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Abstract. We consider a financial market where there are brusque vari-
ations in the price of an asset and an European option on this asset. In
this setup the value as well as the hedging process functions are expressed
in the form of infinite series. For finite expectation of the jumps propor-
tions, we give sufficient condition on the payoff function which leads to
the convergence of the infinite series. We also obtain the upper bound
for the value function, hedging portfolio process as well as for the hedg-
ing process in the Black-Sholes setup. Moreover, we use probabilistic
approach to investigate the variation of the value function.
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1. INTRODUCTION

A financial market is said to be complete if there is a replicating portfolio which en-
sures to price an option in it. In this setup, the stock price is the continuous function of
time and there exits a unique probability measure under which the discounted stock price
becomes a martingale. Considering complete financial markets, Black and Scholes [4]
obtained explicit expression for European type options on the stock which do not pay div-
idends. Merton [25] extended the above mentioned work in a variety of very significant
ways. Bensoussan [2] provided an axiomatic framework to provide the concept of portfo-
lio and pricing risky operations for which there is no market. Bergman, Grundy and Wiener
[3] investigated general properties of the option value function using an analysis of the par-
abolic partial differential equations satisfied by the option value function. They found that
if the stock’s volatility is the function of time and current price of the stock and the inter-
est rate process is hon-stochastic then the price function of the contingent claim is convex
with respect to the price of the stock. Hussain and Shashiashvili [12] used this convexity
property to show that having at hand any uniform approximation to unknown value func-
tion of the American style option it is possible to construct a discrete time hedging strategy
the portfolio value process of which uniformly approximates the corresponding continuous
time portfolio value process. El Karoui, Jeanblanc-Picque and Shreve [8] obtained similar
results using Girsanov theorem and the theory of stochastic flows while Najafi [27] and
Samimi [30] have have considered the pricing problem using CIR and Heston-Hull-White
stochastic volatility models respectively. Rehman, Hussain and Wasim [29] considered the
local volatility and investigated the continuity of the corresponding American option value
function with respect to the variation of local volatility.

Incomplete markets are financial markets where perfect hedging of options is not pos-
sible, it means that there is no replicating portfolio which ensures to price an option in
it. This difficulty comes from the fact that, for finite expiry time of the option, there are
infinitely many equivalent probability measures (see, for example, Lamberton and Lapeyre
[18]) under which the discounted stock price is martingale. Merton [26] did fundamen-
tal work in this setting. He considered the situation in which one plus the jump size is
log-normal distributed. Ellio and Kopp [9] considered price process influenced by Poisson
process and obtained the value function of a sum of European call options. Yan et al. [10]
price the Cliquet options when stock prices follow a general jump-diffusion model with
coefficients are explicitly functions of time. Hussain and Rehman [13] studied regularity
properties of the American option value function under jump-diffusion model. Yongfeng
Wu [34] studied the distribution of the jump-diffusion CIR model (JCIR) and discussed its
applications in credit risk. Mercurio and Runggaldier [24] approximated the value func-
tion of the European call option when the coefficients explicitly depend on time and the
price satisfy a jump-diffusion model. Bergman, Grundy and Wiener [3] gave an example
that jumps in the stock price can lead to a non-convex European call price. Allanus et al.
[33] analyze the pricing of European option when the riskfree interest rate follows a jump
process. More recent works on option valuation and hedging in models with jumps can be
found in Mehrdoust [1, 21, 22, 23], Hipp [11], Schweizer [31], Madan et al. [19], Brock-
haus et al. [5], Madan and Malne [20], Das and Foresi [7], Jailet et al. [14], Karatzas and
Shreve [15, 16], Lamberton and Villeneuve [17], Shreve [32] etc.
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In an incomplete financial market the stock price has unexpected jumps due to the occurring
of uncertain phenomena (for example, some natural disaster, release of unexpected funds
to the market, political changes etc). In this case, it is clear that the price function and
hedging process can be expressed in the form of an infinite series. These series are difficult
to analyze. We impose sufficient condition on the payoff function (the particular case of
which are both the European put as well as the call option) which leads to the convergence
of these series and also ensures the convexity of the European price function. Moreover,
we obtain several equivalent forms in terms of stochastic integrals (the detail study of such
integrals can be found in [6] and the references therein) of the option value function and
study its variational equations.

Our results can be used in the investigation of the discrete time hedging error estimate
of the corresponding option, the optimal exercise boundary and its analysis and useful
information to practitioners on the financial markets.

2. NOTATIONS AND ASSUMPTIONS

We consider an European option on a stock where there are unexpected huge jumps
in its price. On the probability spad€, 7, P) we define a standard Brownian process
W = (Wy)o<i<r, a sequenc¢l;);>; of independent and identically distributed ran-
dom variables taking values in open interyall, co) with finite expectation and Poisson
processN = (IV;)o<i<7 With intensity valueX. Assume the time horizof' is bounded
and that thes-algebras generated ¥V, )o<i<7, (U;);>1 and (N;)o<i<7 respectively
are independent. Denote b¥;)o<:<7r the P-completion of the natural filtration qfi?’; ),
(U;)Li<n,,j > 1,and(N), 0 <t < T. We also assume that, in each finite time interval,
there are finite number of jumps in the asset price and the price jumps in the independent
and identically distributed proportions.

On filtered probability spac&?, F, Fi, P)o<:<, let us consider a financial market on
two assetd\f;,0 < ¢t < T, the price of the unit of a money market account at given time
t, andS;,0 < ¢t < T-value of a share of the stock at this time, where the price jumps
in the proportiond/, Us, ... at random timesy, 7», .. .. Let us suppose that the time's
correspond to the jump times of Poisson process.

The asselM/; evolves according to the ordinary differential equation

th = 7'(t)Mtdt, MO = 1, 0 S t S T,
where the interest rate process) is a non-negative, bounded and deterministic function

of time.
The stock prices; obeys the following stochastic differential equations

Nt
dS; = S;— | b(t)dt + o(t)dW, +d [ > U; | |, 0<t<T, (2. 1)

Jj=1

where (b(t), Fi)o<t<T IS SOme progressively measurable procets, denotes the left-
hand limit of the stock price &t the volatility o(¢) is also deterministic functions of time.
Moreover the following conditions are satisfied:

0<o(t) <a, |b(t) <a,
forall t € [0, 7] and wheres is some positive constant.
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From the differential equation ( 2. 1), the dynamicsSpfcan be expressed as:

S, = So (ﬁu + Uj)> exp [/Ot (b(u) - "22(“)> du + /Ota(u)qu] 2. 2)

Jj=1

0
with the convention] | = 1.
j=1

~ R t . .
The discounted stock pricg = e~ o "(®)4“ S, is a martingale (see, for example, Lam-
berton and Lapeyre [18]) if and only if

/ b(u)du = / (r(u) — AE(Uy))du. (2.3)
0 0

Under condition ( 2. 3), equation ( 2. 1) takes the form

dS, = Sy ((r(t) — AE(Uy))dt + o(t)dW; + d (Z Uj)) L0<t<T,

j=1
and expression ( 2. 2 ) becomes

Ny

Sy = So (H(1 + Uj))

Jj=1

X exp Uot <T(u) — \E(U1) — “22(“)) du+/0ta(u)qu] L (2.9

MoreoverS, evolves as

Nt
dS; = r(t)(Si— — Sy)dt + Sy (—/\E(Ul)dt + o (t)dW; +d (Z Uj) ) ,

with B
3 = S (ﬁlu + Uj)> exp {— /Ot (/\E(Ul) + "22(“)) du + /Ot a(u)qu} .

Assume an investor starts trading with a non-random initial portfolio VEI{g. He holds
A(t),0 < t < T, number of stocks of the underlying asset and invegts — A(¢)S; on
a bank account a time Then the portfolio value proce$Ki¢) evolves as

dIL(t) = r(t) [I(t) — A()Sy] dt + A(t)dS,,0 < t < T,

with
R, t R,
TI(t) = e o "()dv {H(O) +/ Av)d (e_ ; r(wdusv)] 0<t<T. (2. 5)
0

Since the portfolio proces&(t),0 < ¢ < T, is bounded (as it will be clear from the later
expressions) the above expression (2. 5) shows that the discounted portfolio value process
is a martingale if and only if the condition ( 2. 3) does hold.
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A non-path dependent European contingent claim is defined through an adapted sto-
chastic procesg(Sr) at expiration timel’, whereg(y) is called the payoff function of the
claim if exercised at tim@'. The payoff of an European call (respectively put) option on
an asset is defined g$y) = (y — K)* (respectivelyy(y) = (K — y)™), where the non-
negative constari’ is called the exercise price. Throughout the work, we suppose that the
payoff functiong(y) is convex and is only the function of the price of the risky asset at time
t,0 <t < T. This function is continuous and has one sided derivatives (see, for example,
Niculescu and Persson [28]) on the open intef@abo). We also assume

lg'(y£)| < ¢, y € (0,00), (2. 6)

wherec is some non-negative constant.

The typical examples of our model are put and call options where the payoff function
satisfiedg’(y)| < 1.

From Lamberton and Lapeyre [18] the explicit expression for the European option at
timet is given as

R
o(tS) =B (e Ty (Sr)| 7).
using ( 2. 4) we can write

v(t,z) =
Rz RtT r(v) = AE(U1) - {2 dv+RtTU(v)de+_ w In(14+U;)
Ele ¢ T(U)dvg xe J=N¢+1
2.7

whereS; =z > 0.

3. MAIN RESULTS IN THECLASSICAL BLACK-SCHOLES SETUP

In this section, we investigate the evolution of the value function in the Black-Scholes
setup and see how the value function and hedging process are bounded from above and
further we investigate how these bounds depend on the proportions of the jump size.

In the classical Black-Scholes setup, let us denote by

v(t,Sy) = B(T —t,St;r,0, N\, E(Uy)), 0<t < T,
where

. r=AB(U1)— % t+o We+t = In(1+U;)
= El|le g | ze i=t , (3. 8)

wheret = T'—t, z > 0 and where we have used the fact that the law of the Poisson process
N; — N, is identical to the law ofV;_,, forall t,s,0 < s,t < T.
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Further ( 3. 8) can be expressed as
B(t,z;r,0,\, E(Uy))

—rt

e
 oV2nt

- - - —At )" -1 U— r— _ o2 2
X EZ/ g xe“H(1+Uj) #626% ABU) =% ¢ g

—o0 . n!
e ()"

= 1 U | ——2

\/ﬁ Z/ I Z] 1 +0 n!

— o2 2
> eﬁ Inz—lnz— r7=AE(Uy)—% t @’ (3 9)

z

where we have used the change of variable ze".
In general, using condition ( 2. 6 ) and the fact thatandV; are independent, we can
bound as

B(t,z;r,0,\, E(U7))

e—rt & o n e_At()\t)n
< FE | cxe" 1+7U;) s
= N%;_:O/_oo E !

-1 AE(U) -2 ¢
x e UT TTAEUN=T E g,

b
_ ert< AMEWU) > 3.10
2V/2 (810

whereb is an arbitrary constant satisfyibgr 21/2cze*t#(U1) > 0,

The right side of (3. 10) is finite only it (U;) < oo.

In particular, the value function of the European call, whgi® = (y — K)™, can be
expressed as

Bc(t? xr,o, Aa E(Ul))
+
67” e o0 n efkt()\t)n
= —F—=F z 1+U)- K| ———
oV2rt ,;)/o J[[l( i) n
=L Inz-lnz— r—)\E(Ul)—"T zdz

X eZozt
z

oo —)\t n
. —rtEZ /\t H (1 + U;)wer 2B

7j=1

%—g (1+Uj)*(7‘*)\E(U1)+%2)t

x N — Ke™ "t
oVt
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o eiAt()\t)”
K 7rtE =\
+ € ; n!

mE — S In(1+0U;) - (r CAE(UY) — %) t
j=1

x N o~

The latter expression gives the jump-free bound
Be(t,z;r,0,\, E(Uy)) < o+ Ke ™. (3.11)

While the value function of the European put option, with paydff) = (K — y)™, can
be expressed in the form of an infinite series as

BP(t,x;r,0,\, E(Uy))
e —)\t )\t

— —TtEZ

n=0
In & - VZ In(1+0;) = (r = AB(@W) + 5 ) ¢
N =1
oVt

n

H —‘rU xe(r AE(Up))t

X

é n(1+0j) - (r=AE(U) - 5 ) ¢
+ KN s ]

and the jump free bounded is given as
BP(t,xz;r,0,\, E(U1)) < e ™K. (3.12)

Comparing (3. 11) and ( 3. 12 ) we observe that the value of the European call can take
larger value than that of European put.

Since the exponential function containimgn the second expression of the value func-
tion in (3. 9) is continuous for alx, z) € (0,00) x (0,00) and has also continuous
first order derivative with respect tg therefore we can interchange the derivative and the
improper integral and can write from ( 3. 9) as

0B
87(13, xr,r,o, )\, E(Ul))
ef/\t()\t)n
- [Ta+uy | =
U%t\/?w Z/ i) n!

-1 o2 2
< e2o% Inz—Inz— r=AE(U1)—% t

(lnz—lnx— (r—)\E(Ul)—U;> t) % (3.13)

X
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The expression ( 3. 13 ) guarantees us to write from ( 3. 9) an equivalent form for the
partial derivative with respect to as

B
?’9 (t,z;r 0.\, E(Uy))

- - e M)
= Z ee* [J+05) | e* [+ Uj) ———
\/277 / =1 =1 n!

% 62;21t u— r—AE(Ui)—
e Tt > /oc n n 7)\1:()\1:)
= —=F g |z 1+U)) 1+4+U;)——
ax\/27rt nz:;) 0 E( ]1;[1 '

2

B 52
i Inz—Inz— r=AE(U1)—% t dz. (3 14)

X 6202(:

Further from (3. 13), using ( 2. 6 ) we can estimate the absolute value

’af(t,m;na,)\,E(Ul))‘

2

—rt —At n _ 2
Z/ “(1+ B(Uy))" 790 ez U TNt g,
n.

< e MFEU) (3. 15)

It is clear from the latter expression that the partial derivafifgt, z;r, o, \, E(U1)) is
bounded by a constant.
Using the same argument as above we can also write

%—f(t,x;r,a, N E(Uy))
1 = e ()"
= _ (r—|— ) \/ﬁ Z/ g | xe H(1+Uj) 0

Jj=1

2 2
2t u— r=AE(U1)—% t du

X €20

e =, [ . e XE(\t)"
+ ————F / ve" [+ 1) | ——2
203t2\/27t nz:% ! ]1;[1 nt

AE(U )22 ¢ o? 2
X 6202': u- = ( 1)_7 ¢ (U - (T - )\E(U]) - 2) t) du
(’I“ — )\E(Ul) — %) e T oo oo n e—)\t(/\t)n
E xe" 1+U;) | —————
o3ty 27t 7;)/_009 H( 3) n!

_|_
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2

o 2 2
x eieE VT TABUD-T 6, (u— <r—/\E(U1) - a) t) du

Z/ (g xe® (1+U)( 2)

/\e—rt
+

— g| e H +Uj) )e“zt um ToABUN)= % ¢ du} o(dz), (3.16)

wherep(dz) is a probability measure which gives the distribution of the juripsj =
1,2, ... in the log-price ofS;, 0 < t < T.

From expressions ( 3. 13 ) and ( 3. 16 ) we observe that, under the condition ( 2.
6), B(-,;r,0,\, E(Uy)) is in classC*2([0,T) x (0,00)). Moreover, since/(y) is an
increasing function, the first expression of the partial derivative in ( 3. 14 ) guarantees the
convexity of the value function with respect:ito

From Lamberton and Lapeyre [18] an admissible hedging stral€gyminimizing the
risk at expiration tim&” can be expressed as

_ 1 ,0B .
A(t) - o2 ¥ )\fZ2dQ(Z) (O' ox (T_ t,I,’I", Ua)‘7E(U1))

+ A/E(B(T—t,x;r,a,)\,E(Ul))
X

B(T —t,z(1+ 2);r,0,\, E(UY))) dg(z)),

wherey(z) is the law of the random variablés, j = 1,2, ....
Using ( 3. 15) we can obtain the bound for the admissible strategy foi0 and all¢,
0<t<T.
The portfolio value procesH(¢),0 < ¢ < T, can be obtained by inserting the value of
A(t),0 <t <T,inthe expression (2.5).
Moreover ( 3. 13) gives
2 0

xaz(

_e—rt > e} n e n
= ——F z 1+U; _
o3t/ 27t nz_;)/o g 31;[1( i) n!

2

t,x;r,0,\, E(Uy))

—1 o2
% ezl Inz—lnz— r7=AE(Uy)—% t

2
X (lnz—lnx— <T—)\E(U1) - 02> t) %

e—rt 0 oS} n e )
4+ —F=F / 2| |1+Uj) | ————
o%t2y/27t ;J 0 g H n!

Jj=1
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1 22
% ezl Inz—Inz— r—AE(U1)—% t

o? > dz
X <lnz—lnx— (r—)\E(Ul)—2> t) —
z

et e 0o n ef/\t()\t)n
- - __F 1+U;) | =24
vt 20/0 ! ( J[[l ) !

1 -2 2
e Inz—Inz— r=AE(U;)—% t %

) (3.17)
z
And

0B
oo

_e-Tt o0 oo n ef)\t()\t)n
= ———F 1 e
o2+/27t ;/mg (I 1;[ JrU ) n!

(t,z;r 00\, E(Uy))

— - 7‘—)\E(U1)—"—2 t :
X e207t 2 du
n efAt()\t)"
+ v TT(1 4+ Uy) | ——
041;\/271' nzo/ g ( 1;[ ) n!

=l u— rAE(U)-% ¢ o? ?
X et v (u— (r—)\E(Ul)—2> t) du

n 6_)\t(At)n
—1 o2 2 2
% ez YT r=AE(U1)—-% t du (u _ (7' — /\E(Ul) — 2) t) du. (3 18)

Combining equations (3. 17 ) and ( 3. 18) we find

0’B 1 0B
xQW(t,x;r,a,)\,E(Ul)) —~ 7 —(t,z;7m,0,\, E(Uy)), 0<t <T,  (3.19)
and using (3.9),(3.13),(3.16)and (3. 18) we obtain

OB
E(t,x;r, o, A\, E(Uy))

— Bt o\ E(U) + @ (r — NE(U)) g—f(t,x;r, o\ E(U))
o 0B

+ % 99 —(t,z;r,0,\, E(Uy))

+ )\/ B, 5(1 + 2):m, 0.\, E(UL)) — B(t, 27,0, A, E(U)))o(d2).
(3. 20)
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Combination of ( 3. 19) and ( 3. 20) also give us

%—f(t,x;r, o, A\, E(Uy))

= —rB(t,z;r,0,\, E(U1)) + z (r — AE(U1)) g—f(t, x;r,o,N E(Uy))
2 Ox?

+ )\/OO(B(t,:U(l +2);r,0,0 E(Uy)) — B(t,x;r,0,\, E(Uy)))o(dz).
- (3. 21)

From ( 3. 21 ) we see that if the stock price path is continuous, thatis=f0, then this is
simply the Black-Scholes’ equation satisfied by the value function of the option.

(t,x;r, 00\, E(Uy))

4. CONCLUSION

We consider a risky stock in an incomplete financial market where there are unexpected
huge jumps in the prices of assets. In this case there is no perfect valuation as well as
hedging. However, if the corresponding payoff is convex with respect to the current stock
price then the value function is also convex and satisfy several variational equalities which
strongly depends on the distribution of the jumps.
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