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Abstract. A positive integern is called super totient if the residues ofn
which are prime ton can be partitioned into two disjoint subsets of equal
sums. LetG be a given graph withV, the set of vertices andE is the set of
its edges. An injective functiong defined onV into subset of integers will
be termed as super totient labeling of the graphG, if the functiong∗ : E →
N defined byg∗(xy) = g(x)g(y) assigns a super totient number for all
edgesxy ∈ E, wherex, y ∈ V. A graph admits this labeling is called
a super totient graph. In the current manuscript, the authors investigate a
novel labeling algorithm, called super totient labeling, for several classes
of graphs such as friendship graphs, wheel graphs, complete graphs and
complete bipartite graphs.

AMS (MOS) Mathematics subject classification (2000): 05C25, 11E04, 20G15
Key Words: Super totient number, Complete graph, Complete bipartite graph, Wheel

graph, Friendship graph.

1. INTRODUCTION

The assignments of integers using some appropriate mathematical rule to vertices (or
edges) of a given graph is called a vertex (or edge) labeling. Indeed, it is possible to define
a simultaneous labeling for both vertices and edges of a graph as well. Thus it has be-
come an autonomous and compelling interest of number theorist. Even after finding such
functions, it is important to find classes of well known graphs which admit your number
theoretic functions as graph labeling. Unadventurousl, most of the real world problems can
be fixed and viewed by intrigues their graphs with labeling.

23



24 M. Khalid Mahmood and Shahbaz Ali

Formally, the subject of graph labeling has been introduced by A. Rosa [8] in 1967. Rosa
defined an injective function onn edges from set of vertices of a graph to a subset of
{1, 2, ..., n}. Later on Golomb [1], called such labeling as graceful labeling. Many inter-
esting games and puzzles have been solved by means of graph labeling. A similar work
regarding puzzles and packing has been presented very elegantly in [7]. A detailed survey
of previous labeling over many well known classes of graphs has been studied by Gallian
in [6]. In [2], K.P.S. Bhaskara Rao and Yuejian Peng explored many interesting results
on Zumkeller numbers. B.J. Balamurugan, K. Thirusangu and D.G. Thomas introduce the
concept of Zumkeller labeling and proposed Zumkeller labeling algorithms for complete
bipartite graphs and wheel graphs [4].

In this paper, we propose novel labeling algorithms by means of super totient numbers.
We call this labeling as super totient labeling. We give algorithms and prove that the well
known classes of graphs such as complete graphs, complete bipartite graphs, wheel graphs
and friendship graph admits the super totient labeling. Notations used in this paper are
standard and we follow [ 2] to [4]. We state the following theorems of [5], without proof
for use in the sequel.

Theorem 1.1. [5] If p is a prime andk is any positive integer, thenϕ(pk) = pk − pk−1.

Theorem 1.2. [5] For n > 1, the sum of positive integers less thann and relatively prime
to n is nϕ(n)

2 .

Before giving our proposed algorithm, we introduce the notion of super totient numbers
and state few results of super totient numbers with straightforward proofs so as to make
this paper self contained.

Definition 1.3. A positive integern is called super totient if the residues ofn which are
prime ton can be partitioned into two disjoint subsets of equal sums. The integers 5, 8, 10,
12, 14 and 15 are few examples of super totient numbers.

Example 1.4. Taken = 14, then the positive residues of 14 which are prime to 14 are 1,
3, 5, 9, 11, and 13. We can partition these residues into two disjoint subsets of equal sums
such as:A = {1, 9, 11} andB = {3, 5, 13} with

∑
A =

∑
B = 21. Thus 14 is a super

totient number.

The following Lemma is very crucial and of vital importance. We shall be using this lemma
throughout the paper.

Lemma 1.5. Letm be a positive integer, if4|ϕ(m) thenm is super totient.

Proof. We note that,(ti,m) = 1 if and only if (m− ti,m) = 1.
Let k = ϕ(m)/4, we can partition the set of coprime residues

1 = t1 < t2 < t3 < · · · < tϕ(m) < m

in the following two disjoint sets:

A = { t1, t2, t3 · · · , tk} ∪ {m− t1, m− t2, m− t3 · · · , m− tk}
B = {t2k+1, t2k+2, · · · , t3k} ∪ {m− t2k+1, m− t2k+2, · · · , m− t3k}
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Then it is clear that

∑
a∈A

a =
k∑

i=1

ti + (m− ti) = mk =
3k∑

j=2k+1

tj + (m− tj) =
∑

b∈B

b

¤

The proof of the following theorem can be viewed by means of Lemma 1.5.
Theorem 1.6.
1. A prime numberp is super totient if and only ifp ≡ 1(mod 4).
2. If a positive integerm has at leat two odd prime divisors thenm is a super totient
number.
3. If n is super totient number andm be any positive integer, thenmn is a super totient
number.

Definition 1.7. Let G be a given graph withV, the set of vertices andE is the set of its
edges. An injective functiong : V → N is termed as super totient labeling of the graphG,
if the induced functiong∗ : E → N given byg∗(xy) = g(x)g(y) assigns a super totient
number for each edgexy ∈ E, where,x, y ∈ V .
Note that there will be no edge between vertices 2 and 3 as given in Fig.1 since 6 is not
super totient number.

Definition 1.8. We name a graph as super totient if it admits a super totient labeling.

Example 1.9. The super totient labeling of a graph is given in Fig.1.
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We propose algorithms for super totient labeling over different classes of graphs namely
friendship graphs, wheel graphs, complete graphs and complete bipartite graphs. As conse-
quences of these algorithms, we deduce that all cycles and all paths also admit super totient
labeling. Finally, we prove the existence of super totient graphs for all these classes. Fig.1
depicts super totient labeling on a graph. It is note that loops can admit this labeling as
well. For example, the vertices 4, 5 and 6 have loops and the edges must be labeled by 16,
25 and 36 respectively and all these are totient numbers. That is, 16, 25 and 36 are totient
numbers. The motivation behind our research work was the concept of Zumkeller labeling
and Zumkeller graphs given in [6]. Thus it was interesting and challenging to define a novel
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labeling algorithms which can be proved via number theory.

We note that the super totient numbers on the edges of a graph are obtained by multiplying
the labels of the vertices of that edge. Thus, if we remove some vertices or edges then
the remaining subgraph certainly admits super totient numbers for the remaining edges.
Hence, we must arrive at the following proposition.

Proposition 1.10. A non-totally disconnected subgraph of a super totient graph is a super
totient graph.

2. SUPERTOTIENT FRIENDSHIPGRAPHS

Definition 2.1. For any integern, a planar graph having2n + 1vertices and3n edges is
termed as friendship (orn-fan) graph. It is denoted byFn. This is traced by connectingn
copies of a cyclic graph of order 3 such that these cyclic graphs have one common vertex.
For n = 5, the friendship graphF5 has 11 vertices and 15 edges.
The Fig.2, depicts the friendship graphF5.

Fig.2

If a given friendship graph admits super totient labeling then we call this as a super totient
friendship graph. In the following theorem, we prove existence of super totient labeling
over a friendship graph.

Theorem 2.2. The friendship graphFn admits super totient labeling. That is, for eachn,
Fn are super totient friendship graphs.

Proof. Let p, q andr be distinct odd primes. Choosev0 as the vertex which is adjacent
to verticesv1, v2, v3, · · · , vn to construct then−fans of a given friendship graphFn. Then
by definition ofFn, E = {ei = vivi+1, i = 1, 3, 5, · · · , 2n − 1} ∪ {e′i = v0vi, i =
1, 2, 3, · · · , 2n} is the set of edges. We define an injective functiong on the vertex setV
such as

g(vi) =
{

r, if i = 0
p

i+1
2 , if i = 1, 3, 5, · · · , 2n− 1

and

g(vi+1) = q
i+1
2 , i = 1, 3, 5, · · · , 2n− 1

Let g∗ be an induced function tog defined on the vertex setV by

g∗(ei) = g∗(vivi+1) = g(vi)g(vi+1), i = 1, 3, 5, · · · , 2n− 1

g∗(e
′
i) = g∗(v0vi) = g(v0)g(vi), i = 1, 2, 3, · · · , 2n



A Novel Labeling Algorithm on Several Classes of Graphs 27

Then by definition ofg, we obtain,

g∗(ei) = g∗(vivi+1) = g(vi)g(vi+1) = p
i+1
2 q

i+1
2 (2. 1)

g∗(e
′
i) = g∗(v0vi) = g(v0)g(vi) = rp

i+1
2 (2. 2)

g∗(e
′
i) = g∗(v0vi+1) = g(v0)g(vi+1) = rq

i+1
2 (2. 3)

Note that ifp andq are distinct odd primes, thenϕ(pq) = ϕ(p)ϕ(q) andϕ(p) is an even
number. Hence, by Lemma 1.5, equations (2.1)-(2.3) yield that the friendship graphFn is
a super totient friendship graph. ¤
Example 2.3. For n = 6, the friendship graphF6 is a super totient-graph, its super totient
labeling withv0 = 11, p = 3, q = 7 is given in Fig.3 .
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Algorithm 1
(super totient labeling of friendship graph Fn )
This algorithm computes integers for vertices of the friendship graphFn to label the edges
with super totient numbers.
Step 1.(Input)Fn, a friendship graph over2n + 1 vertices.
V : Set of vertices ofFn.
E: set of edges ofFn andE = {ei = vivi+1, i = 1, 3, 5, · · · , 2n− 1} ∪ {e′i = v0vi, i =
1, 2, 3, · · · , 2n}
p: wherep is an odd prime.
q: whereq is an odd prime.
q: wherer is an odd prime.
p 6= q 6= r.
g : g is a one-one function onV with g(v0) = r.
g∗ : g∗ is an induced function byg onE.
Setv0 as the central vertex of the wheelFn with g(u0) = r.
Step 2.
{
for

{
i = 1, 3, 5, ..., 2n− 1 do

{
g(vi) = p

i+1
2

g(vi+1) = q
i+1
2
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}
}

}
Step 3.Output (super totient friendship graph.

3. SUPERTOTIENT WHEEL GRAPHS

Definition 3.1. A graph overn vertices is said to be a wheel graph if a fixed vertexu0 is ad-
jacent to all remaining verticesu2, u2, u3, ..., un−1 where the verticesu2, u2, u3, ..., un−1

form a cycle of lengthn− 1. This graph is denoted byWn and has2n− 2 edges.
In the following theorem, we prove that all wheel graphs admit the super totient labeling.

Theorem 3.2. For each integern, the wheel graphsWn are super totient wheel graphs.
That is, every wheel graph admits super totient labeling.

Proof. Let u0 be the vertex of a given wheel graph which is connected with all other ver-
tices (say)u1, u2, u3, · · · , un. Define the edge setE of Wn as follows:
E = {e′i = u0ui, i = 1, 2, ..., n} ∪ {ei = uiui+1, i = 1, 2, ..., n− 1} ∪ {unu1 = en}.
We discuss the cases separately according asn is even and odd. Consider the wheel graph
Wn whenn is even. Letp, q andr be distinct odd primes . To label vertices, we define an
injective functiong on the vertex setV such as:

g(ui) =





r, if i = 0
p

i+1
2 , if i ≡ 1(mod 2), 1 ≤ i ≤ n

q
i
2 , if i ≡ 0(mod 2), 1 ≤ i ≤ n

Now, we define an induced functiong∗ to g as follows,

g∗(ei) = g∗(uiui+1) = g(ui)g(ui+1) , i = 1, 2, ..., n− 1

g∗(e
′
i) = g∗(u0ui) = g(u0)g(ui) , i = 1, 2, 3..., n

Then by definition ofg, we obtain,

g∗(ei) = g∗(uiui+1) = g(ui)g(ui+1) = p
i+1
2 q

i+1
2 , i ≡ 1(mod 2) (3. 4)

g∗(ei) = g∗(uiui+1) = g(ui+1)g(ui) = q
i
2 p

i+2
2 , i ≡ 0(mod 2) (3. 5)

g∗(e
′
i) = g∗(u0ui+1) = g(u0)g(ui+1) = rp

i+1
2 , i ≡ 1(mod 2) (3. 6)

g∗(e
′
i) = g∗(u0ui+1) = g(u0)g(ui+1) = rq

i
2 , i ≡ 0(mod 2) (3. 7)

Note that ifp andq are distinct odd primes, thenϕ(pq) = ϕ(p)ϕ(q) andϕ(p) is an even
number. Hence, by Lemma 1.5, equations (3.4)-(3.7) yield that the wheel graphWn is a
super totient wheel graph.
Now if n is an odd number then, we take distinct odd primesp, q, r ands. Again, we label
vertices as the values of the functiong defined on the vertex setV such that,

g(ui) =





r, if i = 0
p

i+1
2 , if i ≡ 1(mod 2), 1 ≤ i ≤ n

q
i
2 , if i ≡ 0(mod 2), 1 ≤ i ≤ n

s, if i = n,
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Also we define an induced functiong∗ to g as follows,

g∗(ei) = g∗(uiui+1) = g(ui)g(ui+1) , i = 1, 2, ..., n− 2 (3. 8)

g∗(en−1) = g∗(un−1un) = g(un−1)g(un) (3. 9)

g∗(e
′
i) = g∗(u0ui+1) = g(u0)g(ui) , i = 1, 2, 3..., n (3. 10)

g∗(en) = g∗(unu1) = g(un)g(u1) (3. 11)

Equations (3.8) and (3.10) follow the previous case, so we only to prove that the equations
(3.9) and (3.11) assign super totient numbers.

g∗(en−1) = g∗(un−1un) = g(un−1)g(un) = q
i
2 s (3. 12)

g∗(en) = g∗(unu1) = g(un)g(u1) = sp
i+1
2 (3. 13)

Sincep, q, r ands are distinct odd primes, so again by Lemma 1.1, equations (3.12)-(3.13)
assign super totient numbers. Consequently, the wheel graphWn is a super totient wheel
graph. ¤

It is well known that cycleCn can be obtained by deleting the vertexu0 of the wheel
graphWn. Thus the cycle graphs are the non-totally disconnected subgraph of wheels
graphs. Similarly, by deleting some more vertices we can obtain path graphsPn as the
non-totally disconnected subgraph of wheels graphs. The following corollaries are the
simple consequences of Theorem 3.2 and proposition 1.10.

Corollary 3.3. A cycleCn admits a super totient labeling.

Corollary 3.4. A pathPn with n vertices is a super totient graph.

Example 3.5. For n = 8 the wheel graphW8 is a super totient graph, its super totient
labeling withr = 11, p = 3 and q = 7 and forn = 9, the wheel graphW9 is a super
totient graph, its super totient labeling withr = 11, p = 3, q = 7 ands = 19 is given in
Fig.4 .
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In the following algorithm, we summarize Theorem 3.2.

Algorithm 2
This algorithm finds the set of vertices of a given wheel graphWn such that each edge must
be labeled by a super totient numbers by means by Theorem 3.2.
Step 1.(Input)
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Wn, a wheel graph overn vertices;
V : Set of vertices ofWn;
E : Set of edges ofWn andE = {e′i = u0ui, i = 1, 2, ..., n} ∪ {ei = uiui+1, i =

1, 2, ..., n− 1} ∪ {unu1 = en};
g : g is a one-one function onV ;
p : p is an odd prime;
q : q is an odd prime;
r : r is an odd prime;
s : s is an odd prime;
p 6= q 6= r 6= s

Setv0 as the central vertex of the wheelWn with g(u0) = r;
Step 2. do {
if n is eventhen
{
for i = 1, 3, ..., n− 1 do

{
g(ui) = p

i+1
2

g(ui+1) = q
i+1
2

}
}
else
{
for i = 1, 3, ..., n− 2 do

{
g(ui) = p

i+1
2

g(ui+1) = q
i+1
2

}
}

if i = n then g(un) = s
}
Step 3.Output (super totient wheel graph).

4. SUPERTOTIENT COMPLETE GRAPHS

In this section, we prove the existence of super totient labeling over complete graphs, that
is, existence of super totient complete graphs and propose an algorithm to understand the
notion of super totient labeling over complete graphs.

Definition 4.1. If any two distinct vertices of a simple graph are adjacent, then it is called
a complete graph. These are denoted byKn with n vertices andn(n−1)

2 edges.
The complete graphK5 is shown in Fig.5.

Fig. 5
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Theorem 4.2. The complete graphKn admits super totient labeling. That is, for eachn,
Kn are super totient complete graphs.

Proof. Let {v1, v2, v3, · · · , vn} be the set of vertices and
n⋃

i<k, i,k=1

{eik = vivk} be the

set of edges of the complete graphKn. Denote these sets byV andE respectively. LetN
be the set of positive integers.
Define functionsg : V → N such thatg(vi) = 2i, 1 ≤ i ≤ n and an induced function
g∗ : E → N such thatg∗(eik) = g(vi)g(vk), 1 ≤ k ≤ n, i < k.
We need to show that the numbers on the edges are the super totient numbers. For this, we
see that

g∗(eik) = g∗(vivk) = g(vi)g(vk)

= 2i2k

= 2i+k, i + k ≥ 3

Thus by Lemma 1.5,g∗(eik) is a super totient number. ¤

Algorithm 3
This algorithm finds the set of vertices of a given complete graphKn such that each edge
must be labeled by a super totient number.
Step 1.(Input)

Kn, a complete graph overn vertices;
V : Set of vertices ofKn;

E : Set of edges ofKn andE =
n⋃

i<k, i,k=1

{eik} be the set of edges of the complete

graphKn.
Step 2.
{
for i = 1 to n do

{
{

g(vi) = 2i, whereg is an injective function defined overV in Kn.
}

}
}

Step 3.Output (super totient complete graph).

Example 4.3. For n = 6 the complete graphK6 is a super totient graph, is given in Fig.6.
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5. SUPERTOTIENT COMPLETE BIPARTITE GRAPHS

Definition 5.1. A simple graph withm + n vertices is called bipartite if the vertex set can
be partitioned into two subsetsA andB containingm, andn, vertices respectively such
that the graph contains no edge between any pair of vertices formA and fromB itself.
That is, the edges can be built only for those pair for which one vertex is taken fromA and
the other is from the vertex setB. In addition, if each vertex ofA is adjacent to every vertex
of B, the bipartite graph is called a complete bipartite graph. It is denoted byKm,n. In
this case, the complete bipartite graph hasmn edges.
The complete bipartite graphK3,3 is shown in Fig.7.

Fig.7
In the following theorem, we prove the existence of super totient complete bipartite graphs.

Theorem 5.2. The complete bipartite graphKm,n is a super totient complete bipartite
graph. That is, all complete bipartite graphs admit super totient labeling.

Proof. Let A andB be the two partitioned subsets containingm andn elements respec-
tively for the vertex setV of a complete bipartite graphKm,n. TakeA = {v1, v2, v3, · · · , vm}
andB = {v́1, v́2, v́3, · · · , v́n} whereV = A ∪ B. DefineE = {eij = viv́j | 1 ≤ i ≤
m, 1 ≤ j ≤ n}. ThenE is the edge set ofKm,n. Let p andq be two distinct odd primes
and define a functiong : V → N such as,

g(v) =
{

pi, if v = vi ∈ A

qi, if v = v
′
i ∈ B

and an induced functiong∗ : E → N defined as

g∗(eij) = g∗(viv́j)
= g(vi)g(v́j) for, 1 ≤ i ≤ m, and1 ≤ j ≤ n

But then,
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g∗(eij) = g∗(viv́j) = g(vi)g(v́j) = piqj ∀ i, j

Sincep and q are distinct odd primes so, by Theorem 1.6(2),g∗(eij) is a super totient
number. Hence,Km,n is a super totient complete bipartite graph. ¤

Example 5.3. The complete bipartite graphK5,5 is a super totient complete bipartite
graph. Fig.8 depicts its super totient labeling whenp = 3, q = 7. .
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Since every bipartite graph is a non-totally disconnected subgraph of a complete bipartite
graph and complete bipartite graphs are super totient graphs, thus we simply arrive at the
following corollary.

Corollary 5.4. Every bipartite graph is a super totient bipartite graph. That is, every
bipartite graph admits super totient labeling.

In the following algorithm, we present super totient labeling for a given complete bipartite
graphKm,n. This algorithm assigns labels to edges assuring that each edge must be labeled
by a super totient number.
Algorithm 4
Step 1.(Input)

Km,m, a complete bipartite graph overm + n vertices;
V : Set of vertices ofKm,n.

A = {v1, v2, v3, · · · , vm}
B = {v́1, v́2, v́3, · · · , v́n} where,V = A ∪B andA ∩B = ∅
E : Set of edges ofKm,n where,E = {eij = viv́j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
g : g is a one-one function onV.
g∗ : g∗ is an induced function byg onE.
p, wherep is an odd prime.
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q, whereq is an odd prime.
p 6= q.
Step 2.
{

for i:=1tomdo
g(vi) = pi

for j := 1 to n do
g(v́j) = qj

if i 6= j then

{
{

for i := 1 to m do
{

for j := 1 to n do
g∗(viv́j) = g(ui)g(v́j)

}
}

else
g∗(viv́i) = g(ui)g(v́i)

}
}
Step 3.Output (super totient complete bipartite graph).
The explicit constructions of super totient labelings for different families of graphs have
been discussed separately. Therefore, these families of graphs are actually super totient
graphs. It is proved in Proposition 1.1, that every non-totally disconnected subgraph of a
super totient graph is again a super totient graph. This means that, the property of being
super totient is preserved via graph restriction. Moreover, in Theorem 4.1, it is shown that
every complete graph admits super totient labeling and hence every complete graph is a
super totient graph. It is also well-known that every graph withn vertices can be viewed
as a subgraph of a complete graphKn. Therefore, we conclude from Proposition 1.1 and
Theorem 4.1, that every graph with at least one edge (i.e, a non-totally disconnected graph)
admits a super totient labeling as well. For instance, if we start with the labeling ofK6 in
Fig.6 and delete the edges{{4, 64}, {2, 64}, {2, 4}, {8, 16}, {16, 32}, {8, 32}}, then we
immediately recover a super totient labeling forK3,3 (which of course is different from the
one given in Fig.8). Thus, the above discussion leads to the following theorem.

Theorem 5.5. Every graph onn vertices having at least one edge is a super totient graph.
That is, every graph onn vertices having at least one edge admits super totient labeling.
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