Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 49(3)(2017) pp. 15-25

Unsteady Rotational Flow of a Second Grade Fluid with Non-Integer Caputo
Time Fractional Derivative

Nauman Raza
Department of Mathematics,
University of the Punjab, Lahore, Pakistan,
Email: nauman.math@pu.edu.pk

Received: 12 May, 2017 / Accepted: 10 July, 2017 / Published online: 29 July, 2017

Abstract. This article presents some starting solutions corresponding to
unsteady rotational flow of a second grade fluid with the non-integer Ca-
puto time fractional derivatives through an infinite long cylinder. The
fluid in the infinitely long cylinder is initially at rest and at= 0*, the

fluid starts to rotate due to applied shear stress. By using modified Bessel
equation and Laplace transformation, solutions for velocity field and shear
stress are obtained. The solutions are presented in transformed domain in
terms of modified Bessel functiods(-) and; (-) and satisfy all imposed
initial and boundary conditions. In this paper, inverse Laplace transforma-
tion has been calculated numerically by using Stehfest’s algorithm. The
hybrid technique presented in this paper has less computational effort and
time cost as compared to other schemes in literature. Finally, the behavior
of different parameters is graphically examined.
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1. INTRODUCTION

The fluid flow in a translating or rotating cylinder is a healthy discussion for both practical
and theoretical field. Large application of fluids in our daily life such as drilling operation,
food industry, polymers industry, chemical industry and bio engineering made fluid me-
chanics most fascinating field for researchers.
Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo-
Fabrizio fractional derivatives is presented in [2]. The starting motions of second grade flu-
ids with the help of linear constitutive relationship is discussed by Bandelli and Rajagopal
[7], Han [12] also Liu and Hang in [18]. The starting solutions for the motions of second-
grade fluid in a cylindrical domain is discussed by Ting [28] and Srivastava [25]. The first
exact solution for velocity field in an infinite oscillating plate is examined by Stokes [27].
The fractional derivatives within the context of viscoelasticity were firstly described by
Germant [11]. Casarella and Laura [8] presented the solutions of the Second grade fluid
for torsional and longitudinal oscillation. Bagley and Torvik [6] studied the theory of vis-
coelasticity using constitutive relations having fractional derivatives. Later on, Rajagopal
15



16 Nauman Raza

[22] found solutions of a second grade fluid for torsional and longitudinal oscillations of
an infinite rod. Some exact solutions for the motion of a second grade fluid are discussed
in [11-19]. Exact solutions of a Maxwell fluid and a second grade fluid for torsional and
longitudinal oscillations in a cylinder are described by Fetecau [10] and éeali[31]
respectively. Jamil and Fetecau [14] established exact analytic solutions for helical flows
of a second grade fluid between two infinite coaxial cylinders. Cruz and Lins [9] provided
the general solution of unsteady flow generated by an oscillating wall.

Flow of a second grade fluid with fractional derivatives due to a quadratic time dependent
shear stress is discussed by Retzal[23]. A note on the unsteady torsional sinusoidal flow

of fractional viscoelastic fluid in an annular cylinder studied by Mahmetaad [19]. Awan

et al [5] established the exact solution of fractional viscoelastic fluid between two coaxial
circular cylinder. Abdulhameeet al [1] studied the exact solutions for unsteady flow of
second grade fluid generated by oscillating wall with transpiration. Oscillating flows of
fractionalized Second grade fluid in an infinite circular cylinder discussed by &amil

[15]. Effects of chemical reaction on the unsteady flow of an incompressible fluid over a
vertical oscillating plate is presented in [4].

In this monograph, we have found the semi analytical solutions of second grade fluid hav-
ing fractional derivatives in an infinite long cylinder. Semi analytical solutions are found
by using Laplace transformation and modified Bessel equation. The solutions are in trans-
formed form of modified Bessel functiofy(-) and I;(-). To found the inverse Laplace
transform of these type of functions analytically or using contour integration is almost
impossible. Therefore, the inverse Laplace transformation has been achieved through nu-
merical package by using Mathcad software. The validation of the numerical results for
inverse Laplace transform is performed by presenting Table 1, which show comparison of
our Mathcad results with two other numerical algorithms.

2. FORMULATION OF THE PROBLEM
The velocity fieldF for the movement of fluid [32] is considered as
F=F(o,t) = f(o,t)ey, (2. 1)

whereey is the unit vector of cylindrical coordinates,(, z) in 6-direction. Moreover,
when the fluid starts to move, we have

F(0,0) = 0. (2.2)

Consider the governing equations of ordinary second grade fluid [3]

0 o 1
0.0 = (utarg) (55 - 5) S0t @9
af(o,t o 2
R R L] @4
Eliminating&(o, t) from Egs. (3) and (4), we have
/1) _(,, 00\ ( 2 10 1

a <V+a(‘3t> <802 T P f(ot), (2.5)

where{(o,t) = T,0(o,t) is the only nontrivial shear stress,is the dynamics viscosity,
v = % is the kinematics viscosity; is its constant densityy; is a normal stress module
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anda = <*. The flow of second grade fluid with fractional derivatives is governed by the
following model

0 0 1
of(o,t) 0 2 10 1
a 1+ )\315 00?2 + cdo o2 flo:1), 2. 7)
Where% = A. The Caputo fractional differential operator [12] is defined as
t
1 df(Q) 1 .
pefy ={ Tw ] ta et 0 e < 2.8)
g o
dt 0 )

wherel'(-) denotes the Gamma function.
By using the Caputo fractional differential operam?, the equations related to the second
grade fluid having fractional derivatives can be written as

§(U7t):M(1+AﬁDtﬁ> (8(?7_;') flo,t), (2.9)
8fg;’ H_, (1 + AﬁDf) (;‘22 + %(% - 012) f(o,t). (2. 10)

Consider an infinitely long cylinder of radiug through which a second grade fluid is
moving. Att = 0, the fluid is at rest, at = 0™, the cylinder starts to move due to shear
stress. As a result of applied shear stress, the fluid is gradually moved. The appropriate
initial and boundary conditions are

f(0,0)=0; o €]0,R], (2.11)

o 1
— 1 BB - _ = = ; ; 2.12
0= (1+D7) (5= ) sl Gt @12
whereG is a constant and is angular frequency. Egs. (9) and (10) involving fractional
derivatives are solved by using the tool of Laplace transformation and modified Bessel
equation.

3. CALCULATION OF THE VELOCITY FIELD

Taking the Laplace transformation of Egs. (10) and (12), we have

- _

0 g(;,p) N % 6fg;,p) N %ﬂg’ p) — mﬂg, p) =0, (3.13)
a  1\- Gw

(3 - 2) 70| _, = srrmmorea &

wherep is the Laplace transform parameter. We can write Eqgs. (13) and (14) as
Oflo.p)  10f(op) flop) _

Oo? o Oo o2

A(p)f(a,p) =0, (3. 15)

= B(p), (3. 16)




18 Nauman Raza

where

fw
p(L+ MpP)(p? +w?)

AP = i )

andB(p) =

By using variable transformation = o/ A(p) in Eq. (15), we get

mQﬁ +m£ —(14+m*)f=0, (3.17)
m m

which is the modified Bessel equation and the general solution of this equation is given by

f(m,p) = C1I1(m) + Co Ky (m). (3. 18)

HereC; andCs are constantd; (m) and K, (m) are the modified Bessel functions of the
first and second kind respectively. In order to have a finite solutien at 0(c = 0), C
must be zero. Then Eq. (18) becomes

f(o,p) = CiLi(a+/ A(p)). (3.19)
taking derivative of Eq. (19) with respect éq we get
o7
UOD _ o, /A (0 AD)) 3. 20

by using derivative formula of modified funtion
1

df(o,p) _
o, — VAV VA

The dimensionless boundary condition can be written as

(;0 - i) flo,p)

By solving Egs. (21) and (22), we obtain the following value’gf

Io(a/A(p))

LeVAR)|. (.21

— B(p). 3. 22)
oc=R

C) = B (3. 23)

(RVAGo(RVAP)) - 20(RVA())

substituting the value af, in Eq. (19), we get

- _ GwRI(0+/A(p))
f(ovp) - m(p) .

(3. 24)

where
m(p) = u(p? +w?)(1+ Np%) (R AP o (RVAR)) - 211 (RVA()))-

The expression of Eq. (24) is in form of modified Bessel functidgs) and I () of

first kind of order zero and one respectively. For the solution of velocity field, it is almost
impossible to calculate inverse Laplace transform analytically. Therefore, to overcome this
problem, we have used some numerical package to obtain the inverse Laplace transform.
Here, we have found the inverse Laplace transform numerically through Mathcad software.
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4. CALCULATION OF THE SHEAR STRESS

Taking Laplace transform of Eq. (9), we have

v _ 8.8 a?(o—vp) . f(07p)>
o) = (14309 (L0 L)Y, (4. 25)
differentiating Eq. (24) with respect to, we have
9f(0,p) _ GwR\/AW)Ii(0+/A(p)) . 26)
Oo m(p) ' '
The suitable form of above expression is given by
Ofop)  OwF [m/A Vo(o/AP)) — I (0 A(p))} '
do am(p) ’ 4.27)
Substituting Egs. (24) and (27) into Eq. (25), we obtain
B GwR (o+/A(p)Io(c+/A(p)) — 211 (c+/A(p))
Er) = -+ 0y LA am<p> 1 L o
After simplification, we have
) GwR ((o/Ap)o(o\/A) — 211 (0/A(p)))
£(o,p) = (4. 29)

o(p? +w?) (R AR o (RVAD)) - 21 (RVA(R))

After taking inverse Laplace transform of Eq. (29), we obtain the solution of shear stress.
The expression of Eq. (29) is of the same type of Eq. (24). Here, again we have found the
inverse Laplace transform numerically through Mathcad.

5. RESULTS AND DISCUSSION

In this article, semi analytical solutions of shear stress and velocity field of a second
grade fluid with fractional derivatives moving in an infinitely long circular cylinder of ra-
dius R are procured. The tool of Laplace transformation and modified Bessel equation
are used for determining these solutions. The results are obtained in transformed form in
terms of modified Bessel functiordg(-) and 7, (-). The solutions satisfy all the initial and
boundary conditions. The hybrid technique used by us proves itself more suitable in valid-
ity than the previous methods. The time cost and computational efforts of our technique
are also very economical as compared to other existing methods.

The validation of obtained results of velocity is presented in Table 1 and 2. The results
achieved with Mathcad program are compared with two numerical algorithms, called Ste-
hfest’s algorithm [30] and Tzou'’s algorithm [29]. The Stehfest’s algorithm for the inverse
Laplace transform is defined as
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where N is the index of the expansion and be an even number.
The Tzou’s algorithm is based on the Riemann-sum approximation. According to this
method, the inverse Laplace is defined as

u(r,t) = ? l;u (r, 4:) + Re (i(—l)ku (r, W))] , (5. 31)

k=1
whereRe(+) is the real part; is the imaginary unit an@; is a natural number. The values
obtained with Mathcad and Egs. (30) and (31) are given in the following table.

Table 1: Validation of inverse Laplace numerical algorithms for shear stress

[ o [&(o,t) (Stehfest’s)[26] £(o,t) (Tzou's)[30] | £(o, t) (Talbot's)[29] |

0 0 0 0
0.05 0.075649 0.075743 0.075649
0.1 0.160779 0.160972 0.160880
0.15 0.265980 0.266283 0.265540
0.2 0.404168 0.404459 0.404278
0.25 0.592016 0.592596 0.592326
0.3 0.851722 0.852483 0.851521
0.35 1.213259 1.214241 1.213319
0.4 1.717268 1.718522 1.717378
0.45 2.418775 2.420365 2.418625
0.5 3.391958 3.393960 3.391818

Table 2: Validation of inverse Laplace numerical algorithms for velocity field

[ o | flo,t) (Stehfest's)[26] f(o,t) (Tzou’s) [30]] f(o,t) (Talbot’s) [29] |

0 0.000461 0.000461 0.000463
0.05 0.116477 0.116435 0.116428
0.1 0.386015 0.385879 0.384660
0.15 0.834121 0.833834 0.836715
0.2 1.494883 1.494383 1.499594
0.25 2417277 2.416496 2.413299
0.3 3.667521 3.666382 3.667833
0.35 5.332112 5.330529 5.333199
0.4 7.521576 7.519448 7.529401
0.45 10.37494 10.37216 10.376442
05 14.06491 14.06144 14.068432

It is observed from the Tablé and 2 that the results obtained with different numerical
algorithms have a good agreement between them.

In the end, the reaction of different physical parameters is presented by graphs. Finally,
we have plotted some graphs for shear stégsst) and velocity fieldf (o, t) of the fluid

by using Egs. (24) and (29) respectively, to see the effect of various material parameters
on our results. All the graphs have been plotted against the values Bigs. 1(a) and

1(b) depicted for different values of time, the shear stéésst) and velocity fieldf (o, t)

both are directly proportional ta Figs. 2(a) and 2(b) show that the shear stress and the
velocity field are increasing function 6. From Figs. 3(a) and 3(b) figures, we conclude
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that the shear stress and the velocity field are decreasing functidnRigs. 4(a) and 4(b)
represent shear stress and velocity field are increasing functisn Eags. 5(a) and 5(b)
represent shear stress and velocity field are increases by enhancement of kinematic viscos-
ity. Figs 6(a) depict velocity field is decrease as value of dynamic viscosity enhanced.

6. CONCLUSIONS

In this monograph, the motion of a second grade fluid having fractional derivatives is
studied. The flow domain is the inside of a cylinder of radiusThe flow is produced due
to longitudinal stress-force given on the cylinder boundary. Since the Laplace transforms
of the solutions (see Egs. (24) and (29)) are very complex therefore, we have obtained
the inverse Laplace transforms by mean of numerical procedures. Firstly, we employed
a Mathcad numerical code later to provide a validation of obtained results, we have used
other two numerical algorithms, called Stehfest’s algorithm and Tzou’s algorithm.

e Itis concluded from the Table 1 and 2 that we found a good comparison between
results of the three numerical methods.

e The motion of the fluid near the cylinder walls is faster than that in the inner region.

e The shear stress has similar behavior with velocity; therefore, it is increasing when
the fractional parameter enhances.

e Anincrease in the parameters andg causes greater stress and velocity function.

e Anincrease in the parametels i, A causes weaker stress and velocity function.

03 T T T 10 T T T T
ee-stl=03 s—e=at]1=03
04 F t2=0.4 - gl |s—e—s 12=0.4
s t3=05 s 13=0.5
7 =
Lo — ‘Lg
: g
= 02r = =
2 =
01 -
’ 3 &
0 01 02 0 04 03
s o]
(a) Shear Stress (b) velocity

Figure 1: Shear stress and velocity field graphsRoe 0.5, f = 90, v = 0.035754,
u=0.5,3=0.5,\ =1 and various values df
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Figure 2: Shear stress and velocity field graphsRoe= 0.5, f = 90, v = 0.035754,
u=0.5,t=0.3, \ = 1 and various values df.
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Figure 3: Shear stress and velocity field graphstfer 0.3, v = 0.035754, u = 0.5,
f =90, =0.5, A\ =1and various values aR.
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Figure 4: Shear stress and velocity field graphsffoe 90, v = 0.035754, © = 0.5,
(8 =0.5,t=0.3, R = 0.5 and various values of.
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Figure 5: Shear stress and velocity field graphsffoe 90, A = 1, u = 0.5, = 0.5,
t = 0.3, R = 0.5 and various values of.



24 Nauman Raza

(.08 T T T T

006

Velocity field

=
=
Ea

i

(a) Velocity

Figure 6: Velocity field graph fof = 90, A = 1, v = 0.035754, 3 = 0.5, t = 0.3,
R = 0.5 and various values qf.

REFERENCES

[1] M. Abdulhameed, I. Khan, D. Vieru and S. Shafiact solutions for unsteady flow of second grade fluid
generated by oscillating wall with transpiratipAppl. Math. Mech. Engl. Ed35, (2014) 821830.
[2] K. A. Abro and M. A. Solangi,Heat transfer in magnetohydrodynamic second grade fluid with porous
impacts using Caputo-Fabrizoi fractional derivatiy&njab Univ. J. Math49, No. 2 (2017) 113-125.
[3] M. Athar, M. Kamran and M. Imran®n the unsteady rotational flow of a fractional second grade fluid
through a circular cylinderMecc.81, (2011) 1659-1666.
[4] A. U. Awan, R. Safdar, M. Imran and A. Shauké&ffects of chemical reaction on the unsteady flow of an
incompressible fluid over a vertical oscillating plateunjab Univ. J. Math48, No. 2 (2016) 167-182.
[5] A. U. Awan, M. Imran, M. Athar and M. KamrarExact analytical solutions for a longitudinal flow of a
fractional Maxwell fluid between two coaxial cylindePunjab Univ. J. Math45, (2013) 9-23.
[6] R.L.Bagleyand P. J. Torvil4 theoretical basis for the applications of fractional calculus to viscoelasticity
J. Rheol27, (1983) 201-210.
[7] R.Bandelliand K. R. Rajagopé&htart-up flows of second grade fluids in domains with one finite dimension
Int. J. Non-Linear Mech30, (1995) 817-839.
[8] M. J. Casarella and P. A. LaurBrag on oscillating rod with longitudinal and torsional motipd. Hydro-
naut.3, (1969) 180-183.
[9] D. A. Cruz and E.F. LinsThe unsteady flow generated by an oscillating wall with transpiratlon J.
Non-Linear Mech45, (2010) 453-457.
[10] C. FetecausStarting solutions for the motion of a second grade fluid due to longitudinal and torsional
oscillations of a circular cylinderint. J. Eng. Sci44, (2006) 788796.
[11] A. GermantOn fractional differentialsPhilosophical Magazin&5, (1938) 540549.
[12] S. Han,Constitutive equations and calculating analytical theory of Non-Newtonian flGicience Press,
Beijing. (2000).
[13] M. Jamil, A. A. Zafar, A. Rauf and N. A. KharGome new exact analytical solutions for helical flows of
second grade fluig€€ommun. Nonlinear Sci. Num. Simul7, (2012) 141-153.
[14] M. Jamil and C. Feteca®ome exact solutions for rotating flows of a generalized Burgers fluid in cylindrical
domains J. Non-Newtonian Fluid Mech.65, (2010) 17001712.
[15] M. Jamil, N. A. Khan and A. RauBscillating flows of fractionalized second grade fluitath. Phys. 2012,
Article ID 908386, 23 pages.
[16] M. Khan and S. Wand;low of a generalized second-grade fluid between two side walls perpendicular to a
plate with a fractional derivative modgNonlinear Anal: Real World Appl10, (2009) 203208.



Unsteady Rotational Flow of a Second Grade Fluid with Non-Integer Caputo Time Fractional Derivative 25

[17] 1. Khan, R. Ellahi and C. Feteca8pme MHD flows of a second grade fluid through the porous medium
Por. Media 11, (2008) 389400.

[18] C. Liu and J. HuangAnalytical solution for the unsteady rotatory flow of viscoelastic fluids in annular
pipes Acta Math. Appl. Sin19, (1996) 10-14.

[19] A. Mahmood, N. A. Khan, I. Siddique, A. Zada, A. U. Awafy,note on the unsteady torsional sinusoidal
flow of fractional viscoelastic fluid in an annular cylinddr King Saud UniSci23, (2011) 341-347.

[20] A. Mahmood, C. Fetecau, N. A. Khan and M. Janiibme exact solutions of the oscillatory motion of a
generalized second grade fluid in an annular region of two cylind&eta Mech. Sin26, (2010) 541550.

[21] M. Nazar, Corina Fetecau and A. U. Awahnote on the unsteady flow of a generalized secondgrade fluid
through a circular cylinder subject to a time dependent shear stiésslinear Anal: Real World ApplL1,
(2010) 22072214.

[22] K. R. Rajagopallongitudinal and torsional oscillations of a rod in a non-Newtonian fldidta Mech .49,
(1983) 281285.

[23] N.Raza, M. Abdullah, A. R. Butt, A. U. Awan and E. U. Haqiéw of a second grade fluid with fractional
derivatives due to a quadratic time dependent shear stAdseg. Eng. J. (2017).

[24] F. Salah, Z. Abdul Aziz and D. L. Chuan Chingew exact solutions for MHD transient rotating flow of a
second-grade fluid in a porous mediudn Appl. Math.11, (2011) 8 pages.

[25] P. N. SrivastavalNon-steady helical flow of a visco-elastic liquiakch. Mech. Stosl18, (1966) 145-150

[26] H. StehfestAlgorithm 368: Numerical inversion of Laplace transforr@@mmun. ACM.13, (1970) 47-49.

[27] G. G. StokesPn the effect of the rotation of cylinders and spheres about their axis in increasing the loga-
rithmic decrement of the arc of vibratip@ambridge, Cambridge University Press, (1886).

[28] T. W. Ting, Certain non-steady flows of second-order flyiflech. Ration. Mech. Anall4, (1963) 126.

[29] A. Talbot, The accurate numerical inversion of Laplace transfarivA J. Appl. Math.23, (1979) 97-120.

[30] D.Y. Tzou,Macro to Microscale Heat Transfer: The Lagging Behaviolaylor and Francis, Washington,
(1997).

[31] D. Vieru, W. Akhtar and C. Fetecagtarting solutions for the oscillating motion of a Maxwell fluid in
cylindrical domainsMecc.42, (2007) 573583.

[32] S. Wang and M. XuAxial couette flow of two kinds of fractional viscoelastic fluids in an anniNaslinear
Anal: Real World Appl.10, (2009) 10871096.



