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Abstract. In this paper we propose a nonstandard finite difference scheme
for an epidemic model which considers the effect of media coverage on the
spread of some infectious diseases. We show that this scheme preserves
equilibrium points of the corresponding continuous system. Furthere more
we study the qualitative properties of the system, such as, positivity, stabil-
ity of the equilibria and Neimark-Sacker bifurcation. The results demon-
strates that the discretized epidemic model is dynamically consistent with
the continuous system.
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1. INTRODUCTION

Mathematical models play a key role in analysing the spread and control of infectious
disease, taking into account various factors of the disease. When an infectious disease
spreads in a population, peoples choose various precautionary actions such as wearing
masks, avoiding public places, avoiding travel with sickness, frequent hand washing,...
Media coverage and education help the promotions of this precautions and reduce the con-
tact rate of individuals, hence affect the spreading and control of the disease. The impact
of media awareness have been studied by many researchers using mathematical modeling,
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see [4,10,14,18,23]. Cui et. al. in [4] study the effect of media coverages on the spread of
some infectious diseases. They consider the following categories in the population: S(t),
the number of susceptibles, E(t), the number of exposed but not infectious individuals, and
I(t), the number of infected individuals who are infectious.
By assuming that the total population obey logistic growth, their model takes the following
form:

dS

dt
= bS

(
1− S

K

)
− µe−mISI,

dE

dt
= µe−mISI − (c+ d)E, (1. 1)

dI

dt
= cE − γI,

in which all parameters are positive, and β(I) = µe−mI is the contact transmission rate,
which is not only related to the spreading ability of the disease, but also related to the alert-
ness of each susceptible individual of the population. The parameter m reflects the impact
of media coverage to the contact transmission, see [4] for more details.
In this paper we apply nonstandard disceretization procedure to system (1.1). First in sec-
tion 2, we construct a nonstandard finite difference scheme for (1.1) and study its properties
such as positivity, steady states and boundedness of total population. In section 3 we study
stability and bifurcations of the disceretized model in some cases. Our results demonstrate
that the discretized epidemic model is dynamically consistent with the continuous model,
hence it can be applied in numerical studies of the continuous model.

2. THE NSFD SCHEME

A mathematical model for infectious disease such as (1.1) can be denoted by a first order
system of ordinary differential equations:

dX

dt
= f(X, k),

X(t0) = X0 (2. 2)

where f : Rm → Rm, X = X(t) : [0,+∞) → Rm with initial condition X0 ∈ Rm and
k = (k1, k2, ...) represents the system parameters.
To transform a continuous system into a discrete system, the continuous variable t ∈
[0,+∞) must be replaced by the discrete variable n ∈ N, and the variable X(t) must
be replaced by the discrete values Xn. This transformation yields a difference equation of
the form G(Xn+1, Xn) = 0, where G : Rm × Rm → Rm. In some cases, Xn+1 is given
explicitly in terms of Xn:

Xn+1 = F (Xn) (2. 3)

where F : Ω ⊆ Rm → Rm.
There are several methods for discretization of differential equations such as forward Euler
and Runge Kutta methods. The forward Euler method is one of the oldest methods. In this
method one consider the following substitions

X → Xn



A Nonstandard Finite Difference Scheme for a SEI Epidemic Model 135

,
dX

dt
→ Xn+1 −Xn

∆t

where ∆t is the step size and Xn+1 ≈ X(t + n∆t). Mickens, [12], showed that the
forward Euler transformation and Runge Kutta methods, leads to numerical instabilities
that do not appear in the original differential equation. To avoid these instabilities, Mickens
suggest what is known as the nonstandard finite difference method, based on the concept
of dynamic consistency, [13], as indicated in [11].
The first order ODE, dX

dt = f(X, k) and the difference equation, Xn+1 = F (Xn, k,∆t),
are dynamically consistent, when the difference equation posses the same steady states,
stability, bifurcation and chaos of the original differential equation.
A finite difference method is called an NSFD schemes if it has the conditions described in
[11], in which one of the main conditions is that nonlinear terms must be replaced by non
local terms. Mickens nonstandard discretization method have been used to various kinds
of problems, see [1-3,5-6,8,11-13,16-17,19-21]. We apply this method to epidemic model
(1.1).
Let h > 0 denote the time step size. For the construction of NSFD scheme, we use the
following substitions to model (1.1): in the first equation, S → Sn, S2 → Sn+1Sn,
I → In and SI → Sn+1In. In the second equation, E → En+1 and SI → Sn+1In.
Finally in the third equation, E → En+1 and I → In+1. Using this substitions we obtain
the following system of difference equations,

Sn+1 − Sn

h
= bSn − b

K
Sn+1Sn − µe−mInSn+1In,

En+1 − En

h
= µe−mInSn+1In − (c+ d)En+1,

In+1 − In
h

= cEn+1 − γIn+1.

The above difference system is implicit, but it can be rearranged to its explicit form:

Sn+1 =
(1 + bh)Sn

1 + b
KhSn + µhIne−mIn

,

En+1 =
En + µhSn+1Ine

−mIn

1 + (c+ d)h
, (2. 4)

In+1 =
In + chEn+1

1 + γh
,

An important characteristic of dynamical systems, espesially in those from biology, is that
solutions must remain non negative in order to have well posedness.
From the positivity of parameters of (2.1), it is clear that this method preserves positivity
of solutions, in fact if S0 ≥ 0, E0 ≥ 0 and I0 ≥ 0 then Sn ≥ 0, En ≥ 0 and In ≥ 0 for all
n ≥ 1.

For a discrete dynamical system defined by (2.2) a steady state X̄ ∈ Rm respects to the
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condition F (X̄) = X̄ , therefore in (2.3) we must solve the following system:

S =
(1 + bh)S

1 + b
KhS + µhIe−mI

,

E =
E + µhSIe−mI

1 + (c+ d)h
, (2. 5)

I =
I + chE

1 + γh
.

Clearly (0, 0, 0) and (K, 0, 0) are equilibrium points of (2.3). Furthere more (2.3) has
endemic equilibrium points.
At first as in the continuous case [4], we define the basic reproduction number by

R0 =
µcK

γ(c+ d)
.

Now if m = 0, when R0 > 1, (2.3) has the endemic steady state, (S∗
0 , E

∗
0 , I

∗
0 ) as follows:

S∗
0 =

γ(c+ d)

µc
=

K

R0
,

E∗
0 =

bγ2(c+ d)

µ2c2K
(R0 − 1),

I∗0 =
bγ(c+ d)

µ2cK
(R0 − 1).

If m > 0, we have:

S∗ = K(1− µ

b
I∗e−mI∗

) := g(I∗),

E∗ =
γ

c
I∗,

S∗ =
γ(c+ d)

cµ
emI∗

:= h(I∗).

Consider

δ :=
µ

b
, m0 :=

8µ

bR0
=

8δ

R0
.

I∗ =
mR0 + 4δ ±

√
mR0(mR0 − 8δ)

8mδ
. (2. 6)

We have the following result which is the same as Proposition (4.1) proved in [4], about the
endemic equilibrium points of (1.1). This result shows that differential system (1.1) and its
discretization (2.3) have the same number of equilibrium points.

Proposition 2.1. Let m0 be defined as above. When R0 > 1, the system has at least one
and at most three positive steady states. Furthermore,

• if 0 < m < m0, (2.3) has a unique steady state;
• if m > m0, the model has three endemic steady state;
• if m = m0, (2.3) has one endemic steady state of multiplicity at least 2.

In this model total population is not constant, we prove its boundedness.
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Lemma 2.2. For any solution (Sn, En, In) of the system (2.3), the total population, Nn =
Sn + En + In, satisfies

lim sup
n→∞

Nn ≤ bK

l
,

where l = min{b, d, γ}.

Proof. From (2.3) we have

Sn+1 =
(1 + bh)Sn

1 + b
KhSn + µhIne−mIn

≤ (1 + bh)Sn

1 + b
KhSn

.

Let Sn = 1
zn

, we obtain

zn+1 ≥ zn
1 + bh

+
bh

K(1 + bh)
.

Hence,

zn ≥ 1

(1 + bh)n
z0 +

[
1− 1

(1 + bh)n

]
1

K
.

which yields
lim sup
n→∞

Sn ≤ K.

This relation and (2.3) implies:

Nn+1 −Nn

h
=

(
b− b

K
Sn+1

)
Sn − dEn+1 − γIn+1

≤
(
b− b

K
Sn+1

)
K − dEn+1 − γIn+1,

for large n.
Now we consider l = min{b, d, γ}, therefore,

Nn+1 −Nn

h
≤ bK − lNn+1,

hence,

Nn+1 ≤ 1

1 + lh
Nn +

bhK

1 + lh
.

This relation implies

lim sup
n→∞

Nn ≤ bK

l
.

From this lemma we see that discrete model (2.3) has a compact positively invariant set

D =

{
(S,E, I) ∈ R3

∣∣∣ 0 ≤ S + E + I ≤ bK

l
, l = min{b, d, γ}

}
,

In other words, the above NSFD scheme defines a discrete dynamical system on the region
D.
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3. STABILITY AND BIFURCATION

In this section we investigate stability of equilibrium points and existence of Neimark-
Sacker bifurcation. To check the locall stability of steady states of equation (2.3), we use
the linearization theorem, see [9], which ensures that a steady state X̄ is:
(a): Locally asymptotically stable if and only if | λ |< 1 for all λ ∈ σ(J).
(b): Unstable if and only if | λ |> 1 for some λ ∈ σ(J).
In which J = DF (X̄) is the Jacobian matrix of the system at the equilibrium point X̄ .
For the simplicity of calculation, we denote the functions of (2.3) as follows:

F1(S,E, I) =
(1 + bh)S

1 + b
KhS + µhIe−mI

F2(S,E, I) =
E + µhF1(S,E, I)Ie−mI

1 + (c+ d)h

F3(S,E, I) =
I + chF2(S,E, I)

1 + γh

The Jacobian matrix of (2.3) is given by:

J(S,E, I) =

∂F1

∂S
∂F1

∂E
∂F1

∂I
∂F2

∂S
∂F2

∂E
∂F2

∂I
∂F3

∂S
∂F3

∂E
∂F3

∂I

 ,

Lemma 3.1. The equilibrium point (0, 0, 0) is unstable.

Proof. We have:

J(0, 0, 0) =

1 + bh 0 0
0 1

1+(c+d)h 0

0 ch
1+γh

1
1+γh

 ,

and the eigenvalues of J(0, 0, 0) are 1+bh, 1
1+(c+d)h and 1

1+γh . Since 1+bh > 1, (0, 0, 0)
is unstable.

Theorem 3.2. The disease free equilibrium (K, 0, 0) is asymptotically stable if R0 < 1,
and unstable if R0 > 1.

Proof. We have the following Jacobian matrix:

J(K, 0, 0) =

1− bh
1+bh 0 − µKh

1+bh

0 1
1+(c+d)h

µKh
1+(c+d)h

0 ch
1+γh

1
1+γh

 .

It is clear that 1− bh
1+bh < 1. Consider the following submatrix

B =

(
1

1+(c+d)h
µKh

1+(c+d)h
ch

1+γh
1

1+γh

)
.
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The so-called Jury condition, [7], states that for a 2× 2 matrix B a necessary and sufficient
condition in order to have, | λ |< 1 for all λ ∈ σ(B), is | trB |< 1 + detB < 2. An easy
computation shows detB < 1. Furthere more trB < 1+ detB is the same as the relation

[1 + (c+ d)h+ 1 + γh] (1 + γh) [1 + (c+ d)h]

< [1 + (c+ d)h]2(1 + γh)2 + [1 + (c+ d)h](1 + γh)(1− µcKh2)

which is equivalent to

2 + (c+ d)h+ γh < [1 + (c+ d)h](1 + γh) + (1− µcKh2)

this relation is true if and only if

γ(c+ d)h2 − µcKh2 > 0

which is the same as R0 < 1.

Now we prove global stability of (K, 0, 0) when m = 0.

Theorem 3.3. Let m = 0, if R0 < 1, then the disease free equilibrium (K, 0, 0) is globally
asymptotically stable.

Proof. Without loss of generality, we set h = 1. Consider the map F : R2
+ → R2

+ with

F (E, I) = (f1, f2)(E, I) =

(
E + µKI

1 + c+ d
,
I + cE

1 + γ

)
Define

V (E, I) = c(1 + c+ d)E + (1 + γ)(c+ d)I.

Now V is positive definite at (0, 0), and

∆V (E, I) = V (F (E, I))− V (E, I)

= c(1 + c+ d)(f1(E, I)− E) + (1 + γ)(c+ d)(f2(E, I)− I)

= c(1 + c+ d)

(
E + µKI

1 + c+ d
− E

)
+ (1 + γ)(c+ d)

(
I + cE

1 + γ
− I

)
= c(1 + c+ d)

(
µKI − (c+ d)E

1 + c+ d

)
+ (1 + γ)(c+ d)

(
cE − γI

1 + γ

)
= [µcK − γ(c+ d)]I = γ(c+ d)(R0 − 1)I.

Obviously when R0 < 1, ∆V (E, I) ≤ 0. Furthere more, ∆V (E, I) = 0 if and only if
I = 0. Let

G =

{
(E, I) ∈ R2

∣∣∣ 0 ≤ E + I ≤ bK

l
, l = min{b, d, γ}

}
.

The maximal invariant subset of{
(E, I) ∈ G

∣∣∆V (E, I) = 0
}

is the singleton {(0, 0)} and LaSalle’s invariance principle implies global asymptotic sta-
bility of equilibrium point (0, 0). Hence we have

lim
n→∞

En = 0, lim
n→∞

In = 0,
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whenever R0 < 1. Now since lim supn→∞ Sn ≤ K, it is sufficient to prove

lim inf
n→∞

Sn ≥ K.

Since limn→∞ In = 0, for a given ε > 0, there exists n0 ∈ N such that for all n ≥ n0,

In < ε.

The first equation of (2.3), implies

Sn+1 =
(1 + b)Sn

1 + b
KSn + µIn

>
(1 + b)Sn

1 + b
KSn + µε

,

for all n ≥ n0.
Let Sn = 1

ωn
, then

ωn+1 <
1 + µε

1 + b
ωn +

b

(1 + b)K
,

for n ≥ n0. Therefore

ωn <

(
1 + µε

1 + b

)n

ω0 +

[
1−

(
1 + µε

1 + b

)n]
b

K(b− µε)
,

for all n ≥ n0, which implies

lim sup
n→∞

ωn ≤ 1

K
.

Hence
lim inf
n→∞

Sn ≥ K

therefore limn→∞ Sn = K. This completes the proof of the theorem.

Now we investigate asymptotic stability of endemic equilibrium (S∗
0 , E

∗
0 , I

∗
0 ) when R0 >

1.

Theorem 3.4. Let m = 0 and h2 < 1
2γα , then there exists RH0

> 1 such that when
1 < R0 < RH0 , the endemic equilibrium (S∗

0 , E
∗
0 , I

∗
0 ) is asymptotically stable.

Proof. The Jacobian matrix at (S∗
0 , E

∗
0 , I

∗
0 ) has the following form,

J(S∗
0 , E

∗
0 , I

∗
0 ) =

1− bh
(1+bh)R0

0 − µKh
(1+bh)R0

bh(R0−1)
(1+(c+d)h)R0

1
1+(c+d)h

µKh
(1+(c+d)h)R0

0 ch
1+γh

1
1+γh

 .

Let α = c+ d,

H1 = 1 + bh,

H2 = 1 + αh,

H3 = 1 + γh,

H4 = bγαh3,

H5 = 1− γαh2.
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Jacobian matrix has the characteristic equation p(λ) = λ3 + a2λ
2 + a1λ + a0 = 0, with

the following coefficients:

a0 = − det J = −R0H1H5 − bhH5 +H4 −R0H4

R0H1H2H3
,

a1 = (trJ)2 − trJ2 =
R0H1H3 − bhH3 +R0H1H2 − bhH2 +R0H1H5

R0H1H2H3
,

a2 = −trJ = −R0H1H2H3 − bhH2H3 +R0H1H3 +R0H1H2

R0H1H2H3
.

Now Jury condition states that for a 3× 3 matrix J , the necessary and sufficient condition
in order to have, | λ |< 1 for all λ ∈ σ(J), is | a0 |< 1, | a0 + a2 |< 1 + a1 and
a1 − a0a2 < 1− a20.

We prove this relations. First we show |a0| = |det J | < 1. The inequality det J < 1
is equivalent to

R0H1H5 − bhH5 +H4 −R0H4

R0H1H2H3
< 1

which is true if and only if

R0H1H5 +H4 < R0H1H2H3 + bhH5 +R0H4.

Now since R0 > 1 and H5 < H2H3, this relation is true, therefore det J < 1. The relation
det J > −1 is equivalent to

R0H1H2H3 +R0H1H5 +H4 > bhH5 +R0H4

which is true, since H4 < H1H2H3.
Now we show |a0 + a2| < 1 + a1. we have

1 + a0 + a1 + a2 =
bhH5 + (R0 − 1)H4 − bhH3 − bhH2 + bhH2H3

R0H1H2H3
.

Since R0 > 1 and H5 −H3 −H2 +H2H3 > 0, therefore 1 + a0 + a1 + a2 > 0.
Moreover,

1− a0 + a1 − a2 =
2R0H1H2H3 + 2R0H1H5 − bhH5 +H4 −R0H4 + 2R0H1H3

R0H1H2H3

+
−bhH3 + 2R0H1H2 − bhH2 − bhH2H3

R0H1H2H3
.

Therefore 1− a0 + a1 − a2 > 0 is equivalent to

R0 >
bh(H5 +H3 +H2 +H2H3)−H4

2H1(H5 +H3 +H2 +H2H3)−H4
:= Q.

Since Q < 1 < R0, the above inequality is true. Hence 1 − a0 + a1 − a2 > 0, therefore
|a0 + a2| < 1 + a1.

Finally, we investigate the relation a1 − a0a2 < 1 − a20. This relation is equivalent to
the inequality

AR2
0 +BR0 + C < 0,
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with the following coefficients,

A = H2
1H2H

2
3 +H2

1H
2
2H3 +H1H2H3H4 −H2

1H3H5 +H1H3H4

−H2
1H2H5 +H1H2H4 −H2

1H
2
2H

2
3 +H2

1H
2
5 +H2

4 − 2H1H4H5,

B = −bhH1H2H
2
3 − bhH1H

2
2H3 − 3H1H2H3H4 + 2bhH1H2H3

−bhH2H3H4 − 2H1H3H4 + bhH1H3 − 2H1H2H4 + bhH1H2

+4H1H4H5 − 4H2
4 + 2bhH4 − 2bhH1H5,

C = 2bhH2H3H4 − (bh)2H2H3 + 4H2
4 − 4bhH4 + (bh)2.

Using MATLAB, we have:

A = bh3(γα+ 4bγ2α2h3 + 2γ2αh+ bγαh+ 2bγ2αh2 + 2γα2h+ 2bγα2h2

+3γ2α2h2) > 0,

B = −bh3(bγ2h+ γα2h+ 3γα+ 7γ2α2h2 + bα2h+ 6γ2αh+ 2bγαh+ γ2 + α2

+7bγ2αh2 + 7bγα2h2 + 12bγ2α2h3) < 0,

C = b2h3(3γαh+ α+ γ)(2αγh2 − 1) < 0.

Consider

RH0
=

−B +
√
B2 − 4AC

2A
. (3. 7)

We have A + B + C < 0 and B2 − 4AC > 0, hence RH0
> 1 and the other root is less

than 1. Therefore when 1 < R0 < RH0 , the inequality a1 − a0a2 < 1− a20 holds, and the
equilibrium point is asymptotic stable.

By the solution of R0 = RH0 , we have a threshold value µH0 = γ(c+d)
cK RH0 on the

parameter µ for the asymptotic stability of endemic equilibrium.
Now we prove the occurence of Neimark-Sacker bifurcation when R0 = RH0 . We use the
following lemma from [22].

Lemma 3.5. The equation λ3 + a2λ
2 + a1λ + a0 = 0 where ai ∈ R, i = 1, 2, 3, has a

pair of complex conjugate eigenvalues lying on the unit circle and the third eigenvalue lies
inside the unit circle if and only if the following conditions hold,

• |a0| < 1,
• |a0 + a2| < 1 + a1, and
• a1 − a0a2 = 1− a20.

Theorem 3.6. Let m = 0 and h2 < 1
2γα , if R0 = RH0 (i.e. µ = µH0), the endemic

equilibrium (S∗
0 , E

∗
0 , I

∗
0 ) is unstable and (2.3) undergoes a Neimark-Sacker Bifurcation.

Proof: If R0 = RH0 , we have

a1 − a0a2 = 1− a20.

Hence conditions of Lemma 4.3 holds. Since a1−a0a2 = 1−a20, the equation λ3+a2λ
2+

a1λ+ a0 = 0 has the root λ1 = −a0 and this equation has the following form:

(λ+ a0)
[
λ2 + (a2 − a0)λ+ 1

]
= 0. (3. 8)
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Since (a2−a0)
2−4 < 0, there exists complex conjugate roots λ2,3 = e±iφ with φ ∈ (0, π)

and cosφ = 1
2 (a0 − a2). In fact if eiφ is a root of λ2 + (a2 − a0)λ+ 1 = 0, by separating

the real and imaginary parts we have:{
cos 2φ+ (a2 − a0) cosφ = −1,
sin 2φ+ (a2 − a0) sinφ = 0.

Squaring and adding both sides of the above relations yields

(a2 − a0)
2 + 2(a2 − a0) cosφ = 0,

or
cosφ =

a0 − a2
2

.

Now we investigate the conditions of the generic Neimark-Sacker bifurcation theorem [8].
We can see that a0−a2 > 0, hence, cosφ = a0−a2

2 > 0. Therefore, φ /∈
{
0,±π

2 ,±
2π
3 , π

}
.

As a consequence eikφ ̸= 1 for k = 1, 2, 3, 4.
Furthere more

d(λ3 + a2λ
2 + a1λ)

dλ

dλ

dµ
=

d(−a0)

dR0

dR0

dµ
.

Therefore [
3λ2 + 2a2λ+ a1

] dλ
dµ

=

[
bhH5 −H4

R2
0H1H2H3

]
dR0

dµ
.

Hence,
dλ

dµ
=

cK

γ(c+ d)

[
bhH5 −H4

R2
0H1H2H3

]
1

3λ2 + 2a2λ+ a1
.

We must show
d|λ(µ)|2

dµ

∣∣∣
µ=µH0

̸= 0.

In fact,

d|λ|2

dµ

∣∣∣
µ=µH0

=

[
λ̄
dλ

dµ
+ λ

dλ̄

dµ

] ∣∣∣
λ=eiφ

= 2Re

[
λ̄
dλ

dµ

] ∣∣∣
λ=eiφ

=
2cK

γ(c+ d)

[
bhH5 −H4

R2
0H1H2H3

]
Re

[
λ̄

3λ2 + 2a2λ+ a1

] ∣∣∣
λ=eiφ

=
2cK

γ(c+ d)

[
bhH5 −H4

R2
0H1H2H3

]
Re

[
e−iφ

3e2iφ + 2a2eiφ + a1

]
=

2cK

γ(c+ d)

[
bhH5 −H4

R2
0H1H2H3

]
Re

[
1

3e3iφ + 2a2e2iφ + a1eiφ

]
.(3. 9)

and

Re

[
1

3e3iφ + 2a2e2iφ + a1eiφ

]
=

3 cos 3φ+ 2a2 cos 2φ+ a1 cosφ

|3e3iφ + 2a2e2iφ + a1eiφ|2
.

Furthere more,

3 cos 3φ+2a2 cos 2φ+ a1 cosφ = 12(cosφ)3 − 9 cosφ+4a2(cosφ)
2 − 2a2 + a1 cosφ.
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Now cosφ = a0−a2

2 and a1 = 1− a20 + a0a2 implies,

3 cos 3φ+ 2a2 cos 2φ+ a1 cosφ = 2a30 − 8a0 − 5a20a2 + 4a0a
2
2 + 4a2 − a32.

Using MATLAB yields

3 cos 3φ+ 2a2 cos 2φ+ a1 cosφ

= bh2(−3γαh+R0γαh− α− γ)

×(5R0bγαh
3 + 3R0γαh

2 − 5bγαh3 + 2R0αh− bh2α+ 2R0bh
2α

+R0 + bh+R0bh+ 2R0γh− bh2γ + 2R0bh
2γ)

×(5R0bγαh
3 + 4R0γαh

2 − 3bγαh3 + 4R0αh− bh2α+ 4R0bh
2α

+4R0 + bh+ 4R0bh+ 4R0γh− bh2γ + 4R0bh
2γ).

Clearly R0 > 1 implies,

(5R0bγαh
3 + 3R0γαh

2 − 5bγαh3 + 2R0αh− bh2α+ 2R0bh
2α+R0 + bh+R0bh

+2R0γh− bh2γ + 2R0bh
2γ) > 0,

and

(5R0bγαh
3 + 4R0γαh

2 − 3bγαh3 + 4R0αh− bh2α+ 4R0bh
2α+ 4R0 + bh+ 4R0bh

+4R0γh− bh2γ + 4R0bh
2γ) > 0.

Moreover,
(−3γαh+R0γαh− α− γ) ̸= 0.

In fact (−3γαh + R0γαh − α − γ) = 0, implies R0 = 3γαh+α+γ
γαh which contradicts the

relation R0 = RH0 . Therefore,

3 cos 3φ+ 2a2 cos 2φ+ a1 cosφ ̸= 0.

Furthere more h2 < 1
2γα implies bhH5 −H4 > 0, hence

d|λ(µ)|2

dµ

∣∣∣
µ=µH0

̸= 0.

Now theorem 4.5 in [9] implies the occurence of Niemark-Sacker bifurcation when R0 =
RH0 .

Problem. In theorems 3.3 and 3.4 we study stability and Neimark-Sacker bifurcation of
the endemic equilibriums of system with m = 0, when m > 0, the analysis of endemic
equilibriums is steel open and needs furthere work.

4. NUMERICAL SIMULATION

In this section, we use the constructed nonstandard scheme to simulate solutions of
(1.1) numerically. The parameter values are the same as in [4]: K = 5000000, b = 0.001,
µ = 1.2× 10−8, c = 0.1, d = 0.001, and γ = 0.05. In addition, we choose (S0, E0, I0) =
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(4999700, 200, 100), h = 0.5 and the following cases, m = 0, m = 1 × 10−6 and m =
6× 10−6. In this case

R0 =
µcK

γ(c+ d)
= 1.188.

Hence, if m = 0, then we have the unique positive equilibrium (S∗
0 , E

∗
0 , I

∗
0 ) where

S∗
0 =

γ(c+ d)

µc
=

K

R0
= 4208333,

E∗
0 =

bγ2(c+ d)

µ2c2K
(R0 − 1) = 6584,

I∗0 =
bγ(c+ d)

µ2cK
(R0 − 1) = 13194.

Moreover, if m = 1 × 10−6 and m = 6 × 10−6, then we have unique endemic equi-
libriums (4261135, 6235, 12468) and (4457313, 4790, 9580) respectively. Figures (1), (2)
and (3) shows that the population approaches the equilibrium value.

FIGURE 1. The component S of the system which converges to its equi-
librium value.

5. CONCLUSION

In this paper we have constructed an NSFD scheme using Mickens discretization method.
This scheme were developed in order to use in numerical solution of an SEI model. This
SEI model has been used to study the effect of media on the spread of infectious disease.
We proved that this scheme preserves positivity, fixed points, their stability nature and bi-
furcations. In other word the NSFD scheme developed here has dynamic consistency with
its continuous counterpart.
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FIGURE 2. The component E of the system which converges to its equi-
librium value.

FIGURE 3. The component I of the system which converges to its equi-
librium value.
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