2016 / Accepted: 26 January, 2017 / Published online: 16 May,
2017)

Abstract. In this paper, we definén, k) triple factorial and extend the
definition up to a finite number of multi-factorials of the said type. We ex-
press the Pochhammer’s symbol and hypergeometric functions involving
these factorials. Also, we express some elementary functions in the form
of (n, k)!,. satisfying the classical results.

Key Words: AMS (MOS) Subject Classification Codes: 35529; 40S70; 25U09

1. INTRODUCTION

The factorial notatiorf!) was introduced by Christian Kramp in 1808 for positive inte-
gers and is frequently used to compute the binomial coefficients. The relationship between
classical gamma function and ordinary factorial'is:) = (n — 1)!,n € N. Also, gamma
function is defined for all real numbers except 0, —1, -2, - - - - Afterwards, the German
mathematician Leo Pochhammer defined the shifted (rising) factorial, which was named as
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Pochhammer’s symbol and is given by (see [1, 14])

() = ala+1)(a+2)..(a+n—-1),neN
"1, n=0,a#0.

It follows that(1),, = n! and very simply, fom, m € N, we can derive the expression for
the rising factorial of a negative integer as

(=n)m = {((:ll);:;b!!’ lsms=n

0, m>n+1.
Also, Kono [8], gave the definition of double, triple and multi factorials as
nn—2)(n—4)---6-4-2 if niseven
nll=qnn—-2)(n—4)---5-3-1 if nisodd
1, fn=0,-1 ; (—n)ll=00,neN-{0,1},

nn—3)(n—=6)---9-6-3 if nis of the form3n

Al — nn—3)(n—=6)---8-5-2 if nisof the form(3n — 1) (1.1)
nn—3)(n—=6)---7-4-1 if nisof the form(3n — 2)
1, ifn=0,-1,-2 (=) =o00,n € N-{0,1,2}

and!!! - - .I(r-times), denoted by;., is given by

n(n—r)(n—2r)---3r-2r-r if nis of the formrm for somem
nn—r)(n—2r)---(2r—1)-(r—1) if nislike (rm — 1) for somem
nn—r)(n—2r)---(2r —2) - (r —2) if nislike (rm — 2) for somem

n(n —r)(n—2r)---[(r = (r—1)],if nislike (rm — (r — 1)) for somem
1, fn=0,-1,-2,---,(r—1)

i (=rn)l, =00, neN.
(1.2)
Diaz and Pariguan [3] introduced the generalized garhrfction as
k™ (nk)*—1

o) = tim ORI o s e\ ko
and also gave the properties of said function. Thes one parameter deformation of the
classical gamma function such tHagt — I ask — 1. TheI'; is based on the repeated
appearance of the expression of the form

ala+k)(a+2k)(a+3k)...(a+ (n—1)k). (1.3)

The function of the variable: given by the statemerft.3), denoted by(«),, , is called
the Pochhammeét-symbol. Thus, we have

(@) = ala+k)(a+2k)(a+3k)...(a+(n—1)k),neN, k>0
k=1, n=0,a0.
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We obtain the usual Pochhammer’s symgo),, by takingk = 1 which is given by

(@) = ala+ D) (a+2)(a+3)...(a+(n—1)),neN,
" l1, n=0,a#0.
. The authors [2, 4] have discussed some properties involving special functions. Also, the

researchers [5-6, 9-12] have worked on the generalized gamma, betafanction and
discussed the following properties:

Ip(ak) = k7 'T(a), k > 0,a € R,
Tr(nk) =k""Yn—-1),k>0,ncN,

2nn)
Tp(k) =1,

(1.4)

Tw((2n + 1)5) =k

5 ,k>0,neN,

and -
Th(x) = k%‘ll“(g).
Recently, Mubeen and Rehman [13] defined the factorial function in termdssgimbol,
called(n, k)-factorial as
(n,k)! = nk(nk — k)(nk — 2k)(nk — 3k)---3k -2k -k ,ne N, k>0
and simplifying the right hand side of the above equation, we get a link bet(vedn!
and classical gamma function. Thus we have
kNl =k"n(n—1)(n—-2)(n—3)---3-2-1=k"n! =k"T'(n+1). (1.5)
Using the above definition dfz, k)!, they introduced the following properties of the said
factorial
(nk, k)! = k™ (nk)!,
(n+a,k)!'=k"(n+a)!l,a eR,n €N,
[(n+b)k, k]l =k"[(n+D)k]!,beR, n €N,
and
0,k)!=1 , (—n,k)!=00,neNk>0
and also gave some results involving the ganirfanction in terms ofn, k)-factorial as
! %1
Ti(x) = lim (RO

n—00 Jj)n,k

 k>0,2€C\kZ,

Lr(nk)=(n—-1k)! k>0,neN,
|
Tr((2n + 1);) = m\/j k>0,neN,
and
(n, k' =Tg(nk+k)=k"T'(n+1), k>0,neN.
Remarks: Takingk = 1, we see thafn, 1) = n! and all the above results can be converted
into their classical representations.
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Mubeen and Rehman [13] also gave the definitiofrofk)!!- If n is even andh € N, &k >
0, then

(2n, k) = 2nk(2nk — 2k)(2nk — 4k) - - - 4k - 2k

=k"2n(2n—2)---4-2=Kk"(2n)!!
and ifn is odd (say) of the forman — 1, k > 0, then
(2n — 1,k)!' = (2nk — k)(2nk — 3k)-- -3k - k

=k"2n—1)---3-1=k"(2n — 1)
and
(n,k)!'=1,forn=0,-1 ; (=2n,k)!! =00, neN.

They proved the following properties involvin@, k)-double factorial, classical gamma
functionI'(x) and gamma-functionT' ()

(n,kE)!!' x (n — 1, k)N = (n,k)!,

(2n, k)l = E"2"n! = k™ (2n)!,

L(n+ 3 Ti(nk + %
(2 — 1,k = oo L0 2) g Tkl ¥ 5),
I'(3) I'e(3)

2z
(2n —1,k)!

and
[-2n+1),kl=(-1)""

2. MAIN RESULTS

Here, we introducén, k)!!! and extend the definition up to a finite number of higher
order factorials. Also, we prove some results involving ganisfanction and classical
gamma function using the definitions @f, k)-triple or higher order such factorials.
Definition (2.1): Forn € N, k > 0, (n, k)-triple factorial is defined by

nk(nk — 3k)(nk — 6k) --- 9k - 6k - 3k if 3 dividesn
nk(nk — 3k)(nk — 6k) - -- 8k - 5k - 2k if 3 dividesn + 1

(n, k)M = . .
nk(nk — 3k)(nk — 6k)--- Tk - 4k - k  if 3 dividesn + 2
1, fn=0-1,-2 ; (=-3n)l=00,neN.
Using the relation (1.1), the above definition gives the results as
Bn, k)M =k"Bn—3)(3n—6)---9-6-3 = k" (3n)!!l = k"3"nl, (1.6)
Bn—1, k) =k"3n—-1)3n—4)3n—7)---8-5-2=Kk"(Bn -1 (1.7)
and
(3n—2,k) =k"(3n —2)(3n —5)(3n —8)---7-4-1=k"(3n —2)!I.  (1.8)

From the above definition, we observe that
(LE)M =K1 =k, (2, k)N = k21 = 2k, (3, k) = k3N = 3k,
(4, )N = 4k .k, (5, k)I!! = Bk.2k, (6, k)l = 6k.3k,
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(7, k)N = Tk Ak .k, (8, k)l = 8k.5k.2k, (9, k)11 = 9k.6k.3K ...
Lemma (2.2): If n denotes the natural number aki¢t) is the classical gamma function,
then the following results hold (see [8]).
1) 2 x (n =DM x (n—2)N =nl!
(2) (3n)1 =37 L0ES) — 3op(n 4 1) = 37

(%)
(3) (3n— 1) = 3n1“”t))
(4) (3n - >"' 3”“’;“
Ly

Theorem (2.3):Forn, e N, k > 0, classical gamma functiof(z) and gamma-function
Ik (z) , the following expressions involving, k)-triple factorial hold

0): (n, )M x (n—1,k)M x (n—2,k)MN = (n,k)!

sy - m— gn nF(IL+ ) n Tr(nk+2k)

@i): Bn—1,k)N = k"3 D) =3 7”(%;

Ip(nk+%)
Tr(%)

(iii): (3n—2,k)M = k"3 F(%f =3

(iv): [=(Bn+ 1), kM x [=(3n + 2), k! = G mm @

(V) (3Bn, k)N = k"3"n! = k™ (3n)N!-
Proof: We give the proofs of the above properties by using the definitidn 0f)!!! along

with the lemma (2.2).
(). Multiplying the equations (1.6), (1.7) and (1.8), we see that

(Bn, k)M x (3n — 1L, k)M x (3n — 2, k)N = k" (3n)M x k™ (3n — )M x k™ (3n — 2)IN!
and by the lemma (2.2(1)), we get
(3n, K)1 x (3n — 1, k)1 x (3n — 2, k) = k" (3n)!-

Replacing3n by n and using the relation (1.5), we get the required proof.
(i). From the equation (1.7), we ha{@n — 1, k)!!! = £(3n — 1)!!! and use of the lemma
(2.2(3)) gives
I(n+ 2)

(%)
and application of the relatiofy, (z) = k* ~'T'(%) provides the second part of the required
result.

(iii). Similar result from the relations (1.8 (x) = Iﬁ*ll“(%) and lemma (2.2(4)).
(iv). From the equations (1.7), (1.8) and the theorem (2.3(i)), we observe that
Bn, k)1 (3n,k)!

— 1 k) 2 B = (3n—1, k) — 2 k) -
(Bn — 1, k)M x (3n — 2,k) (B3n—1,k)M x (3n — 2, k) X(3n,k)!!! EENDL

(3n — 1, k) = k"3"

which implies that
k2" (3n)!  E*"T(1+ 3n)

1L k) 2 k) = =
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and replacement of by —n gives

k=2"0(1—3n) 3"F( —Bn— 1)) .
3-nT(1—n) k2n1"< —(n— 1))

(—(3n+1),k)!!! x (—(3n+2),k)!!! -

he sinqul int f |F<7(3"71)) _ (n—1)—(3n—1) (n=1)! _ (n=1)!
By the singular point formu aﬂ = (-1) Gn=D)! — Gno1)! (see

[7]), the above equation becomes
(— (3n + 1),k)!!! x (— (3n—|—2),k)!!!
3"(n—1)! 3"3n(n — 1)! 3-3"n!

Tk Bn-1)  k23n(Bn-—1)! k2 (3n)!
To convert into(n, k)-factorials, we multiply the numerator and denominatorifiyon
R.H.S. and proceed as

3.3l 3-3"k"™n!  3-3"(n,k)!
k2n(3n)!  E3n(3n)!  (3n,k)!
and application of the theorem (2.3(i)) and the relation (1.6) provides
3-3"%(n,k)!
(Bn, )M x (3n — 1, k)N x (3n — 2, k)N
B 3-3"(n,k)!
©3n(n, k) x (3n — 1, k)1 x (3n — 2, k)1
which is equivalent to the desired proof.
(v). Obvious proof from the definition dfn, k)!!!-

Remarks: From the parts (i), (iii) and (v), using = 0, we have(—1, k)!!! = (=2, k)!!! =
(0,k)!"' = 1 and replacing: by —n in (v), (=3n)!!! = co. Also, fork = 1, we get the
classical results [7].

Definition (2.4): For k > 0 andn,r are natural numbers with < n, if !!!--.! r-times
is denoted by,., then we definén, k)!,. as

nk(nk —rk)(nk — 2rk)---3rk - 2rk - rk if r dividesn

nk(nk —rk)---(2rk — k) - (rk — k) if r dividesn + 1

nk(nk —rk)--- (3rk —2k) - (rk — 2k) if r dividesn + 2

nk(nk — rk)(nk — 2rk)---[(rk — (rk — k)], if r dividesn + r
1, fn=0-1,-2,---,(r—=1) ; (-rn,k)l, =00, neN.

Remarks: Using the relation (1.2) and definition (2.4), we observe that the following
results hold

(rn, k), = k"n(n—r)(n—2r)---3r-2r-r=Kk"(rn)!, (1.9)
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(rmn—1, k), =k"n(n—r)(n—2r)---(3r—1)-(2r—1)-(r—1) = k" (rn—1)!, (1.10)
(rm—2,k), =k"n(n—r)(n—2r)--- (3r—2)-(2r—2)-(r—2) = k" (rn—2)!,. (1.11)

(rn—(r—=1), k), = k"n(n—r)-- - 2r—(r=D)]-[r—(r—1)] = k" [rn—(r—-1)]!,.. (1.12)
Note: that forr = 1, we get the definition ofn, k)! and ifr = k& = 1, then classical
definition of factorial function.

Lemma (2.5): If , n. andm are any natural numbers afidz) denote the classical gamma
function, then
@) nx(n=-DLxn=2)[n—(r—1D],=n!

(2)(rnﬂr::rnfggj”::rnr@z+1)::rnn!

@) (rn —m)l, = rEs)
4) (- rn)‘ = ; 0,=1
) [=(rn+ Dl [=(rn + 2 [=(rn 4 =D)L,

T (rn—=1)lx(rn— 2)' e rn—(r—=1)]1, "
Proposition (2.6): Forn,€ N, £ > 0, classical gamma functiofi(z) and gammak-
functionT,(x), the expressions involving:, k)-multiple factorial hold as

(@) (k). x(n—=1,k), x(n=2k),x--xn-=(—=1),k =(nk),
®) (rn, k) =k"(rn)! = E"r"n! = E"r"T'(n+ 1) = r"Tx(n + Dk
and

r—m (r—=m)k
(¢) (rm—m,k)l,. = k”r"r(n —r_m” ) =r" Lx(nk (—L—_, ); ) sm=1,---,(r—1)
r(=m) (o

Proof: We give the proof of the above proposition by using the definitiomot)!,. along
with the lemma (2.5). Multiplying the equations (1:9) (1.12), we have

(rn, k)l x (rmn—=1,k) - - (rn— (r = 1), k), = K™ (rn) L (rm = 1)L - - [rn— (r = 1)),
Replacingrn by n, we infer

(n, k)l x (n—=1Kk), x---x[n—(r—=1),k!, =k"nl.(n—=1)!,. - [n— (r = D),
and the lemma (2.5(1)) along with the relation (1.5) gives

(n, k)l x (n—1,k), x -+« x [n—(r—1),k]!, =k"n! = (n, k)

Part(b) is obvious from the definition ofn, k)!,. , the gamma function and the relation
Di(z) = k%—lf(%). For the par{c), the equation (1.12) and lemma (2.5(3)) implies that
I(n+ =)

T

(rn—m, k)l = k" (rn —m)!, = E"r" m=1,2,-,(r—1)

Applying the relatiorl'; (z) = k*~'T'(%£), we can easily obtain the required result in the
form of gammak-function.
Theorem (2.7):Forn,r € N, k > 0 and the rth order factorid}, prove that

[—(rn+ 1), klr x [—=(rn + 2),k]lr x -+ x [=(rn4+r — 1), k]!r
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r
(rn—1,E)r x (rn —2,k)lr X -+ x [rn — (r — 1), k]lr’
Proof. From the equations (1.9)- (1.12) and the proposition (2.6(a)), we observe that

— (_1)(1—r)n

(rn— 1K) x (rn—2,k)l,. x -+ x [rn — (r — 1), k]!

= (rn = L)l x (rn = 2, k)l x -+ x [rn = (r = 1), k]t E:Zi g' - ((Zf,f)).

E™m(rn)! kYR D(1 4 rn)
knrnpl — prD(14n)

= (n—LKL -(rm—-2k)--(rn—(r—-1),k), =
Replacingn by —n, we have

(—(rn—«—l),k)!rx (—(rn+2),k)!r><~~>< (—(rn—«—r—l)J@)!r

_ k=(r=Dn(1 — rn) B THF( —(m— 1))
C T peier(— (- 1)

) ) ( (rn 1)) (n—1)!
By the singular point formula———% = (—1)(»=1H=(n=1) '

rn—1)!
(7(7171)) ( )

= (=1)="n ((” —7y1 the above equation becomes

(—(rn+1),k)!r>< (—(rn+2),k)!,.><-~~>< (—(rn+r—1),k)!r

_ (_1)(1_7,)71 r*(n —1)! _ (—1)A=n)npnpn(n — 1)! _ (—1)A=m)ng r"n!.
k(r=1n(rp — 1)! k(r=1nprn(rn —1)! k(r=1n(rp)!

To convert into(n, k)-factorials, we multiply the numerator and denominatorifiyon

R.H.S. and proceed as

(=)A= pnpl (=)A= gl (=1)AT)ne e (k)]

T T ke (rn)! - (rn, k)!

By the proposition (2.6(a)) and the relation (1.9), we have the R.H.S. as

(—1)(1_”"7“-7’"(717]{:)!
(rn, k) x (rm = 1,k), X (rn — 2,k)!. X -+ X [rn— (r — 1), k]!,

(=1)A=m)np e (p, k)!
r(n, k) x (rn— 1, k) x (rn—2,k). x -« X [rn— (r — 1), k]!,
(-

(rn—1,k),. x (rn —2,k),. x -+ X [rn— (r — 1), k]!,
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3. APPLICATIONS OF HIGHER ORDER FACTORIALS IN;:-SYMBOL
In this section, we give the applications(ef, k)!,. in the expansion of some elementary
functions.

Proposition (3.1): If n andr are the natural numbers amdis an integer such that
la| < n, then the Pochhammer’s symbol in termgofk)!, is expressed as

(%)n = (1"]1)" l[a+r(n—1),k]', whena >0 (1.13)
and
(%)n N (rli)na[a +r(n—1),k]l, whena <0 (1.14)

Proof. Fora > 0, by the definition of Pochhammer’s symbol given in relation(1.4), we
see that

(3) =EE+DE+2) C+n-1) =

r ror

ala+r)(a+2r) - (a+r(n—1))

Tn

(1.15)
Whenr = 2, 3,4, - - -, from the equation (1.15) along with the propemy, k)! = k™ (nk)!
of newly defined factorial ik symbol, we observe that

(g) _ala+2)---(a+2n—-1)) fa+2n—-1"" Ja+2(n—1)k]!

2/ 2n B (2)" B (2k)n ’
ay _a(a+3)---(a+3(n—-1)) Ja+3n—-1MN [a+3(n—1), kN
(g)n - 3n - (3)n - (3k)" )

(a) ala+r)---(a+r(n—1)) .[a—i—r(n—l)]!r [a+r(n—1),k]!

r rm - (r)m N (rk)»
Whena < 0,al,=1,(a+1-7) >0,(a+2r)>0,--- ,a+r(n—1) >0, then
1 1
a=a-al, = k—nak’” cal, = wa (a, k). ,whenn =1
1 1
ala+r)=ala+r)!, = ﬁk”a(a +7),. = ﬁa(a + k). ,whenn =2

)

ala+r)(a+2r)=ala+2r), = o k"a(a+2r)l, = kina(a +2r k), ,whenn =3
and by induction, we get

ala+r)a+2r)---la+(n—-1r] a-la+(n—1)r],

,'nn /,n'IL
_ la-k"at(n—1Dr]ly ala+r(n—1),k
T kn rn - (Tk?)"
Now, we express the hypergeometric function of which parameters are rational numbers
smaller than unity in terms of the newly defined higher orderk)- factorials.
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Theorem (3.2): If r is a natural number greater than one and an integer such that
la| < r, then the hypergeometric functiei, in terms of(n, k)!,. is expressed as

a—i—r n—1), k. (b)z™
2F1( b, c; x) =1+ Z BT whena > 0 (1.16)
and
> — 1), k]! n
=1+a) o+ r(n = ), Kb (0)nz” o < (1.17)

Proof. By the definition of classical hypergeometric function, we have

o Fy (;, b; ¢; :z:) = i (i()z)(f)" %T

n=0

Using the relation (1.13), we have

2F1<%7b; C; x) 14 i la+r(n—1), k)l (b), z"

CRC R

and the fact"k"n! = (rn, k)!,., we get the required result (1.16). Similarly, we can have
the result (1.17) for < 0.

Corollary (3.3): If r is a natural number greater than one ant, andc are the integers
such thatal, |b], || < r, then we have

2F1(9 é.g;m) :1+i[a+r(n—1) Kl [b+ r(n — 1), K]l 2"

[c+r(n—1), k] .(rn, k)., ,whena, b, c > 0,

=1 +ai [G+T(n — ]-),k]'r[b—l—’r(n — ]_) k}'rxn

- n=1 [c+r(n—1),k(rn, k)., onlya <0,
LS et DL b =D, R
_1+c — [c+7(n— 1),k (rn, k)!, onlyc < 0,

Remarks: From the above discussion, we observe that a symbol whose sign is negative
amonga, b or ¢ serves as a coefficient df .

Examples (3.4): Here, e give some examples involving the abgwrek)!,. for some el-
ementary functions.

(i). To find the expansion dfl — z)~3 by using the(n, k)!.

Consider the hypergeometric function defined in the theorem (3.2) for posijtigetaking
a=1%andb=cas

1 LK) R 5 (TR 5 (10,k) o
A2 eea) =1
SACRLE) TEET T e RET Tens” Tannst T
L WR @R (@R 0B .
IR C N S TR TS TR W S TR S DR ST =(1—a)7s
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(n, P PP

(i)). To find the expansion qfl — x) by using the(n, k)!.
Consider the hypergeometric function defined in the theorem (3.2) for negatbiyeaking

a=—1andb=cas
-1
F(5aer)

[\

~ LR @R, GRS RN
N L M O [N PO
e @R s G RN s 8RN _ 1
R ST (A TR W S TITA ST S TITG = (-2
(iii). To find the expansion 0?—1 by using the(n, k)!.
Consider the hypergeometric functlon defined in the corollary (3.3) fer;, b = 4 and
¢ = 2 andz for 22 as
113 2) = (1, k:)”gc2 (3, k)2t (5,k)Mab (7, k)”ac
i (50550) = Yamis Taens TennT TEato T
_ Sin'x
N X
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