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Abstract. Hepatitis B is a contagious liver infection caused by hepatitis B
virus and is a worldwide public health problem. According to WHO about
350 million people are suffering from this chronic disease. Therefore mil-
lions of peoples are at stack of cirrhosis, hepatocellular carcinoma, and
cancer of liver or even liver failure. Hepatitis B still has necessary com-
plex issues that must be addressed effectively. In this research paper, we
have developed NSFD scheme for HBV model. The simulations show
that our proposed NSFD scheme gives stable, unconditional, positive and
converging results at all step sizes as compared to the traditional RK-4
method and Euler method which diverge at large step sizes and produce
negative and unstable results with large oscillations.Later we have ana-
lyzed the local asymptotic stability of this proposed NSFD scheme using
Linearized Stability Theorem and Schur-Cohn Stability Criteria.
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1. INTRODUCTION

Hepatitis B Virus is a life threatening liver disease and a pandemic health problem [1, 4]
especially in developing countries [3]. This liver disease is caused by Hepatitis B Virus [1].
Nearly 360 million people are suffering from this contagious disease and about 350-400
million are HBV carriers worldwide [2, 3, 6]. Among them more than 240-400 million are
HBV chronic liver infected and 150-170 are HCV chronic infected [1,4, 5, 7, 8]. Acute or
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chronic hepatitis B causes 780,000 deaths annually [4]. WHO estimates that more than two
billions of people are HBV infected and 360 millions of people are chronically infected [2,
10] and 15% - 40% chronically infected peoples develop serious complications like Cir-
rhosis, Hepatocellular Carcinoma (HCC) and cancer of liver that causes millions of deaths
annually [2, 5, 9].
Mathematical models have become prominent tool for good decision making to analyze the
control and treatment of infectious diseases [11] because they help to study underlying dy-
namics and quantitative behavior of viral infections like HBV from certain population[33].
G. F. Medley et al. presented a historical model [12] of HBV endemicity, dynamics and
control where they extended the HBV model of natural history. They demonstrated that
infection remains despite reproduction number is less than unity(R0 < 1). They plotted
the proportion of population (seropositive) against R0 and observed backward bifurcation
[14]. After that [13, 14, 38] and many other authors extended model [12] by incorporating
different compartments and parameters like horizontal and vertical transmissions, external
controls and feedback parameters. Later [15, 36, 37] also extended models [13] and [38]
by utilizing latent period and migration effect respectively to develop their own HBV mod-
els. So their Models also indirectly based on [12]. Another extension of model [12] was
developed by [1] by incorporating the vaccination and treatment impacts and this model
[1] is our model of interest.
Non-Standard Finite Difference Scheme (NSFD) is a discrete representation of a system of
DE’s [25]. This scheme possesses consistent, convergent and stable solutions [28, 29]. This
scheme possesses some properties of continuous model for extreme values for given set of
parametric values, which generally do not satisfied by Euler and RK-4 methods. More-
over in some cases frequency of oscillations is not conserved at large step sizes. Therefore
more accurate numerical schemes in form of discretization of continuous model is required
[39].Historically different researchers [30, 31, 32] have worked on NSFD scheme dealing
with such issues. All these authors developed NSFD schemes for different classes of dy-
namical systems. Marcus and Mickens [23] developed positive numerical methods for the
model of photoconductivity of semiconductors. Piyanwong et al. in [40] developed positive
NSFD scheme for SIR epidemic model andM. Y. Ongun and I. Turhanin [34] constructed
and analyzed a nonstandard numerical scheme for a mathematical model describing the
HIV infection of CD4+ T cells. S. Riaz et al. [41] proposed unconditional NSFD scheme
for quadratic Riccati differential equation. Some authors have also numerically dealt with
such models taking into consideration the impact of fluid flow [42, 43, 44, 45, 46]. Here
we are going to develop NSFD scheme for HBV model [2]. In this paper we proposed an
unconditional stable NSFD scheme for the mathematical model of hepatitis B virus under
vaccination and treatment impacts. Numerical simulations show a great potential towards
stability and convergence of NSFD scheme with both smaller and larger step sizes where
other numerical schemes such as RK-4 and Euler methodsdo not agree with it at larger step
sizes. These schemes do not remain convergent as we increase the step size. The main use
of our proposed NSFD scheme for HBV is very effective in presenting certain qualitative
properties of continuous model. We will show that the discrete model constructedusing
NSFD scheme is unconditionally guarantee the positivity of solution of the corresponding
original system of ODE’s. Numerical simulations show that when we go on increasing step
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FIGURE 1. Schematic representation of HBV Model

sizes the traditional numerical schemes RK-4 and Euler method diverges but NSFD always
gives converging results. Thus NSFD is better than other two traditional schemes.

2. MATERIAL AND METHODS

2.1. Mathematical Model. We consider HBV disease model [1] under vaccination and
treatments effects. This model has been demonstrated by system (2.1-2.5) of coupled
ODE’s and its schematic representation has been given in Figure 1.

˙S(t) = ν − νp1C − νp2R− ρ(I + θC)S − νS − u1S + λ4R (2. 1)
˙E(t) = ρ(I + θC)S − (ν + λ1)E (2. 2)

˙I(t) = λ1E − (ν + λ2)I (2. 3)
˙C(t) = νp1C + p3λ2I − (ν + λ3)C − u2C (2. 4)

˙R(t) = νp2R+ (1− p3)λ2I + λ3C − νR− λ4R+ u1S + u2C (2. 5)
With initial conditions S(0);E(0); I(0);C(0);R(0) ≥ 0[15]

Where all the parameters are defined in Table1. For simplicity and convenience nor-
malizing the population size to 1, then S,E, I, C,R are fractions of susceptible, exposed,
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infected, chronic carriers and recovered population. Therefore S+E+I+C+R = 1 holds
[1, 13, 15]. Thus fifth equation can be omitted and substituting R = 1 − S − E − I − C
in first equations yields the following reduced model

˙S(t) = ν − νp1C − ρ(I + θC)S − νS − u1S + (λ4 − νp2)(1− S −E − I −C) (2. 6)
˙E(t) = ρ(I + θC)S − (ν + λ1)E (2. 7)

˙I(t) = λ1E − (ν + λ2)I (2. 8)
˙C(t) = νp1C + p3λ2I − (ν + λ3)C − u2C (2. 9)

Taking stable population such that per capita birth and death rate ν are equal. Disease
induced death rate is neglected here and λ1 is the rate of transforming exposed individuals
to infections individuals. The rate of acute infection is termed as λ2, and λ3 represents
spontaneous recovery rate from carrier to recovered class. θ Represents infectiousness of
carriers w.r.t. acute infections. p3 is acute infection proportion where individual become
HBV carriers and remaining move towards immunity state. ρ(I+θC)S, represents disease
propagation phase of horizontal transmission and is formulated using mass action term in
which ρ is contact rate. Vertical transmission is formulated as νp1C and ν−νp1C−νp2R
is birth flux into susceptible class.

2.2. Construction of Non-Standard Finite Difference (NSFD) Scheme for HBV Model.
In order to develop NSFD scheme for model (2.6-2.9) we start with following rules [22-
29].
Rule 1. Order of discrete derivatives and derivatives appearing in the DEq’s should be
same. Higher order of discrete derivative results into numerical instabilities.
Rule 2. Discrete representation must possess nontrivial denominator.
Rule 3. Non-linear terms are replaced by nonlocal discrete representation.
Rule 4. Special conditions holding for differential equations and their solutions must hold
for difference equations and its solutions.Mickens in [25] has discussed these rules in de-
tails. We have briefly narrated the basic rules here for objective of constructing NSFD
scheme for our model of interest. In [26] J. Sunday et al. have included the fifth rule
Rule 5. Solutions offinite-difference equations and differential equations should not be ex-
actly same.
Further we replace the first derivative of x(t) by discrete representation [25, 27] given by

dx(t)

dt
≈ xi+1 − f(h)xi

Φ(h)
(2. 10)

Where f and Φ are functions having step size h = ∆t and ti = ihand x(t) → xi where
(f,Φ) are such that f(h) = 1 + O(h)and Φ(h) = h + O(h2). Conventionally, we take
f(h) = 1 and Φ(h) = h(to make huge calculations simple). By utilizing the above men-
tioned techniques, rules and [16-24], we propose following NSFD scheme for system (2.6-
2.9)

Sn+1 − Sn

Φ(h)
= ν − νp1Cn − ρ(In + θCn)Sn+1 − νSn+1 − u1Sn+1

+(λ4 − νp2)(1− Sn − En − In − Cn)− λ4Sn+1 + νp2S
n

(2. 11)
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En+1 − En

Φ(h)
= ρ(In + θCn)Sn+1 − (ν + λ1)En+1 (2. 12)

In+1 − In

Φ(h)
= λ1E

n − (ν + λ2)In+1 (2. 13)

Cn+1 − Cn

Φ(h)
= νp1C

n + λ2I
n − (ν + λ3)Cn+1 − u2Cn+1 (2. 14)

Where Φ(h) = 1−e−hM

ρ and ρ = max(ν, ν) which guarantee the condition of positivity
[19]. Note that this scheme satisfies Ṡ + Ė + İ + Ċ + Ṙ = 0 (i.e. total population
equals to constant)when n → ∞ then h → 0. Rearranging explicit formulation of system
(2.11-2.14) we get

Sn+1 =
Sn + Φ(h)(ν − νp1Cn + (λ4 − νp2)(1− En − In − Cn) + νp2S

n)

1 + Φ(ρ(In + θCn) + u1 + ν + λ4)
(2. 15)

En+1 =
En + Φ(h)ρ(In + θCn)Sn+1

1 + Φ(h)(ν + λ1)
(2. 16)

In+1 =
In + Φ(h)λ1E

n

1 + Φ(h)(ν + λ2)
(2. 17)

Cn+1 =
Cn + Φ(h)(νp1C

n + p3λ2I
n)

1 + Φ(h)(ν + λ3 + u2)
(2. 18)

3. SIMULATIONS OF MATHEAMTICAL MODEL

In this sectionwe have simulated HBV model using Euler Method, RK-4 Method and
NSFD scheme. In all simulations we have used parametric values from Table. 1. In these
simulations we have taken the horizontal axis as the time (in years) and vertical axis as
Susceptible, Exposed, Acute Infected and Carriers populations such that total population do
not exceed unity. But in simulations demonstrated in Figures(2-8) we have only simulated
the susceptible population versus time under the impact of both vaccination and treatment.
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FIGURE 2. Behavior of susceptible population at step size 0.2

FIGURE 3. Behavior of susceptible population at step size 0.3
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FIGURE 4. Behavior of susceptible population at step size 0.4

FIGURE 5. Behavior of susceptible population at step size 0.5
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Table 1: Parametric values used in our simulations
Parameter Description Values Sources
ν Birth and death rates 0.0121 [1]
ρ Transmission rate 10(0.8-20.49) [1]
θ Carrier Infectiousness w.r.t Acute

Infections
0.5 [1]

λ1 The rate at which exposed become
acute

6 per year [1]

λ2 Rate of acute infection 4 per year [1]
λ3 The rate at which carrier become re-

covered
0.025 per year [1]

λ4 Loss of recovery rate 0.03 [1]
p1 Infected newborns probability 0.11 [1]
p2 Immune newborns probability 0.1 [1]
p3 Proportion at which Acute Infection

becomes Carriers
0.05 [1]

S0 Susceptible individuals 0.493 [1]
E0 Exposed individuals 0.0035 [1]
I0 Acute infection individuals 0.0035 [1]
C0 Chronic HBV carriers 0.007 [1]

We are interested to investigate the behaviour of HBV model populations at both small and
large step sizes. We have simulated first the behavior of susceptible population using Euler
method, RK-4 method and NSFD Scheme at step size 0.2 for the case u1=1, u2=1. Sim-
ulations depicted in Figure.2 show that susceptible remain convergent for three numerical
schemes at small step sizes. Then we increased the step size to 0.3 for the same case. At
this step size Euler method starts to oscillate and RK-4 and NSFD Scheme remain con-
vergent as have been demonstrated in Figure.3. Similarly at step size 0.4 Euler method
diverges with large oscillation but RK-4 method and NSFD Scheme remain convergent.
Although Euler method diverges with large oscillation but we have taken the limits of ver-
tical axis from -10 to 10 in order to show the impact of three methods simultaneously. At
step size 0.5, RK-4 method also diverges but NSFD Scheme remain convergent as have
been demonstrated in Figure. 5. At Step sizes 0.6 and 0.7 we get almost similar results that
both Euler and RK-4 method diverges but NSFD Scheme converges. At all large step size
NSFD Scheme remain convergent for example at step size 5 both RK-4 and Euler method
diverges but NSFD again remain convergent. Thus NSFD gives stable, positive, uncondi-
tional and converging results in all cases for all step sizes.Bhavior of susceptible population
for case when vaccination and treatment applied at different step sizes has been tabulated in
Table.2. Similarly other populations exposed, infected and carrier behaves almost similar
for different step sizes as in case of susceptible population.
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Table 2: Response of Susceptible Population for NSFD Scheme, RK-4 and Euler Method
Step
Size

NSFD Scheme RK-4 Method Euler
Method

0.01 Converges Converges Converges
0.05 Converges Converges Converges
0.09 Converges Converges Converges
0.1 Converges Converges Converges
0.2 Converges Converges Converges
0.3 Converges Converges Converges
0.4 Converges Converges Diverges
0.5 Converges Diverges Diverges
0.6 Converges Diverges Diverges
0.8 Converges Diverges Diverges
1 Converges Diverges Diverges
10 Converges Diverges Diverges
10 Converges Diverges Diverges

4. STABILITY ANALYSIS OF NON-STANDARD FINITE DIFFERENCE SCHEME

For stability of discrete NSFD Scheme (2.15-2.18) we use the following theorems which
confirms the local asymptotic stability of this scheme.

4.1. Linearized Stability Theorem. Let t̂ be an equilibrium point of the difference equa-
tion tn+1 = F (tn, tn−1, , tn−k), n = 0, 1, where function F is a continuously differen-
tiable function defined on some open neighborhood of an equilibrium point t̂. Then the
following statements are true.

• If all the roots of characteristic polynomial have absolute value less than one, then
the equilibrium point t̂ is locally asymptotically stable.

• If at least one root of the characteristic polynomial has absolute value greater than
one, then the equilibrium point t̂ is unstable[34].

Now we are interested to develop jacobian matrix for system of equations (2.15-2.18). For
our convenience we replace Φ(h) by h in order to make calculations as simple and brief as
possible and let

F =
ν − νp1C + (λ4 − νp2)(1− E − I − C) + νp2S)

1 + h(ρ(I + θC)S + u1 + ν + λ4)
(4. 19)

G =
E + h(ρ(I + θC)S

1 + h(ν + λ1)
(4. 20)

H =
I + hλ1E

1 + h(ν + λ2)
(4. 21)

K =
C + h(νp1C + p3λ2)I

1 + h(ν + λ3 + u2)
(4. 22)
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Constructing Jacobian matrix for the system of equations (4.19-4.22)

JNSFD =


E1 E2 E3 E4

E5 E6 E7 E8

0 E9 E10 0
0 0 E11 E12

 (4. 23)

Where E1 = 1+νp2h
1+h(ρ(I+θC)+u1+ν+λ4)

E2 = −h(λ4−νp2)
1+h(ρ(I+θC)+u1+ν+λ4)

E3 = (1+h(ρ(I+θC)+u1+ν+λ4))(−h(λ4−νp2))−(S+h(ν−νp1C+(λ4−νp2)(1−E−I−C)+νp2S)hν
(1+h(ρ(I+θC)+u1+ν+λ4))2

E4 = (1+h(ρ(I+θC)+u1+ν+λ4))(−νp1h−(λ4−νp2))
(1+h(ρ(I+θC)+u1+ν+λ4))2

−(S+h(ν−νp1C+(λ4−νp2)(1−E−I−C)+νp2S)hθ
(1+h(ρ(I+θC)+u1+ν+λ4))2

E5 = h(ρ(I+θC)
1+h(ν+λ1)

E6 = 1
1+h(ν+λ1)

E7 = hρS
1+h(ν+λ1)

E8 = hρSθ
1+h(ν+λ1)

E9 = hλ1

1+h(ν+λ2)

E10 = 1
1+h(ν+λ2)

E11 = hp3λ2

1+h(ν+λ3+u2)

E8 = 1+hνp3
1+h(ν+λ3+u2)

Firstly we investigate the local asymptotic stability at disease free equilibria. So we
need dfe which can be calculated as follows. Put Ṡ = Ė = İ = Ċ = 0 in system (2.6-
2.9) and put E = I = C = 0 (for disease free case) then the given system of equations
yields disease free equilibria EDFE = (Sdfe, Edfe, Idfe, Cdfe) = (Sdfe, 0, 0, 0)Where
Sdfe = ν+(λ4−νp2)

ν+u1+λ4−νp2 i.e. Edfe = (Sdfe, 0, 0, 0) = ( ν+(λ4−νp2)
ν+u1+λ4−νp2 , 0, 0, 0). In the absence

of vaccination, u1 = 0;Sdfe = ν+(λ4−νp2)
ν+λ4−νp2 = 1. Therefore Edfe = (1, 0, 0, 0)

Now at Edfe = (1, 0, 0, 0) the above jacobian matrix becomes

JNSFD =


F1 F2 F3 F4

0 F5 F6 F7

0 F8 F9 0
0 0 F10 F11


Where F1 = 1+νp2h

1+h(u1+ν+λ4)

F2 = −h(λ4−νp2)
1+h(u1+ν+λ4)

F3 = (1+h(u1+ν+λ4))(−h(λ4−νp2))−(1+h(ν+(λ4−νp2)(νp2hν)
(1+h(u1+ν+λ4))2

F4 = (1+h(u1+ν+λ4))(−νp1h−(λ4−νp2))−(1+h(ν+(λ4−νp2)νp2hθ
(1+h(u1+ν+λ4))2

F5 = 1
1+h(ν+λ1)

F6 = hρ
1+h(ν+λ1)
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F7 = hρθ
1+h(ν+λ1)

F8 = hλ1

1+h(ν+λ2)

F9 = 1
1+h(ν+λ2)

F10 = hp3λ2

1+h(ν+λ3+u2)

F11 = 1+hνp3
1+h(ν+λ3+u2)

Applying row operations on above matrix we get the following matrix

JNSFD =


G1 G2 G3 G4

0 G5 G6 G7

0 0 G8 G9

0 0 0 G10


Where G1 = 1+νp2h

1+h(u1+ν+λ4)

G2 = −h(λ4−νp2)
1+h(u1+ν+λ4)

G3 = F3

G4 = F4

G5 = F5

G6 = F6

G7 = F7

G8 = 1
1+h(ν+λ2)

+ −hλ1hρ
1+h(ν+λ2)

G9 = −hλ1hρθ
1+h(ν+λ2)

G10 = 1+hνp3
1+h(ν+λ3+u2)

+ ( −hνp3λ2

1+h(ν+λ3+u2)
)(−hλ1hθρ

1−hλ1hρ
)

Characteristics Equation of above Jacobian is

|JNSFD − ηI| = 0

∣∣∣∣∣∣∣∣
G1 − η G2 G3 G4

0 G5 − η G6 G7

0 0 G8 − η G9

0 0 0 G10 − η

∣∣∣∣∣∣∣∣ = 0

This is upper triangular matrix whose Eigen values are given by

η1 = G1

η2 = G5 = F5

η3 = G8

η4 = G10
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At h = 0.01 and u1 = 1, u2 = 1
η1 = 0.9832 < 1, η2 = 0.9433 < 1, η3 = 0.9454 < 1, η4 = 0.9345 < 1,

At h = 0.01 and u1 = 0, u2 = 0
η1 = 0.9929 < 1, η2 = 0.9433 < 1, η3 = 0.9554 < 1, η4 = 0.9433 < 1,

At h = 0.05 and u1 = 1, u2 = 1
η1 = 0.9212 < 1, η2 = 0.7689 < 1, η3 = 0.6829 < 1, η4 = 0.7413 < 1,

At h = 0.05 and u1 = 0, u2 = 0
η1 = 0.9657 < 1, η2 = 0.7689 < 1, η3 = 0.6829 < 1, η4 = 0.7698 < 1,

Therefore, Spectral Radius=Maximum absolute Eigen value =η1 = |0.9929| < 1. Sim-
ilarlyat large step sizes h and using different values of u1 and u2 all eigen values remain
less than unity. Therefore all the Eigen values of Characteristic equation lie in the unit
circle thus by linearized stability theorem our developed NSFD scheme unconditionally
possesses local asymptotic stability at DFE.

4.2. Schur-Cohn Stability Criteria. For the characteristics polynomial p(λ) = λ3 +
A1λ

2 +A2λ+A3 carrying solutions λj : j = 1, 2, 3 of equation p(λ) = 0 satisfy |ηj | < 1
if following conditions are satisfied [34]

1. p(1)=1+A1 +A2 +A3 > 0
2.(−1)3p(−1) = 1−A1 +A2 −A3 > 0
3.1− (A3)2 > |A2 −A1A3|

The characteristics equation od Jacobian (4.23) is given by∣∣∣∣∣∣∣∣
η − F1 F2 F3 F4

0 η − F5 F6 F7

0 F8 η − F9 0
0 0 F10 η − F11

∣∣∣∣∣∣∣∣ = 0

Expanding with respect to first column

(F1 − η)

∣∣∣∣∣∣
η − F5 F6 F7

F8 η − F9 0
0 F10 η − F11

∣∣∣∣∣∣ = 0

Which implies that

(η − F1)(η3 − (F11 + F5 − F9)η2 + ((F9F11 + F5(F11 + F9)− (F8F6))η

−((F5F9F11) + (F8F6F11) + (F8F7F10)) = 0
(4. 24)



Unconditional Stable NSFD Scheme for HBV Model 111

FIGURE 6. Behavior of susceptible population at step size 0.6

FIGURE 7. Behavior of susceptible population at step size 0.7
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FIGURE 8. Behavior of susceptible population at step size 5

FIGURE 9. Spectral Radius vs Step Size
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Above expression can be written in more simplified form as

(η − F1)(η3 +A1η
2 +A2η +A3) = 0

Where
A1 = −(F11 + F5 − F9)

A2 = ((F9F11 + F5(F11 + F9)− (F8F6))

A3 = −((F5F9F11) + (F8F6F11) + (F8F7F10))

Clearly first Eigen value η = F1 = 0.9996 < 1 for all combinations of controls and for
other Eigen values we consider the polynomial η3+A1η

2+A2η+A3 = 0. By substituting
all parametric values from Table.1 with combination of u1 = 1, u2 = 1 and h = 0.05 we
get
1. p(1)=1+A1 +A2 +A3 = 0.0542 > 0
2.(−1)3p(−1) = 1−A1 +A2 −A3 = 2.4161 > 0
3.1− (A3)2 > |A2 −A1A3| because 1− (A3)2 = 0.9703 and |A2 −A1A3| = 0.0727
Similarly for all combinations of u1 and u2 and for all step sizes h above three conditions
are satisfied. Thus by Schur-Cohn Stability Criteria all Eigen values lies in the unit circle
and this theorem confirms the local asymptotic stability of our developed NSFD scheme.
Secondly for stability analysis at Endemic Equilibria we find the jacobian of system of
equations (4.19-4.22) at endemic equilibria points. So firstly we find EE of system (2.6-
2.9). For endemic equilibria we put Ṡ = Ė = İ = Ċ = 0 in system (2.6-2.9) and replacing
(S,E, I, C) by (S∗, E∗, I∗, C∗) then the system of differential equations yields the follow-
ing endemic equilibria points.
Case-1 u1 = 0, u2 = 0 (No Vaccination, No Control)

S∗
1 =

(ν + λ1)(ν + λ2)(ν + λ3 − νp1)

ρλ1(ν + λ3 + θp3λ2 − νp1)

E∗
1 =

ρθ(ν + λ2)C∗
1S

∗
1

(ν + λ1)(ν + λ2)− ρλ1S∗
2

I∗1 =
ρθλ1C

∗
1S

∗
1

(ν + λ1)(ν + λ2)− ρλ1S∗
2

C∗
1 =

p3λ1λ2(ν + λ4 − νp2)S∗
4 (R0 − 1)

(ν + λ3 − νp1)W
Where

W = ((ν + λ4 − νp2)(ν + λ2 + λ1) + λ1λ2) + p3λ1λ2(νp1 + λ4 − νp2)

Case-2 u1 = 0, u2 6= 0 (No Vaccination, Control)

S∗
2 =

(ν + λ1)(ν + λ2)(ν + λ3 − νp1 + u2)

ρλ1(ν + λ3 + θp3λ2 − νp1) + u2

E∗
2 =

ρθ(ν + λ2)C∗
2S

∗
2

(ν + λ1)(ν + λ2)− ρλ1S∗
2

I∗2 =
ρθλ1C

∗
2S

∗
2

(ν + λ1)(ν + λ2)− ρλ1S∗
2
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C∗
2 =

p3λ1λ2(ν + λ4 − νp2)S∗
4 (R0 − 1)

(ν + λ3 − νp1 + u2)W

Case-3 u1 6= 0, u2 = 0 ( Vaccination, No Control)

S∗
3 =

(ν + λ1)(ν + λ2)(ν + λ3 − νp1)

ρλ1(ν + λ3 + θp3λ2 − νp1)

E∗
3 =

ρθ(ν + λ2)C∗
3S

∗
3

(ν + λ1)(ν + λ2)− ρλ1S∗
3

I∗3 =
ρθλ1C

∗
3S

∗
3

(ν + λ1)(ν + λ2)− ρλ1S∗
3

C∗
3 =

p3λ1λ2(ν + u1 + λ4 − νp2)S∗
4 (R0 − 1)

(ν + λ3 − νp1)W

Case-4 Generalised Case u1 6= 0, u2 6= 0 ( No Vaccination, No Control)

S∗
4 =

(ν + λ1)(ν + λ2)(ν + λ3 − νp1 + u2)

ρλ1(ν + λ3 + θp3λ2 − νp1 + u2)

E∗
4 =

ρθ(ν + λ2)C∗
3S

∗
3

(ν + λ1)(ν + λ2)− ρλ1S∗
3

I∗4 =
ρθλ1C

∗
3S

∗
3

(ν + λ1)(ν + λ2)− ρλ1S∗
3

C∗
4 =

p3λ1λ2(ν + u1 + λ4 − νp2)S∗
4 (R0 − 1)

(ν + λ3 − νp1 + u2)W

Where

R0 = ρ(FV −1) =
λ1ρSdfe(ν + λ3 + u2 + p3λ2θ − νp1)

(ν + λ1)(ν + λ2)(ν + λ3 + u2 − νp1)

With

Sdfe =
ν + (λ4 − νp2)

ν + u1 + λ4 − νp2
Is known as reproduction number which can also be calculated by using recipe of Ven

den Driessche and Watmough [35]. We can reduce the value of R0 by applying both vacci-
nation and treatment. When we insert the parametric values from Table.1 in above endemic
equilibria points, these implies endemic point values demonstrated in Table.3 below

Table 3: Endemic Equilibria Points of HBV Model
Controls R0 S C E I
u1 = 0, u2 = 0 2.5288 >1 0.3954 0.00027 0.0552 0.0825
u1 = 0, u2 = 0 2.5229 >1 0.3964 0.0024 0.0551 0.0824
u1 = 1, u2 = 0 1.0508 >1 0.3954 0.0002193 0.0044 0.0066
u1 = 1, u2 = 0 1.0483 >1 0.3964 0.0001794 0.0042 0.0063
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And Jacobian of equation (4.19-4.22) at endemic equilibria points are given by

JNSFDat(S1, E1, I1, C1) = (0.3954, 0.0552, 0.0825, 0.0027)

JNSFDat(S2, E2, I2, C2) = (0.3964, 0.0551, 0.0824, 0.0024)

JNSFDat(S3, E3, I3, C3) = (0.3954, 0.0044, 0.0066, 0.0002193)

JNSFDat(S4, E4, I4, C4) = (0.3964, 0.0042, 0.0063, 0.0001794)

At all equilibria points we find the absolute maximum Eigen value of the Jacobian matrix
which should be less than unity and meet the linearized stability theorem. We have find
these values numerically and plotted the spectral radius versus step size for four cases(u1 =
0, u2 = 0;u1 = 0, u2 = 1;u1 = 1, u2 = 0;u1 = 1, u2 = 1) and are shown in Figure.9.
Value of spectral radius in all cases remain less than unity which ensure that all Eigen values
of the jacobian matrix remain less than unity and ultimately confirms the local stability of
NSFD scheme.

5. RESULTS AND DISCUSSION

The traditional numerical schemes like Euler method and RK-4 Method generally pro-
duce negative, oscillatory, unstable and diverging results when we simulate biological mod-
els at large step sizes. Therefore we want a numerical schemes which produces positive,
stable and converging results at all step sizes. In this research work we proposed an uncon-
ditional nonstandard finite difference scheme for HBV mathematical model which carry
these qualities. It produces positive and converging results for this model at large step
sizes where Euler and RK-4 methods produce diverging results. We have simulated the
HBV model using three numerical schemes by varying step sizes as shown in Figures(2-8).
Along vertical axis we have taken the fractions of compartmental populations because we
have taken total populations equals to unity and along horizontal axis we have taken time
in years. We are interested to study the behavior of these compartmental populations at
large step sizes. Figure.2 to Figure.8 demonstrate when we increase the step sizes, Eu-
ler method diverges at step size nearly 0.4 and RK-4 method diverges at step size 0.5 but
NSFD Scheme remain converging for all large step sizes. The detailed variation of out-
comes of three numerical techniques with varying step sizes have been demonstrated in
Table-2.Moreover we have proved the stability of our proposed NSFD scheme by using
Linearized Stability Theorem and Schur-Cohn Stability Criteria. We have stated the basic
theorems and applied them on our proposed NSFD scheme (2.15-2.18). We have found the
Eigen values of the characteristics equation for jacobian of discretized model. For DFE all
Eigen values are less than unity which confirms that all Eigen values lie in unit circle. This
confirms the local asymptotic stability of our proposed NSFD Scheme. For EE we have
used numerical codes to find the spectral radius versus step size. The simulationsin Fig-
ure.9 show that spectral radius remain less than unity for all four cases. As spectral radius
is maximum value of Eigen values thus all Eigen values for endemic case are also less than
unity. Both theorems confirmed the local asymptotic stability for our discretized NSFD
scheme (2.15-2.18) at DFE and EE.Thus NSFD scheme is also computationally efficient
than other two traditional numerical schemes.
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6. CONCLUSION

We have proposed a Nonstandard Finite Difference Scheme which carries stable, pos-
itive and unconditional solutions, for a model of HBV transmission dynamics. We have
numerically solved this model using Euler method, RK-4 method and NSFD scheme. Sim-
ulations of the model show that NSFD is better than other two numerical techniques be-
cause NSFD always produces positive, stable and converging results at large step sizes
where as other two techniques diverges at large step sizes. Finally Schur-Cohn stability
criteria and Linearized stability theorem both confirmthe local asymptotic stability of our
proposed NSFD scheme.
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