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A Numerical Treatment for the Stability of Josephson Vortices in BEC
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Abstract. We consider a system of a pair of quasi one dimensional Bose-
Einstein condensates which are coupled with each other. The waveguides
of the two condensates are assumed to be parallel. The system can be
characterized by two coupled nonlinear Schrodinger equations. This sys-
tem admits different topological structures such as vortices. We present a
numerical treatment for the stability of Josephson vortices and dark soli-
tons in a coupled system of Bose-Einstein condensate.
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1. INTRODUCTION

One of the captivating phase of matter that was first predicted theoretically by Bose and
Einstein in 1924 is Bose-Einstein condensate (BEC) [10, 17, 18]. For achieving this phase,
atoms are cooled to a temperature close to absolute zero so that they coalesce into a single
quantum state and can be described on a macroscopic scale. This phase of matter was
realized experimentally in 1995 at Joint Institute for Laboratory Astrophysics (JILA) by E.
Cornell and C. Weimann for the atoms of rubidium gas [2]. In the same year, W. Ketterle
of Massachusetts Institute of Technology (MIT) attained a BEC of sodium atoms in the
laboratory [6].

The experimental formation of atomic BEC leads to investigate the existence and stabil-
ity of different nonlinear structures such as vortices [7, 24] and solitons [5, 9, 14, 26]. The
subject of solitons has been an interesting area of study. A soliton is referred to as a wave
that does not alter its shape when it is propagating with a specific velocity. In a nonlinear
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dispersive media, the solitons arise due to equalizing the effects of dispersion. There are
different kinds of solitons but commonly studied solitons are bright and dark solitons. The
terms dark and bright are coined from optics where they manifest dark and bright spots,
respectively, in optical fibres.

Dark solitons are the nonlinear excitations which have a sudden dip in their intensity at
the centre with a continuous wave background. One dimensional dark solitons are stable
objects [8], yet in higher dimensions, they have snake instability [16]. Nonetheless, in
condensates with spherical geometry, the instability induces the dark solitons to slip into
stable vortices. Atomic vortices in BEC have been investigated experimentally as well as
theoretically in [7].

A superconducting Josephson junction is a junction that consists of a pair of super-
conductors separated by a flimsy non-conducting material. A Bose-Josephson junction is
similar to a superconducting Josephson junction that consists of two BECs separated by a
barrier. The idea of Bose-Josephson junction was introduced by Smerzi [25] in 1997. Short
Bose-Josephson junctions were studied in detail in [11, 19, 25]. Long Bose-Josephson
junctions that admit different topological structures were investigated in [4]. In [4], the
demonstration of the circulation of supercurrent in a quasi one dimensional parallel cou-
pled waveguides was presented. This circulation of supercurrent was named as Josephson
vortices. It was found that the phenomenon of the existence of these vortices is analogues
to that of Josephson vortices in superconducting long Josephson junction. The system of
quasi one dimensional BEC under the influence of a variety of magnetic potentials could
have potential applications in atomic interferometry [3].

The interconversion of Josephson vortices and dark soliton was presented in [12, 13].
The authors discussed the stability of dark solitons and Josephson vortices by employing
the energies of these structures. Following [12], we present a mathematical justification of
the stability of Josephson vortices and dark solitons while varying the value of coupling
strength in an effectively one dimensional parallel coupled BEC.

2. MATHEMATICAL MODEL AND METHODS

We consider the atoms of two quasi one dimensional cigar shaped coupled BEC with
repulsive interaction. When the temperature is near to absolute zero, the thermal oscil-
lations up to the first order can be ignored and the dynamics of the condensates can be
characterized by the following system of nonlinear coupled Schrodinger equations

iξ̇1 = −1
2
ξ1xx + τ |ξ1|2ξ1 − ωξ1 + ηξ2, (2. 1)

iξ̇2 = −1
2
ξ2xx + τ |ξ2|2ξ2 − ωξ2 + ηξ1, (2. 2)

wheret andx denote the time and space variables respectively. The dot denotes the
derivative with respect to time andξ1 andξ2 are the wave functions of the two condensates
of BEC atoms. The coupled systems of BEC have been investigated in connection with
various effects. For example, the interaction between the momentum and spin of a quantum
particle i.e. spin-orbit coupling was studied in [27] and its dynamics was discussed in [15].
A comprehensive study of gap solitons with experimentally realizable spin-orbit coupling
was presented in [28]. Excitation spectra for dark solitons in spin-orbit coupled BEC was
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investigated in [1]. The existence and stability of Josephson vortices and dark solitons in
the presence of a harmonic trap was studied in [20, 21, 22] while the stability analysis of
multi-Josephson vortices was presented in [23].

In our coupled system of eq. ( 2. 1 ) and eq. ( 2. 2 ), we have ignored the dissipative
terms and assumedη as the coupling parameter,τ the nonlinearity coefficient andω the
chemical potential which is assumed to be same in both condensates. The sign of nonlin-
earity coefficient can be either positive or negative depending upon the interaction between
the atoms of BEC. Here, we consider the interaction to be positive i.e.τ > 0. The steady
state solitons family for the system of eq. ( 2. 1 ) and eq. ( 2. 2 ) in an infinite medium is
[12, 13]

ξ1 =
√

1 + η tanh(ax) + ibsech(ax), (2. 3)

ξ2 =
√

1 + η tanh(ax)− ibsech(ax). (2. 4)

The dark soliton in whichξ1 = ξ2 corresponds tob = 0 and a =
√

1 + η. The
Josephson vortices that satisfy both reflection and time reversal symmetries correspond
to b =

√
1− 3η anda = 2

√
η. To obtain the time independent solution numerically, we

may substitutėξ1 = 0 = ξ̇2, so that eq. ( 2. 1 ) and eq. ( 2. 2 ) becomes

−1
2
ξ1xx + τ |ξ1|2ξ1 − ωξ1 + ηξ2 = 0, (2. 5)

−1
2
ξ2xx + τ |ξ2|2ξ2 − ωξ2 + ηξ1 = 0. (2. 6)

As ξ1 andξ2 are complex, we can write them in terms of real and imaginary parts such
asξ1 = α1 + iα2 andξ2 = α3 + iα4. Using these values in eq. ( 2. 5 ) and eq. ( 2. 6 ) and
then equating the real and imaginary parts, we get

1
2
α1xx − τ(α3

1 + α1α
2
2) + ωα1 − ηα3 = 0, (2. 7)

1
2
α2xx − τ(α2

1α2 + α3
2) + ωα2 − ηα4 = 0, (2. 8)

1
2
α3xx − τ(α3

3 + α3α
2
4) + ωα3 − ηα1 = 0, (2. 9)

1
2
α4xx − τ(α2

3α4 + α3
4) + ωα4 − ηα2 = 0. (2. 10)

Applying central difference approximations to above equations, we get

1
2

[
α1,i−1 − 2α1,i + α1,i+1

(∆x)2

]
− τ(α3

1,i + α1,iα
2
2,i) + ωα1,i − ηα3,i = 0, (2. 11)

1
2

[
α2,i−1 − 2α2,i + α2,i+1

(∆x)2

]
− τ(α2

1,iα2,i + α3
2,i) + ωα2,i − ηα4,i = 0, (2. 12)
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FIGURE 1. A Josephson vortices solution obtained numerically forτ =
1, ω = 1 andη = 0.2. The black curves represent the real parts and the
blue curves are the imaginary part of the solution.

1
2

[
α3,i−1 − 2α3,i + α3,i+1

(∆x)2

]
− τ(α3

3,i + α3,iα
2
4,i) + ωα3,i − ηα1,i = 0, (2. 13)

1
2

[
α4,i−1 − 2α4,i + α4,i+1

(∆x)2

]
− τ(α2

3,iα4,i + α3
4,i) + ωα4,i − ηα2,i = 0. (2. 14)

wherei = 1, 2, 3, ...N . The eq. ( 2. 11 ), eq. ( 2. 12 ), eq. ( 2. 13 ) and eq. ( 2. 14
) represent a system of algebraic equations which is nonlinear. There are several methods
available for getting the solutions of nonlinear systems. Using any suitable method, one
can obtain the solution. We solved the above system numerically using Neumann condi-
tions. The Josephson vortices and the dark soliton solutions are shown in Fig. 1 and Fig. 2
respectively.

3. STABILITY

Let us now investigate the stability of the dark solitons and the vortices solutions. Let
ξ̂1 andξ̂2 denote the time independent solutions of eq. ( 2. 1 ) and eq. ( 2. 2 ) andp1(x, t),
p2(x, t) be the perturbation functions, respectively. These perturbations are assumed to be
as small as their squares and higher powers may be ignored. So, we can writeξ1(x, t) =
ξ̂1 + p1(x, t), ξ2(x, t) = ξ̂2 + p2(x, t). Inserting these values in eq. ( 2. 1 ) and eq. ( 2. 2 )
and linearizing the resulting equations, we obtain

iṗ1 = −1
2
p1xx + 2τp1|ξ̂1|

2
+ τ p̄1(ξ̂1)2 − ωp1 + ηp2, (3. 15)
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FIGURE 2. A coupled dark soliton solution obtained numerically for
τ = 1, ω = 1 andη = 0.2. The black curves represent the real parts
and the blue lines are the imaginary part of the solution.

iṗ2 = −1
2
p2xx + 2τp2|ξ̂2|

2
+ τ p̄2(ξ̂2)2 − ωp2 + ηp1, (3. 16)

where bar is used for the complex conjugate. Taking conjugate of the above equations, we
can write

−iṗ1 = −1
2
p̄1xx + 2τ p̄1|ξ̂1|

2
+ τp1(ξ̂1)2 − ωp̄1 + ηp̄2, (3. 17)

−iṗ2 = −1
2
p̄2xx + 2τ p̄2|ξ̂2|

2
+ τp2(ξ̂2)2 − ωp̄2 + ηp̄1. (3. 18)

For simplification, we substitutep1 = α, p2 = β, p̄1 = δ and p̄2 = Γ in the above
equations to obtain

iα̇ = −1
2
αxx + 2τα|ξ̂1|

2
+ τδ(ξ̂1)2 − ωα + ηβ, (3. 19)

iβ̇ = −1
2
βxx + 2τβ|ξ̂2|

2
+ τΓ(ξ̂2)2 − ωβ + ηα1, (3. 20)

−iδ̇ = −1
2
δxx + 2τδ|ξ̂1|

2
+ τα(ξ̂1)2 − ωδ + ηΓ, (3. 21)

−iΓ̇ = −1
2
Γxx + 2τΓ|ξ̂2|

2
+ τβ(ξ̂2)2 − ωΓ + ηδ. (3. 22)

It is easy to see that the above system of equations after discretization process can be
expressed as an eigenvalue problemAX = λX with the eigenvaluesλ. The solution will
be stable if every eigenvalue is real. Nonetheless, if any one of the eigenvalue is complex,
the solution will become unstable.
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FIGURE 3. The graph of the real versus the imaginary parts of the eigen-
values for the dark solitons withτ = 1, ω = 1 andη = 0.2.

First, we consider the dark soliton solution and find the eigenvalues of the coefficient
matrix A. These eigenvalues are shown in Fig. 3. It is evident from this figure that only
two eigenvalues are complex and all the remaining eigenvalues are real. This shows that the
dark soliton is unstable for the parameter values shown where the value of coupling factor
is 0.2. We found the eigenvalues for different values of the coupling parameter and noticed
that the dark soliton solution remains unstable forη < 1/3. In Fig. 4, the graph between
coupling parameter and the maximum value of the imaginary parts of the eigenvalues has
been shown by black curve. This curve shows that the dark soliton solution is unstable for
η < 1/3. At η = 1/3, the solution becomes stable.

Next, we consider the Josephson vortices solution and find the eigenvalues ofA for
different values of coupling parameter. It is found that all eigenvalues remain real for
every value of coupling parameter. Since all eigenvalues were found to be real and lying
horizontally, we did not show that graph. However, in Fig. 4 the graph for the stability of
Josephson vortices solution has been shown while varying the coupling parameter by red
line. This shows that the solution exists and remains stable for0 < η < 1/3. At η = 1/3,
solution changes into dark soliton.

Finally, the full system of eq. ( 2. 1 ) and eq. ( 2. 2 ) has been solved numerically
to see the evolution of the unstable solutions at later stages which has been shown in Fig.
5. A typical evolution of the dark soliton has been depicted ensuing the instability of dark
solitons. Due to the chaotic behavior, the radiations emerge close tot = 30 and validates
the results obtained above as well as in [12].
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FIGURE 4. The graph of the stability curves for dark solitons and
Josephson vortices solutions. The black curve is for dark solitons and
the red curve is for Josephson vortices.
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FIGURE 5. The time evolution of the unstable dark soliton solution ob-
tained numerically in Fig. 2. The left part corresponds toξ1 and the right
part toξ2.
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4. CONCLUSIONS

In this paper, we have considered a system of two quasi parallel coupled one dimen-
sional waveguides of Bose-Einstein condensates. The dynamics of the system has been
characterized by two coupled nonlinear Schrodinger equations. The system exhibits dif-
ferent topological spatial configurations. Typically, we have obtained coupled dark soliton
and Josephson vortices solutions numerically. A mathematical justification for the stability
of both solutions was presented. It was found that the Josephson vortices solution remains
stable in its whole domain of existence. Nevertheless, the dark soliton exists and remains
unstable forη < 1/3 but becomes stable forη ≥ 1/3.
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