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Abstract. In this paper, we define(n, k) triple factorial and extend the
definition up to a finite number of multi-factorials of the said type. We ex-
press the Pochhammer’s symbol and hypergeometric functions involving
these factorials. Also, we express some elementary functions in the form
of (n, k)!r satisfying the classical results.
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1. INTRODUCTION

The factorial notation(!) was introduced by Christian Kramp in 1808 for positive inte-
gers and is frequently used to compute the binomial coefficients. The relationship between
classical gamma function and ordinary factorial isΓ(n) = (n − 1)!, n ∈ N. Also, gamma
function is defined for all real numbers exceptn = 0,−1,−2, · · · ·Afterwards, the German
mathematician Leo Pochhammer defined the shifted (rising) factorial, which was named as
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Pochhammer’s symbol and is given by (see [1, 14])

(α)n =

{
α(α + 1)(α + 2)...(α + n− 1) , n ∈ N
1, n = 0 , α 6= 0.

It follows that(1)n = n! and very simply, forn,m ∈ N, we can derive the expression for
the rising factorial of a negative integer as

(−n)m =

{
(−1)mn!
(n−m)! , 1 ≤ m ≤ n

0, m ≥ n + 1.

Also, Kono [8], gave the definition of double, triple and multi factorials as

n!! =





n(n− 2)(n− 4) · · · 6 · 4 · 2 if n is even

n(n− 2)(n− 4) · · · 5 · 3 · 1 if n is odd

1, if n = 0,−1 ; (−n)!! = ∞, n ∈ N− {0, 1},

n!!! =





n(n− 3)(n− 6) · · · 9 · 6 · 3 if n is of the form3n

n(n− 3)(n− 6) · · · 8 · 5 · 2 if n is of the form(3n− 1)
n(n− 3)(n− 6) · · · 7 · 4 · 1 if n is of the form(3n− 2)
1, if n = 0,−1,−2 ; (−n)!!! = ∞, n ∈ N− {0, 1, 2}

(1.1)

and!!! · · ·!(r-times), denoted by!r, is given by

n!r =





n(n− r)(n− 2r) · · · 3r · 2r · r if n is of the formrm for somem

n(n− r)(n− 2r) · · · (2r − 1) · (r − 1) if n is like (rm− 1) for somem

n(n− r)(n− 2r) · · · (2r − 2) · (r − 2) if n is like (rm− 2) for somem
...

n(n− r)(n− 2r) · · · [(r − (r − 1)], if n is like (rm− (r − 1)) for somem

1, if n = 0,−1,−2, · · · , (r − 1) ; (−rn)!r = ∞, n ∈ N.
(1.2)

Diaz and Pariguan [3] introduced the generalized gammak-function as

Γk(x) = lim
n→∞

n!kn(nk)
x
k−1

(x)n,k
, k > 0, x ∈ C \ kZ−

and also gave the properties of said function. TheΓk is one parameter deformation of the
classical gamma function such thatΓk → Γ ask → 1. TheΓk is based on the repeated
appearance of the expression of the form

α(α + k)(α + 2k)(α + 3k) . . . (α + (n− 1)k). (1.3)

The function of the variableα given by the statement(1.3), denoted by(α)n,k, is called
the Pochhammerk-symbol. Thus, we have

(α)n,k =

{
α(α + k)(α + 2k)(α + 3k) . . . (α + (n− 1)k) , n ∈ N, k > 0
1, n = 0 , α 6= 0.
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We obtain the usual Pochhammer’s symbol(α)n by takingk = 1 which is given by

(α)n =

{
α(α + 1)(α + 2)(α + 3) . . . (α + (n− 1)) , n ∈ N,

1, n = 0 , α 6= 0.
(1.4)

. The authors [2, 4] have discussed some properties involving special functions. Also, the
researchers [5-6, 9-12] have worked on the generalized gamma, beta andk-function and
discussed the following properties:

Γk(αk) = kα−1Γ(α), k > 0, α ∈ R,

Γk(nk) = kn−1(n− 1)!, k > 0, n ∈ N,

Γk((2n + 1)
k

2
) = k

2n−1
2

(2n)!
√

π

2nn!
, k > 0, n ∈ N,

Γk(k) = 1,

and
Γk(x) = k

x
k−1Γ(

x

k
).

Recently, Mubeen and Rehman [13] defined the factorial function in terms ofk-symbol,
called(n, k)-factorial as

(n, k)! = nk(nk − k)(nk − 2k)(nk − 3k) · · · 3k · 2k · k , n ∈ N, k > 0

and simplifying the right hand side of the above equation, we get a link between(n, k)!
and classical gamma function. Thus we have

(n, k)! = knn(n− 1)(n− 2)(n− 3) · · · 3 · 2 · 1 = knn! = knΓ(n + 1). (1.5)

Using the above definition of(n, k)!, they introduced the following properties of the said
factorial

(nk, k)! = kn(nk)!,

(n + a, k)! = kn(n + a)! , a ∈ R, n ∈ N,

[(n + b)k, k]! = kn[(n + b)k]! , b ∈ R, n ∈ N,

and
(0, k)! = 1 , (−n, k)! = ∞ , n ∈ N , k > 0

and also gave some results involving the gammak-function in terms of(n, k)-factorial as

Γk(x) = lim
n→∞

(n, k)!(nk)
x
k−1

(x)n,k
, k > 0, x ∈ C \ kZ−,

Γk(nk) = (n− 1, k)!, k > 0, n ∈ N,

Γk((2n + 1)
k

2
) =

(2n, k)!
2n(n, k)!

√
π

k
, k > 0, n ∈ N,

and
(n, k)! = Γk(nk + k) = knΓ(n + 1), k > 0, n ∈ N.

Remarks: Takingk = 1, we see that(n, 1) = n! and all the above results can be converted
into their classical representations.
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Mubeen and Rehman [13] also gave the definition of(n, k)!!· If n is even andn ∈ N, k >
0, then

(2n, k)!! = 2nk(2nk − 2k)(2nk − 4k) · · · 4k · 2k

= kn2n(2n− 2) · · · 4 · 2 = kn(2n)!!

and ifn is odd (say) of the form2n− 1, k > 0, then

(2n− 1, k)!! = (2nk − k)(2nk − 3k) · · · 3k · k
= kn(2n− 1) · · · 3 · 1 = kn(2n− 1)!!

and

(n, k)!! = 1 , for n = 0,−1 ; (−2n, k)!! = ∞ , n ∈ N.

They proved the following properties involving(n, k)-double factorial, classical gamma
functionΓ(x) and gammak-functionΓk(x)

(n, k)!!× (n− 1, k)!! = (n, k)!,

(2n, k)!! = kn2nn! = kn(2n)!!,

(2n− 1, k)!! = kn2n Γ(n + 1
2 )

Γ( 1
2 )

= 2n Γk(nk + k
2 )

Γk(k
2 )

,

and

[−(2n + 1), k]!! = (−1)−n 2
(2n− 1, k)!!

·

2. MAIN RESULTS

Here, we introduce(n, k)!!! and extend the definition up to a finite number of higher
order factorials. Also, we prove some results involving gammak-function and classical
gamma function using the definitions of(n, k)-triple or higher order such factorials.
Definition (2.1): Forn ∈ N, k > 0, (n, k)-triple factorial is defined by

(n, k)!!! =





nk(nk − 3k)(nk − 6k) · · · 9k · 6k · 3k if 3 dividesn

nk(nk − 3k)(nk − 6k) · · · 8k · 5k · 2k if 3 dividesn + 1
nk(nk − 3k)(nk − 6k) · · · 7k · 4k · k if 3 dividesn + 2
1, if n = 0,−1,−2 ; (−3n)!!! = ∞, n ∈ N.

Using the relation (1.1), the above definition gives the results as

(3n, k)!!! = kn(3n− 3)(3n− 6) · · · 9 · 6 · 3 = kn(3n)!!! = kn3nn!, (1.6)

(3n− 1, k)!!! = kn(3n− 1)(3n− 4)(3n− 7) · · · 8 · 5 · 2 = kn(3n− 1)!!! (1.7)

and

(3n− 2, k)!!! = kn(3n− 2)(3n− 5)(3n− 8) · · · 7 · 4 · 1 = kn(3n− 2)!!!· (1.8)

From the above definition, we observe that

(1, k)!!! = k1!!! = k, (2, k)!!! = k2!!! = 2k, (3, k)!!! = k3!!! = 3k,

(4, k)!!! = 4k.k, (5, k)!!! = 5k.2k, (6, k)!!! = 6k.3k,
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(7, k)!!! = 7k.4k.k, (8, k)!!! = 8k.5k.2k, (9, k)!!! = 9k.6k.3k . . .

Lemma (2.2): If n denotes the natural number andΓ(z) is the classical gamma function,
then the following results hold (see [8]).

(1) n!!!× (n− 1)!!!× (n− 2)!!! = n!
(2) (3n)!!! = 3n Γ(n+ 3

3 )

Γ( 3
3 )

= 3nΓ(n + 1) = 3nn!

(3) (3n− 1)!!! = 3n Γ(n+ 2
3 )

Γ( 2
3 )

(4) (3n− 2)!!! = 3n Γ(n+ 1
3 )

Γ( 1
3 )

(5) [−(3n + 1)]!!!× [−(3n + 2)]!!! = 3
(3n−1)!!!×(3n−2)!!!

Theorem (2.3):Forn,∈ N, k > 0, classical gamma functionΓ(x) and gammak-function
Γk(x) , the following expressions involving(n, k)-triple factorial hold

(i): (n, k)!!!× (n− 1, k)!!!× (n− 2, k)!!! = (n, k)!

(ii): (3n− 1, k)!!! = kn3n Γ(n+ 2
3 )

Γ( 2
3 )

= 3n Γk(nk+ 2k
3 )

Γk( 2k
3 )

(iii): (3n− 2, k)!!! = kn3n Γ(n+ 1
3 )

Γ( 1
3 )

= 3n Γk(nk+ k
3 )

Γk( k
3 )

(iv): [−(3n + 1), k]!!!× [−(3n + 2), k]!!! = 3
(3n−1,k)!!!×(3n−2,k)!!!

(v): (3n, k)!!! = kn3nn! = kn(3n)!!!·
Proof: We give the proofs of the above properties by using the definition of(n, k)!!! along
with the lemma (2.2).
(i). Multiplying the equations (1.6), (1.7) and (1.8), we see that

(3n, k)!!!× (3n− 1, k)!!!× (3n− 2, k)!!! = kn(3n)!!!× kn(3n− 1)!!!× kn(3n− 2)!!!

and by the lemma (2.2(1)), we get

(3n, k)!!!× (3n− 1, k)!!!× (3n− 2, k)!!! = k3n(3n)!·
Replacing3n by n and using the relation (1.5), we get the required proof.
(ii). From the equation (1.7), we have(3n− 1, k)!!! = kn(3n− 1)!!! and use of the lemma
(2.2(3)) gives

(3n− 1, k)!!! = kn3n Γ(n + 2
3 )

Γ( 2
3 )

and application of the relationΓk(x) = k
x
k−1Γ(x

k ) provides the second part of the required
result.
(iii). Similar result from the relations (1.8),Γk(x) = k

x
k−1Γ(x

k ) and lemma (2.2(4)).
(iv). From the equations (1.7), (1.8) and the theorem (2.3(i)), we observe that

(3n− 1, k)!!!× (3n− 2, k)!!! = (3n− 1, k)!!!× (3n− 2, k)!!!× (3n, k)!!!
(3n, k)!!!

=
(3n, k)!
(3n, k)!!!

which implies that

(3n− 1, k)!!!× (3n− 2, k)!!! =
k3n(3n)!
kn3nn!

=
k3nΓ(1 + 3n)
kn3nΓ(1 + n)

·
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and replacement ofn by−n gives

(
− (3n + 1), k

)
!!!×

(
− (3n + 2), k

)
!!! =

k−2nΓ(1− 3n)
3−nΓ(1− n)

=
3nΓ

(
− (3n− 1)

)

k2nΓ
(
− (n− 1)

) ·

By the singular point formula,
Γ

(
−(3n−1)

)

Γ

(
−(n−1)

) = (−1)(n−1)−(3n−1) (n−1)!
(3n−1)! = (n−1)!

(3n−1)! (see

[7]), the above equation becomes(
− (3n + 1), k

)
!!!×

(
− (3n + 2), k

)
!!!

=
3n(n− 1)!

k2n(3n− 1)!
=

3n3n(n− 1)!
k2n3n(3n− 1)!

=
3 · 3nn!
k2n(3n)!

·
To convert into(n, k)-factorials, we multiply the numerator and denominator bykn on
R.H.S. and proceed as

3 · 3nn!
k2n(3n)!

=
3 · 3nknn!
k3n(3n)!

=
3 · 3n(n, k)!

(3n, k)!

and application of the theorem (2.3(i)) and the relation (1.6) provides

=
3 · 3n(n, k)!

(3n, k)!!!× (3n− 1, k)!!!× (3n− 2, k)!!!

=
3 · 3n(n, k)!

3n(n, k)!× (3n− 1, k)!!!× (3n− 2, k)!!!
which is equivalent to the desired proof.
(v). Obvious proof from the definition of(n, k)!!!·

Remarks: From the parts (ii), (iii) and (v), usingn = 0, we have(−1, k)!!! = (−2, k)!!! =
(0, k)!!! = 1 and replacingn by −n in (v), (−3n)!!! = ∞. Also, for k = 1, we get the
classical results [7].

Definition (2.4): For k > 0 andn, r are natural numbers withr ≤ n, if !!! · · ·! r-times
is denoted by!r, then we define(n, k)!r as

(n, k)!r =





nk(nk − rk)(nk − 2rk) · · · 3rk · 2rk · rk if r dividesn

nk(nk − rk) · · · (2rk − k) · (rk − k) if r dividesn + 1
nk(nk − rk) · · · (3rk − 2k) · (rk − 2k) if r dividesn + 2
...

nk(nk − rk)(nk − 2rk) · · · [(rk − (rk − k)], if r dividesn + r

1, if n = 0,−1,−2, · · · , (r − 1) ; (−rn, k)!r = ∞, n ∈ N.

Remarks: Using the relation (1.2) and definition (2.4), we observe that the following
results hold

(rn, k)!r = knn(n− r)(n− 2r) · · · 3r · 2r · r = kn(rn)!r (1.9)
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(rn−1, k)!r = knn(n−r)(n−2r) · · · (3r−1) · (2r−1) · (r−1) = kn(rn−1)!r (1.10)

(rn−2, k)!r = knn(n−r)(n−2r) · · · (3r−2) · (2r−2) · (r−2) = kn(rn−2)!r (1.11)
...

(rn−(r−1), k)!r = knn(n−r) · · · [2r−(r−1)]·[r−(r−1)] = kn[rn−(r−1)]!r. (1.12)

Note: that for r = 1, we get the definition of(n, k)! and if r = k = 1, then classical
definition of factorial function.

Lemma (2.5): If r, n andm are any natural numbers andΓ(z) denote the classical gamma
function, then

(1) n!r × (n− 1)!r × (n− 2)!r · · · [n− (r − 1)]!r = n!
(2) (rn)!r = rn Γ(n+ r

r )

Γ( r
r ) = rnΓ(n + 1) = rnn!

(3) (rn−m)!r = rn Γ(n+ r−m
r )

Γ( r−m
r )

(4) (−rn)!r = ∞ ; 0!r = 1
(5) [−(rn + 1)]!r · [−(rn + 2)]!r · · · [−(rn + r − 1)]!r

= r
(rn−1)!r×(rn−2)!r···[rn−(r−1)]!r

.

Proposition (2.6): For n,∈ N, k > 0, classical gamma functionΓ(x) and gammak-
functionΓk(x), the expressions involving(n, k)-multiple factorial hold as

(a) (n, k)!r × (n− 1, k)!r × (n− 2, k)!r × · · · × [n− (r − 1), k]!r = (n, k)!,

(b) (rn, k)!r = kn(rn)! = knrnn! = knrnΓ(n + 1) = rnΓk(n + 1)k
and

(c) (rn−m, k)!r = knrn Γ(n + r−m
r )

Γ( r−m
r )

= rn Γk(nk + (r−m)k
r )

Γk( (r−m)k
r )

,m = 1, · · · , (r − 1)·

Proof: We give the proof of the above proposition by using the definition of(n, k)!r along
with the lemma (2.5). Multiplying the equations (1.9)· · · (1.12), we have

(rn, k)!r× (rn−1, k)!r · · · (rn− (r−1), k)!r = krn(rn)!r(rn−1)!r · · · [rn− (r−1)]!r·
Replacingrn by n, we infer

(n, k)!r × (n− 1, k)!r × · · · × [n− (r − 1), k]!r = knn!r(n− 1)!r · · · [n− (r − 1)]!r
and the lemma (2.5(1)) along with the relation (1.5) gives

(n, k)!r × (n− 1, k)!r × · · · × [n− (r − 1), k]!r = knn! = (n, k)!·
Part (b) is obvious from the definition of(n, k)!r , the gamma function and the relation
Γk(x) = k

x
k−1Γ(x

k ). For the part(c), the equation (1.12) and lemma (2.5(3)) implies that

(rn−m, k)!r = kn(rn−m)!r = knrn Γ(n + r−m
r )

Γ( r−m
r )

,m = 1, 2, · · · , (r − 1)·

Applying the relationΓk(x) = k
x
k−1Γ(x

k ), we can easily obtain the required result in the
form of gammak-function.
Theorem (2.7):Forn, r ∈ N, k > 0 and the rth order factorial!r, prove that

[−(rn + 1), k]!r × [−(rn + 2), k]!r × · · · × [−(rn + r − 1), k]!r
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= (−1)(1−r)n r

(rn− 1, k)!r × (rn− 2, k)!r × · · · × [rn− (r − 1), k]!r
.

Proof. From the equations (1.9)· · · (1.12) and the proposition (2.6(a)), we observe that

(rn− 1, k)!r × (rn− 2, k)!r × · · · × [rn− (r − 1), k]!r

= (rn− 1, k)!r × (rn− 2, k)!r × · · · × [rn− (r − 1), k]!r × (rn, k)!r
(rn, k)!r

=
(rn, k)!
(rn, k)!r

⇒ (rn− 1, k)!r · (rn− 2, k)!r · · · (rn− (r − 1), k)!r =
krn(rn)!
knrnn!

=
k(r−1)nΓ(1 + rn)

rnΓ(1 + n)
.

Replacingn by−n, we have
(
− (rn + 1), k

)
!r ×

(
− (rn + 2), k

)
!r × · · · ×

(
− (rn + r − 1), k

)
!r

=
k−(r−1)nΓ(1− rn)

r−nΓ(1− n)
=

rnΓ
(
− (rn− 1)

)

k(r−1)nΓ
(
− (n− 1)

) .

By the singular point formula,
Γ

(
−(rn−1)

)

Γ

(
−(n−1)

) = (−1)(n−1)−(rn−1) (n−1)!
(rn−1)!

= (−1)(1−r)n (n−1)!
(rn−1)! , the above equation becomes

(
− (rn + 1), k

)
!r ×

(
− (rn + 2), k

)
!r × · · · ×

(
− (rn + r − 1), k

)
!r

= (−1)(1−r)n rn(n− 1)!
k(r−1)n(rn− 1)!

=
(−1)(1−r)nrnrn(n− 1)!

k(r−1)nrn(rn− 1)!
=

(−1)(1−r)nr · rnn!
k(r−1)n(rn)!

·

To convert into(n, k)-factorials, we multiply the numerator and denominator bykn on
R.H.S. and proceed as

(−1)(1−r)nr · rnn!
k(r−1)n(rn)!

=
(−1)(1−r)nr · rnknn!

krn(rn)!
=

(−1)(1−r)nr · rn(n, k)!
(rn, k)!

By the proposition (2.6(a)) and the relation (1.9), we have the R.H.S. as

(−1)(1−r)nr · rn(n, k)!
(rn, k)!r × (rn− 1, k)!r × (rn− 2, k)!r × · · · × [rn− (r − 1), k]!r

=
(−1)(1−r)nr · rn(n, k)!

rn(n, k)!× (rn− 1, k)!r × (rn− 2, k)!r × · · · × [rn− (r − 1), k]!r

=
(−1)(1−r)nr

(rn− 1, k)!r × (rn− 2, k)!r × · · · × [rn− (r − 1), k]!r
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3. APPLICATIONS OF HIGHER ORDER FACTORIALS INk-SYMBOL

In this section, we give the applications of(n, k)!r in the expansion of some elementary
functions.

Proposition (3.1): If n and r are the natural numbers anda is an integer such that
|a| < n, then the Pochhammer’s symbol in terms of(n, k)!r is expressed as

(a

r

)
n

=
1

(rk)n
[a + r(n− 1), k]!r whena > 0 (1.13)

and (a

r

)
n

=
1

(rk)n
a[a + r(n− 1), k]!r whena < 0 (1.14)

Proof. Fora > 0, by the definition of Pochhammer’s symbol given in relation(1.4), we
see that
(a

r

)
n

= (
a

r
)(

a

r
+ 1)(

a

r
+ 2) · · · (a

r
+ (n− 1)) =

a(a + r)(a + 2r) · · · (a + r(n− 1))
rn

.

(1.15)
Whenr = 2, 3, 4, · · · , from the equation (1.15) along with the property(nk, k)! = kn(nk)!
of newly defined factorial ink symbol, we observe that

(a

2

)
n

=
a(a + 2) · · · (a + 2(n− 1))

2n
=

[a + 2(n− 1)]!!
(2)n

=
[a + 2(n− 1), k]!!

(2k)n
,

(a

3

)
n

=
a(a + 3) · · · (a + 3(n− 1))

3n
=

[a + 3(n− 1)]!!!
(3)n

=
[a + 3(n− 1), k]!!!

(3k)n
,

...
(a

r

)
n

=
a(a + r) · · · (a + r(n− 1))

rn
=

[a + r(n− 1)]!r
(r)n

=
[a + r(n− 1), k]!r

(rk)n
·

Whena < 0, a!r = 1, (a + 1 · r) > 0, (a + 2r) > 0, · · · , a + r(n− 1) > 0, then

a = a · a!r =
1
kn

akn · a!r =
1
kn

a · (a, k)!r , whenn = 1

a(a + r) = a(a + r)!r =
1
kn

kna(a + r)!r =
1
kn

a(a + r, k)!r , whenn = 2

a(a + r)(a + 2r) = a(a + 2r)!r =
1
kn

kna(a + 2r)!r =
1
kn

a(a + 2r, k)!r , whenn = 3

and by induction, we get

a(a + r)(a + 2r) · · · [a + (n− 1)r]
rn

=
a · [a + (n− 1)r]!r

rn

=
1
kn

a · kn[a + (n− 1)r]!r
rn

=
a[a + r(n− 1), k]!r

(rk)n

Now, we express the hypergeometric function of which parameters are rational numbers
smaller than unity in terms of the newly defined higher order(n, k)- factorials.
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Theorem (3.2): If r is a natural number greater than one anda is an integer such that
|a| < r, then the hypergeometric function2F1, in terms of(n, k)!r is expressed as

2F1

(a

r
, b, c; x

)
= 1 +

∞∑
n=1

[a + r(n− 1), k]!r(b)nxn

(c)n(rn, k)!r
whena > 0 (1.16)

and

= 1 + a

∞∑
n=1

[a + r(n− 1), k]!r(b)nxn

(c)n(rn, k)!r
whena < 0 (1.17)

Proof. By the definition of classical hypergeometric function, we have

2F1

(a

r
, b; c; x

)
=

∞∑
n=0

(a
r )n(b)n

(c)n

xn

n!
.

Using the relation (1.13), we have

2F1

(a

r
, b; c; x

)
= 1 +

∞∑
n=1

[a + r(n− 1), k]!r(b)n

(rk)n(c)n

xn

n!
a > 0

and the factrnknn! = (rn, k)!r, we get the required result (1.16). Similarly, we can have
the result (1.17) fora < 0.
Corollary (3.3): If r is a natural number greater than one anda, b, andc are the integers
such that|a|, |b|, |c| < r, then we have

2F1

(a

r
,
b

r
;
c

r
; x

)
= 1 +

∞∑
n=1

[a + r(n− 1), k]!r[b + r(n− 1), k]!rxn

[c + r(n− 1), k]!r(rn, k)!r
, whena, b, c > 0,

= 1 + a

∞∑
n=1

[a + r(n− 1), k]!r[b + r(n− 1), k]!rxn

[c + r(n− 1), k]!r(rn, k)!r
onlya < 0,

= 1 +
1
c

∞∑
n=1

[a + r(n− 1), k]!r[b + r(n− 1), k]!rxn

[c + r(n− 1), k]!r(rn, k)!r
onlyc < 0,

Remarks: From the above discussion, we observe that a symbol whose sign is negative
amonga, b or c serves as a coefficient of

∑
.

Examples (3.4): Here, e give some examples involving the above(n, k)!r for some el-
ementary functions.
(i). To find the expansion of(1− x)−

1
3 by using the(n, k)!.

Consider the hypergeometric function defined in the theorem (3.2) for positivea, by taking
a = 1

3 andb = c as

2F1

(1
3
, c; c;x

)
= 1 +

(1, k)!3
(3, k)!3

x +
(4, k)!3
(6, k)!3

x2 +
(7, k)!3
(9, k)!3

x3 +
(10, k)!3
(12, k)!3

x4 + · · ·

= 1 +
(1, k)!!!
(3, k)!!!

x +
(4, k)!!!
(6, k)!!!

x2 +
(7, k)!!!
(9, k)!!!

x3 +
(10, k)!!!
(12, k)!!!

x4 + · · · = (1− x)−
1
3 .
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(ii). To find the expansion of(1− x)
1
3 by using the(n, k)!.

Consider the hypergeometric function defined in the theorem (3.2) for negativea, by taking
a = − 1

3 andb = c as

2F1

(−1
3

, c; c; x
)

= 1 + (−1)
[ (−1, k)!!!

(3, k)!!!
x +

(2, k)!!!
(6, k)!!!

x2 +
(5, k)!!!
(9, k)!!!

x3 +
(8, k)!!!
(12, k)!!!

x4 + · · ·
]

= 1− (−1, k)!!!
(3, k)!!!

x− (2, k)!!!
(6, k)!!!

x2 − (5, k)!!!
(9, k)!!!

x3 − (8, k)!!!
(12, k)!!!

x4 + · · · = (1− x)
1
3 .

(iii). To find the expansion ofSin−1x
x by using the(n, k)!.

Consider the hypergeometric function defined in the corollary (3.3) fora = 1
2 , b = 1

2 and
c = 3

2 andx for x2 as

2F1

(1
2
,
1
2
;
3
2
; x2

)
= 1 +

(1, k)!!
(2, k)!!

x2

3
+

(3, k)!!
(4, k)!!

x4

5
+

(5, k)!!
(6, k)!!

x6

7
+

(7, k)!!
(8, k)!!

x8

9
+ · · ·

=
Sin−1x

x
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