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Abstract. Zadeh introduced the concept of fuzzy sets as a mathemat-
ical tool to deal with uncertainty, imprecision and vagusnesince
then, many higher order fuzzy sets, including intuitioicigtizzy
sets, bipolar fuzzy sets and-polar fuzzy set, have been reported
in literature to solve many real life problems, involving iguity

and uncertainty. In this paper, we present certain charaat®n of
m-polar fuzzy graphs by level graphs.
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1. INTRODUCTION

Graph theory is a enjoyable playground for the research @dfpiechniques in
discrete mathematics. There are many applications of ghegahry in different fields.
The world of theoretical physics discovered graph theorytfoown purposes. In the
study of statistical mechanics, the points represent mé#s@nd two adjacent points
indicate nearest neighbor interaction of some physical kitke magnetic interac-
tion or repulsion. The study of Markov chains in probabittgory involves directed
graphs in the sense that events are given by points and dedidéoe from one point
to another shows a positive probability of direct successitthese two events. Job
assignments problem is solved by bipartite graphs.

In 1994, Zhang [19] initiated the idea of bipolar fuzzy sets, whishaigeneralization
of fuzzy set [17]. The membership degree range in a bipolazyfiset is[—1,1].

In a bipolar fuzzy set, the membership degree 0 of an elemeanmthat the ele-
ment is irrelevant to the corresponding property, the mesiiye degre€0, 1] of an
element indicates that the element somewhat satisfies tipergty, and the member-
ship degreg—1,0) of an element indicates that the element somewhat satibies t
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implicit counter-property. The idea afi-polar fuzzy set which is an extension of a
bipolar fuzzy set, studied by Chehal. [9] and exposed that—polar and bipolar
fuzzy set are cryptomorphic mathematical notions. The ¢paaxknd of this concept is
that “multipolar information” (not like the bipolar inforation which give two-valued
logic) arise because information for a natural world arediently fromn factors
(n > 2). The statement ‘Pakistan is a good country’, consider asxample. The
truth value of this statement may not a real numbeégijn]. Being good country may
have several components: good in public transport systewd @ political aware-
ness, good in medical facilities, etc. The each componegthmaa real number in
[0, 1]. If n is the number of such components under consideration, ttestnuth value
of fuzzy statement is a-tuple of real numbers ifo, 1], that is, an element 46, 1]™.

In 1973, Kauffmann [12] illustrated the notion of fuzzy graphs bdhea Zadeh'’s fuzzy
relations [18]. The fuzzy graphs structure was describe®bsenfeld [16]. Later,
Bhattacharya [8] gave some remarks on fuzzy graphs. 1994dédon and Chang-
Shyh [14] defined some operations on fuzzy graphs. In 201iakntroduced the
notion of bipolar fuzzy graphs in [1]. Dudek and Talebi [1@sdribed operations on
level graphs of bipolar fuzzy graphs. Recently, Akretral. [3— 7] has discussed sev-
eral new concepts, including-polar fuzzy graphs, certain metricssim-polar fuzzy
graphs, certain types of edge-polar fuzzy graphs anch-polar fuzzy hypergraphs.
In this research paper, we present characterization-pblar fuzzy graphs by level
graphs.

2. CHARACTERIZATION OF m-POLAR FUZZY GRAPHS BY LEVEL GRAPHS

Definition 2.1. [9] An m-polar fuzzy set in a universg is a functionC' : ¥ —
[0,1)™. The degree of each element Y is written asC(a) = (P10C(a), P,oC(a)
,-+ y PnoC(a)), whereP,oC : [0,1]™ — [0, 1] is thekth projection mapping.

Note that[0, 1] (m-th power of|0, 1]) is considered as a poset with the point-wise
order<, wherem is an arbitrary ordinal number (we make an appointmentithat
{n|n < m} whenm > 0), < is defined byu < b < Py(a) < P(b) for eachk € m
(a,b €[0,1]™), andPy : [0,1]™ — [0, 1] is thek-th projection mappingk € m).
1=(1,1,---,1) is the greatest value atd= (0,0, -- - , 0) is the smallest value in
[0,1]™.

Definition 2.2. [4] Let C' be anm-polar fuzzy subset of a non-empity. An m-polar
fuzzy relation onC' is anm-polar fuzzy subseb of Y x Y defined by the mapping
D:Y xY — [0,1)" such that for alk,b € Y

PioD(ab) < inf{P,oC(a), PLoC(b)}

1 < k < m, whereP,0C(a) denotes thé-th degree of membership of a vertex
andP,oD(ab) denotes thé-th degree of membership of the edge

Definition 2.3. [4, 9] An m-polar fuzzy graphis a pa# = (C, D), whereC' : Y —
[0,1]™ is anm-polar fuzzy set i andD : Y x Y — [0,1]™ is anm-polar fuzzy
relation onY” such that

PioD(ab) < inf{P0C(a), PLoC(b)}
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1 <k <m,foralla,b €Y andP,oD(ab) = 0forallab € Y x Y — F for all
k=1,2,---,m. Cis called them-polar fuzzy vertex set off and D is called the
m-polar fuzzy edge set af, respectively.

We now defing-level setony andF C Y x Y.
Definition 2.4. LetC' : Y — [0, 1]™ be anm-polar fuzzy set orY". The set
Ci={a €Y |PoC(a) > ar,1<k<m}

wheret € [0,1)™ andt = (a1,as2, - ,an), IS called thet-level set of C. Let
D:Y xY — [0,1]™ be anm-polar fuzzy relation ofY". The set

D;={abeY xY | ProD(ab) > ay,1 <k <m}

wheret € [0,1]™ andt = (a1, aa, - - - , a,,) is calledi-level set ofD. Gy = (Cy, Dy)
is calledt-level graph.

Example 2.5. Consider a 3-polar fuzzy graph 0h= {s,¢,u, v}.

v(0.5,0.6,0.3 (0.5,0.6,0.3) s(0.7,0.7,0.4)
(0.7,0.6,0.4)
(05,0.6,0.3)
(05,0.6,0.3) (0.7,0.6,0.4)
1(0.9,0.6,0.6 0806005 1(0.8,0.6,0.5)

FIGURE 1. 3-polar fuzzy grapli = (C, D)

Taket = (067 0.5, 04) Itis easy to see thﬂ(0.6’0'5’0,4) = {S, t, U}, D(0'6’0,5’0'4) =
{st, su,tu}. Clearly, the(0.6,0.5,0.4)-level graph =G g ¢,0.5,0.4) IS @ subgraph of
crisp graphG* = (Y, F).

We formulate a proposition.

Proposition 2.6. Thelevel graph G, = (C, D;) isacrisp graph.

Theorem 2.7. G is an m-polar fuzzy graph if and only if G, = (Cy, D,) isa crisp
graphfor eacht € [0,1]™,t = (a1, a9, -+ , Q).

Proof. Foreveryt € [0,1]™,t = (a1, 2, - , ). Takeab € D;. ThenP,oD(ab) >
ar, 1 < k < m. SinceG is anm-polar fuzzy graph, it follows that

ay < PyoD(ab) < inf{PyoC(a), P,oC(b)}.

This shows thaty, < PyoC(a), ar < ProC(b), fork =1,2,---  m, thatis,a,b €

C;. ThereforeGy = (Ct, D;) is a graph for eache [0,1]™, ¢t = (a1, a2, , am).

Conversely, leG; = (Cy, D;) be a graph for alt € [0,1]™, ¢t = (a1, a9, -+, am).

For everyab € Y x Y, let PyoD(ab) = ax, 1 < k < m. Thenab € D;. Since
Gy = (Cy, Dy) is a graph, we have, b € Cy; henceP.oC(a) > ay, Pr,oC(b) > ay,
1<k<m.

ProD(ab) = ay, < inf{PyoC(a), P,oC(b)}.
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Thus,G is anm-polar fuzzy graph. O

Definition 2.8. Let G; = (C4, D1) andGy = (Ca, D2) bem-polar fuzzy graphs of
Gt = (1, F1) andG; = (Ya, F»), respectively. The Cartesian proddét x G is
the pair(C, D) of m-polar fuzzy sets defined on the Cartesian prodiitk G such
that
() PyoC(a1,as2) = inf(ProCi(a1), ProCs(asz)) forall (a1, as) € Y1 X Ya,
(i) ProD((a,az)(a,bs)) = inf(ProC1(a), ProD2(agbs) for all a € Y; and for
all ashsy € Fs,
(i) ProD((a1,c)(b1,c)) = inf(PyoD1(a1b1), ProCs(c)) for all ¢ € Y3 and for
all a1b, € Fy.

Theorem 2.9. Let G; = (Cy, D1)and G2 = (Cy, D) be m-polar fuzzy graphs of
G} = (Y1, F1) and G5 = (Y2, F3), respectively. Then G = (C, D) isthe Cartesian
product of G; and G» if and only if for each ¢ € [0,1]™, ¢ = (a1, g, , ) the
t-level graph G, isthe Cartesian product of (G1): and (G2):.

Proof. For each € [0,1)™,t = (a1, a2, - , ), If (a,b) € Cy, then
inf(ProC1(a), PyoCs(b)) = PyoC(a,b) > oy,

1 <k <m,s0a € (C1)y andb € (Ca)), thatis, (a,b) € (C1)n) x (C2))-
Therefore,C; C (C1): x (C2):. Let (a,b) € (C1): x (C2)t, thena € (Cy): and
b € (Cq);. It follows thatinf(ProCy (a), ProCa(b)) > ar, 1 < k < m. Since
(C, D) is the Cartesian product 6f; andGs, P.oC(a,b) > i, thatis,(a,b) € C;.
Therefore(C1): x (C2); € Cy and so(C1 )¢ x (Ca); = Cy. We now proveD, = F,
whereF' is the edge set of the Cartesian produ€t), and (G2), for eacht € [0, 1]™,
t = (a1,00, ). Let(ar,az)(b1,b2) € Dy. Then,P,oD((a1,a2)(b1,b2)) >
ak, 1 < k < m. Since(C, D) is the Cartesian product @¢f; andG,, one of the
following cases hold:

(I) a1 = by andasbs € Fo.

(II) as = by anda1b; € F.
For the case (i), we have

ProD((a1,a2)(b1,b2)) = inf (ProC(a1), ProDa(asbs)) > ay,

SOPkoCl(al) > oy, PkODQ(CLQbQ) > qp. It follows thata; = b; € (Cl)t, asby €
(D2)¢, that is, (a1, a2)(b1,b2) € F. Similarly, for the case (ii), we conclude that
(a1,a2)(b1,b2) € F. Therefore,D; C F. For every(a, az)(a,bs) € F, P,oCy(a) >
ag, PyoDs(azbs) > ag, 1 < k < m. Since(C, D) is the Cartesian product &,
andG,, we have

ProD((a,a2)(a,b2)) = inf(ProCy(a), ProD2(aszbs)) > ag,
1 < k < m. Therefore(a, az)(a,b2) € D;. Similarly, for every(a,c)(b1,c) € F,
we have(aq, ¢)(b1,¢) € D,. Therefore ' C D,, and soD; = F.
Conversely, suppose th@t = (C;, D;) is the Cartesian product ¢ ); =
((Cl)t, (Dl)t) and(Gg)t = ((Cg)t, (Dg)t) forallt [O, 1]m, t= (0&1, g, ,Oém).
Let inf(ProC1(a1), ProCa(az)) = ag, 1 < k < m for some(ai,az2) € Y1 x Ya.
Thena; € (C4); anday € (Cs):. By hypothesis(a1, as) € Cy, hence

ProCl(ay,as) > ap = inf(PyoCy(ay), ProCa(az))
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Take ProC(a1,a3) = Pr,1 < k < m, then(a;,as) € Cy wheret’ € [0,1]™,
t' = (81,82, -, Bm). Since(Cy, Dy) is the Cartesian product ¢C1 )., (D1))
and((Cs), (D2)+), thenay € (Cy)y andas € (Ca)w. Hence,

PyoCi(ar) > Br, ProCa(az) > B
It follows that
inf(ProCi(a1), ProCs2(az)) > ProC(a1,as)
Therefore,

ProC(ay,as) = inf(PyoCy(ar), ProCa(az)) for all (a1,as) € Y1 X Y.
Similarly, for everya € Y, and everyusby € F, let
inf(ProC4(a), PyoDs(azbs)) = oy,

ProD((a,a1)(a,b2)) = B, 1 < k < m.

Then we haveP,oC1(a) > agx, PyoDs(azbs) > ai, thatis,a € (C1)¢, azby €
(Dg)t, t= (041, a9, ,am) and(a, ag)(a, bg) € Dy, t = (51,52, R ,Bm). Since
(Ct, Dy)(resp.(Cy, Dyr)) is the Cartesian product OfC )¢, (D1):) and((C2)y, (D2)+)
(resp.(C1)er, (D1)e) and((Ca)w, (D2)r) we have(a, az)(a,b2) € Dy, a € (Ch)y
andagby € (D2), which impliesP,oC4 (a) > Sk, ProDa(agbs) > By It follows
that

ProD((a,az)(a,bs)) > a = inf(ProCi(a), ProDs(aszbs)),
inf(PyoCi(a), PyoD2(as2bs)) > Br, = ProD((a,as2)(a,bs2)).
Therefore,
ProD((a,a2)(a,bs)) = inf(ProC4(a), ProDa(azbs))
forall a € Y7 andagbs € Fy. Similarly, we can show that
ProD((a1,c)(b1,c)) = inf(PyoD1(a1b1), ProCs(c))

forall c € Y5 anda1b; € Fi. This completes the proof. O

Definition 2.10. Let G; andG, bem-polar fuzzy graphs off; andG3, respectively.
The compositionG;[G-] is the pair(C, D) of m-polar fuzzy sets defined on the
compositionG;[G5] such that
(i) PyoC(a1,a2) = inf(ProCi(a1), ProCa(az)) forall (a1, as) € Y1 X Ya,
(i) ProD((a,asz)(a,bs)) = inf(ProC4(a), ProD2(az2b2)) forall a € Y; and for
all asby € FQ,
(i) ProD((a1,c)(b1,c)) = inf(ProD1(a1b1), ProCs(c)) for all ¢ € Y3 and for
all arb, € Fl,
(iv) PyoD((a1,a2)(b1,b2)) = inf(ProD1(a1b1), ProCa(asz), Pr,oC2(bs)) for all
a2, bs € Yo, whereay # by and for alla; by € F3.

Theorem 2.11. Let Gy and G2 be m-polar fuzzy graphs of G} and G, respectively.
Then G is the composition of G; and G- if and only if for each ¢ € [0,1]™, t =
(1,0, , o) thet-level graph G, isthe composition of (G1); and (G2):.
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Proof. By the definition ofG; [G2] and in the same way as in the proof of Theorem
2.9, we haveC; = (C1): x (Ca):. We proveD, = F, whereF is the edge set
of the compositionG1):[(Gz2):] for all ¢t € [0,1]™, t = (a1,a2, -+ ,qm,). Let
(al,ag)(bl,bg) € D;. ThenPkoD((al,ag)(bl,bg)) > o, 1 <k <m. Sinced is
the compositior?; [G2], one of the following cases hold:

(l) a1 = b andagbg c Fs.

(II) as = by anda1b1 c Fy.

(III) as 75 by anda1by € Fi.
For the cases (i) and (ii), similarly as in the cases (i) andr(ithe proof of Theorem
2.9, we obtain(a1, a2)(b1, b2) € F. For the case (iii), we have

ProD((a1,az2)(b1,b2)) = inf(ProD1(a1b1), ProCa(az), PoCa(be)) > ay
Thus, ProCs(as) > ag, ProCa(bs) > ag, ProDi(aiby) > ak, 1 < k < m. It
follows thatas, ba € (C2): anda1b1 € (D1)e, thatis, (a1, az)(b1, b2) € F. Therefore,
D, C F. For every(a,az2)(a,bs) € F, PyoCi(a) > ay, ProDa(azbs) > ag, 1 <
k < m. SinceG = (C, D) is the compositiort#; [G2], we have

ProD((a,az)(a,by)) = inf(ProCy(a), PyoDa(asbs)) > ay,

1 < k < m. Therefore(a, az)(a,b2) € D;. Similarly, for every(ay, c¢)(b1,¢c) € F,
we have(aq, ¢)(b1,c) € D;. For every(ai, az2)(b1,bs) € F whereay # ba, a1 # b1,
PiyoDi(a1b1) > ag, ProCs(az) > ag, PoCa(be) > ag, 1 < k < m. SinceG is
the compositior?; [G2], we have

PyoD((a1,az2)(b1,b2)) = inf(ProD1(a1b1), ProCa(az), ProCa(be)) > ay
1 <k <m. Thus,(a1,a2)(b1,b2) € D;. Therefore ' C D,, and soF = D;.
Conversely, suppose th&; = (Cy, D;), wheret € [0,1]",t = (1,02, -, Qm)
is the composition ofG1); = ((C1)¢, (D1):) and(Ga2): = ((Ca)+, (D2):). By the
definition of the composition and the proof of Theorem 2.9 haee

() ProC(a1,as2) = inf(ProCi(a1), ProCs(az)) forall (a1, as) € Y1 X Ya,

(i) ProD((a,as)(a,bs)) = inf(ProC4(a), ProD2(azb2)) forall a € Y; and for

all ashsy € Fs,
(iii) PyoD((a1,c)(b1,c)) = inf(ProD;(a1b1), ProCs(c)) for all ¢ € Y5 and for
all arby € F;.

Similarly, by using same arguments as in the proof of Thedtd&nwe obtain

PkoD((al, ag)(bl, bg)) = inf(PkoDl (albl), PkOCQ(CLQ), PkOCQ(bQ))
forall as, by € Ys (a2 # bo) and for alla;b; € Fy. This completes the proof. O

Definition 2.12. Let G; andG» bem-polar fuzzy graphs off; andG3, respectively.
The unionG; U G- is defined as the pailC, D) of m-polar fuzzy sets determined on
the union of graphé&/; andG% such that

PioC1(a) ifaeYyanda € Y,
(i) ProC(a) =< ProCs(a) ifaeYsanda & Yy,
sup(ProCi(a), ProCs(a)) ifaecYiNYs.
ProD1(ab) if abe Fy and ab & Fy,
(i) ProD(ab) = ProDy(ab) if ab € Fy and ab & Fy,
sup(ProD1(ab), ProD2(ab)) if ab € Fy N Fs.
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Theorem 2.13. Let G; and G2 be m-polar fuzzy graphs of G and G, respectively,
andY; NY, = (. Then G isthe union of G; and G5 if and only if each ¢-level graph
Gy istheunion of (G1): and (G2);.

Proof. We show that’; = (C4);U(Cy), foreacht € [0,1]™,t = (a1, 2, , Q).
Leta € C, thena € Y1\ Yo 0ra € Yo\ V1. If a € Y1\ Ya, thenP,oCi(a) =
PyoC(a) > ar,1 < k < m which impliesa € (C1);. Analogouslya € Ys \ Y3
impliesa € (Cs);. Thereforea € (C1): U (Cq):, and soC; C (Cy): U (C2):. Now
leta € (Cl)t U (Cg)t. Thena € (Cl)t; a 5{ (Cg)t Ora < (Cg)t, a ¢ (Cl)t- For the
first case, we hav®,0C;(a) = ProC(a) > ax,1 < k < m which impliesa € C;.
For the second case, we haloCs(a) = ProC(a) > ax,1 < k < m. Hence
a € C;. ConsequentlyC;); U (Cy): € C;.

To prove thatD; = (D1): U (D2)s, forall t € [0,1]™,¢t = (a1, a9, - ,am),
considerab € D,. Thenab € F; \ Fh orab € F, \ Fy. Forab € Fy \ F> we
have P.oD;(ab) = ProD(ab) > ap,1 < k < m. Thusab € (D). Simi-
larly ab € Fy \ Fy givesab € (Dz):. ThereforeD, C (D;): U (D2):. If ab €
(D1)t U (D2), thenab € (D1): \ (D2): orab € (Ds): \ (D1):. For the first case
PyoD(ab) = PyoD1(ab) > ag,1 < k < m, henceab € D;. In the second case we
obtainab € D;. Therefore(D1); U (D3); C D;.

Conversely, let for alt € [0,1]™,t = (a1, a2, -+, qy) the level graphG; =
(Ct, Dy) be the union of(G1); = ((C1)t,(D1):) and (G2): = ((C2)t, (D2))-
Leta € Y1, PoCi(a) = ag, ProC(a) = Br,1 < k < m, Thena € (C1);
wheret € [0,1]™,t = (a1,09, - ,a;,) anda € Cy wheret’ € [0,1]™,¢ =
(B1, B2, , Bm). But by the hypothesis € (C1)» anda € Cy. Thus,P,oC} (a)
Bk, ProC(a) > ax,1 < k < m. Therefore PyoCi(a) < ProC(a) andP,oC4(a)
PioC(a). HenceProCi(a) = PioC(a). Similarly, for everya € Y3, we get
ProCs(a) = ProC(a). Thus we conclude that

() PyoC(a) = PyoCi(a) ifa €Yy,
PyoC(a) = ProCs(a) if a € Ys.

By a similar method as above, we obtain

(i) PyoD(ab) = PyoDy(ab) if ab € Fy,
PyoD(ab) = PyoDs(ab) if ab € F.

This completes the proof. O

>
2

Definition 2.14. Let G; andG4 bem-polar fuzzy graphs ofr; andG3, respectively.
The joinGy + G is the pair(C, D) of m-polar fuzzy sets defined on the jaiff + G
such that

PoC1(a) ifaeYianda & Yo,
(i) ProC(a) =4 ProCs(a) ifa € Ysanda ¢ Y7,
sup(ProCi(a), ProCs(a)) ifa€YiNYs.
ProD1(ab) if ab € Fy and ab € Fy,
ProDs(ab) if ab € Iy and ab € Fy,

(W) PeoD(ab) =3 g o(PoD (ab), ProDa(ab)) if ab e Fy N F,

inf(PkoCl(a),Pkng(b)) if ab € F'.
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Theorem 2.15. Let G; and G2 be m-polar fuzzy graphs of G and G, respectively,
andY; NY, = (. Then G isthejoin of G; and G, if and only if each ¢-level graph
Gy isthejoin of (G1); and (G2):.

Proof. By the definition of union and the proof of Theorem 2.03,= (C1):U(C2)t,
forall ¢ € [0,1]™,t = (1,2, - , ). We show thatD; = (D7), U (D), U F{
forallt € [0,1]",t = (a1, a2, -, am), WhereF] is the set of all edges joining the
vertices of(C1): and(Cb);.

From the proof of Theorem 2.13, it follows th@D,); U (D2); C D;. If ab € F,
thenP,oC1(a) > ay, ProCa(b) > ay,1 < k < m.Hence

PioD(ab) = inf(ProC1(a), P,oCa(b)) > ay

It follows thatab € D;. Therefore{D;); U (D3): U F} C D;. For everyab € Dy, if
ab € Fy U Fy, thenab € (D7) U (D>), by the proof of Theorem 2.13. if € Y; and
b € Yo, then
inf(ProC1(a), ProCa(b)) = PyoD(ab) > oy,
soa € (Cy) andb € (Cs),. Thusab € F}. Therefore,D, C (D1); U (D), U F}.
Conversely, let each level graph = (Ct, D;) be the join of G1): = ((C1)+, (D1)+)
and(Gs): = ((C2)¢, (D2):). From the proof of the Theorem 2.13, we have
() { PyoC(a) = PyoCi(a) ifa €Yy,
PioC(a) = ProCs(a) if a € Ya.
(i) { PyoD(ab) = PyoDq(ab) if ab € Fy,
ProD(ab) = PyoDy(ab) if ab € F.
leta € Y1,b € Ya,inf(PyoCi(a), PyoCa(b)) = ak, ProD(ab) = Br. Thena €
(C1)t,b € (Cy)y wheret € [0,1]™,t = (a1, a9, -+ , ) @andab € Dy wheret’ €
[0,1]™,¢ = (B1, B2, , Bm)- It follows thatab € D;,a € (C1)y andb € (Cs)y.
SO,PkOD(ab) > ay, ProCh (a) > Bk andeng(b) > Bi. Therefore,

ProD(ab) > oy, = inf(ProC4(a), PLoCs(b)) > B = ProD(ab).
Thus,
PioD(ab) = inf(ProC1(a), ProCs(b)).
U

Definition 2.16. Let G; andG; bem-polar fuzzy graphs off; andG3, respectively.
The cross produdf’; * G5 is the pair(C, D) of m-polar fuzzy sets defined on the
cross product:; = G5 such that
() PyoC(a1,as2) = inf(ProCi(a1), ProCs(az)) forall (a1, as) € Y1 X Ya,
(II) PkOD((al,ag)(bl,bg)) = inf(PkODl(albl),PkODQ(CLQbQ)) for all a1b1 €
Fy and for allasby € F5.

Theorem 2.17. Let G; and G2 be m-polar fuzzy graphs of G} and G, respectively.
Then G = (C, D) isthe cross product of G; and G+, if and only if each level graph
G, isthe cross product of (G1); and (G2);.

Proof. By the definition of the Cartesian product and the proof ofdreen 2.9, we
haveC; = (C1): x (Ca)s, forallt € [0,1), ¢t = (a1, a2, , ). We show that

Dt = {(al,ag)(bl,bg) | a1b1 S (Dl)t, CLQbQ S (Dg)t}
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forallt € [0,1]™,t = (a1, @z, -+ ,am). Infact, if (a1, az) (b1, b2) € Dy, then
PkOD((CLl, ag)(bl, bg)) = inf(PkoDl (albl), PkODQ(CLQbQ)) Z (637
S0 PyoD1(a1b1) > a andPyoDs(asbs) > ag,1 < k < m. So,a1b; € (D7) and
asby € (Da)¢. Now if a1b1 € (D1): andagbs € (D2), thenPiyoD1(a1b1) > oy and
PyoDs(aszbe) > ag, 1 < k < m. It follows that
ProD((a1,az2)(b1,b2)) = inf(ProD1(a1b1), ProDa(azb2)) > oy,

SinceG = (C, D) is the cross product @'y * G. Therefore(a, az) (b1, b2) € Ds.
Conversely, let eachlevel graphG; = (Cy, D;) be the cross product ¢f7;); =
((C1)t, (D1):) and(G2): = ((Ca)t, (D2):). In view of the fact that the cross prod-
uct (Cy, D;) has the same vertex set as the Cartesian productaf., (D;);) and
((C2)t, (D2)¢), and by the proof of Theorem 2.9, we have

ProC((a1,a2)) = inf(ProC1(ar), ProCa(az)) for all (a1, az2) € Y1 x Ys.

Let inf(ProD1(a1b1), ProDa(azbs)) = o and PyoD((a1,a2)(b1,b2)) = B, 1 <
k < m foraiby € Fi, asby € Fs. ThenPkoDl(albl) > Oék,PkODg(ang) >

ay and (ay,a2)(by,b2) € Dy wheret’ € [o,1]™,t' = (B1,52, - ,Bm), hence
arby € (D1)t, agbs € (Da):, wheret € [0,1]™,¢t = (a1, a2, -+ ,a,,) and con-
Sequentlya1b1 S (Dl)t’, CLQbQ (S (Dg)t/, sinceth = {(al,ag)(bl,bg) | a1b1 S
(Dl)t’a asby € (Dg)t/}. It follows that (al,ag)(bl,bg) € Dy, PkoDl(albl) >
Br, ProDs(azbs) > Br,1 < k < m. Therefore,P,oD((a1,az)(b1,b2)) = B <
inf(PyoD1(a1b1), ProDa(a2bs)) = ar < PyoD((a1,a2)(b1,b2)). Hence
PkoD((al, ag)(bl, bg)) = inf(PkoDl(albl), PkODQ(CLQbQ)).
This completes the proof. O

Definition 2.18. Let G; andG2 bem-polar fuzzy graphs. The lexicographic product
G1 e G7 is the pair(C, D) of m-polar fuzzy sets defined on the lexicographic product
G7 e G such that
() ProC(a1,as2) = inf(ProCi(a1), ProCs(az)) forall (a1, as) € Y1 X Ya,
(i) ProD((a,az)(a,bs)) = inf(ProC4(a), ProD2(azbs2)) forall a € Y; and for
all ashsy € Fs,
(III) PkOD((al,ag)(bl,bg)) = inf(PkODl(albl),PkODQ(CLQbQ)) for all a1b, €
Fy and for allasby € Fs.

Theorem 2.19.Let G; and G2 be m-polar fuzzy graphs. Then G isthe lexicographic
product of G; and Gy if and only if G; = (G1): e (G2): for al ¢ € [0,1]™,t =
(ala Qg, - 7am)~

Proof. By the definition of Cartesian produ€t; x G- and the proof of Theorem
2.9, we havel; = (C1): x (Cy); forall t € [0,1]™,t = (a1, 2, - , ). We
show thatD, = F, U F] forall ¢t € [0,1]™,t = (a1, 2, -+ , ), WhereF;, =
{(a,a2)(a,b2) | a € Y1, agbs € (D3):} is the subset of the edge set of the cross
product(Gl)t X (Gg)t, andFt’ = {(al,ag)(bl,bg) | arby € (Dl)h asby € (Dg)t}

is the edge set of the cross produ&t;); x (G2):. For every(ai,az)(b1,b2) €

Dy, a1 = by, agby € F5 or a1by € Fi, asby € Fs. If a4 = b1, agby € Fy,
then(ay, a2)(b1,b2) € F, by the definition of the Cartesian product and the proof of
Theorem 2.9. |h1b1 S Fl, asby € FQ, then(al,ag)(bl,bg) S Ftla by the definition
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of cross product and the proof of Theorem 2.17. TherefbreC F; U F/. From the
definition of the Cartesian product and the proof of Theore® ®e conclude that
F; C Dy, and also from the definition of cross product and the proof leédrem
2.17, we obtair¥] C D;. ThereforeF; U F] C D;.

Conversely, leG; = (Cy, D) = (G1):¢(G2) forallt € [0,1]™,t = (a1, 02, ,am).
We know that{G1): e (G2): has the same vertex set as the Cartesian pr@dijgi x
(G2):. Now by the proof of Theorem 2.9, we have

ProC((a1,a2)) = inf(ProC1(a1), ProCa(az)) for all (a1, a2) € Y1 x Ys.

Let fora € Y: and asby € Iy will be inf(Pkocl(a),Pkng(agbg)) = Qg and
ProD((a,az)(a, b)) = Br,1 < k < m. Then, in view of the definitions of the
Cartesian product and lexicographic product, we have

(a,a2)(a,by) € (D7) @ (D2)y <= (a,a2)(a,bs) € (D1)s X (D2)4,

(a,ag)(a,bg) S (Dl)t/ ° (DQ){;/ <— (a,ag)(a,bg) S (Dl)t’ X (Dg)t/.
From this, by the same way as in the proof of Theorem 2.9, welade

PioD((a,a2)(a,b2)) = inf(ProCi(a), ProD2(azbs)).

Now let PyoD((a1,az2)(b1,b2)) = ay, inf(PyoD1(a1b1), ProDsa(agb2)) = Bi, 1 <
k < mforaib; € Fy andasby € Fy. Then in view of the definitions of cross product
and the lexicographic product, we have

(a1,a2)(b1,b2) € (D1); ® (D2); <= (a1,a2)(b1,b2) € (D1)¢ * (D2)s,

(al,ag)(bl,bg) S (Dl)t’ [ (DQ){;/ < (al,ag)(bl,bg) S (Dl)t’ * (Dg)t/.
By the same way as in the proof of Theorem 2.17, we can conclude

PkoD((al, ag)(bl, bg)) = inf(PkoDl (albl), PkODQ(GQbQ)),
which completes the proof. O

Proposition 2.20. Let G and G5 be m-polar fuzzy graphs of G; = (Y1, F1) and
G3 = (Y3, Fy), respectively, suchthat Yy = Y3, C; = Cs and Fy N Fy, = (). Then
G = (C, D) istheunion of G; and Gs if and only if G; is the union of (G1); and
(Go)iforall t € [0,1]™,t = (1,2, , Q).

Proof. Let G = (C, D) be the union ofm-polar fuzzy graph€7; and G,. Then
by the definition of the union and the fact thet = Y5, C; = C5, we haveC =
Cy = Cs, henceC; = (C4); U (Cq):. We now show thaD; = (D;); U (D3); for
all¢ € [0,1]™,t = (a1, 2, ,auy,). For everyab € (D;); we haveP,oD(ab) =
PyoD1(ab) > ag,1 < k < m, henceab € D,. Therefore(D;); C D,. Similarly
we obtain(Ds2); C D;. Thus,(D1): U (D2): C D,. For everyab € D, ab € Fy
orab € Fy. If ab € Fy, PyoD1(ab) = PyoD(ab) > ax,1 < k < m and hence
ab € (D1);. If ab € Fy, we haveab € (D3);. Therefore,D; C (D1): U (D2)s.
Conversely, suppose that thdevel graphG; = (Cy, D;) be the union of G ); =
((C1)¢, (D1)¢) and(G2): = ((C2)¢, (D2)t). Let ProC(a) = ag, ProCi(a) = Bi, 1 <
k < mforsomea € Y1 = Y5. Thena € C; wheret € [0,1]",t = (a1, a9, , m)
anda € (Cy), wheret’ € [0,1]",t' = (B1,B2, - ,5m), S0a € (Cy), and
a € Cy, becaus&”; = (C), andCy = (C1),,. It follows that P,oC1(a) > oy,
andPyoC(a) > Bk, 1 < k < m. Therefore,P,oC1(a) > PyoC(a)and P,oC(a) >
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PoC1(a). S0, PyoC(a) = PyoCi(a). SinceC; = Cq, Y7 = Y3, thenC = Cy =
C1 UCs.
By a similar method, we conclude that
1) { PyoD(ab) = PyoDy(ab) if ab € Fy,
PyoD(ab) = PyoDs(ab) if ab € F.
This completes the proof. O

Definition 2.21. Let G; andG» bem-polar fuzzy graphs off; andG3, respectively.
The strong produaf’; X G is the pair(C, D) of m-polar fuzzy sets defined on the
strong produc&’; X G5 such that

() PyoC(a1,as2) = inf(ProCi(a1), ProCs(asz)) forall (a1, as) € Y1 X Ya,
(i) ProD((a,az)(a,bs)) = inf(ProCy(a), ProDa(azb2)) foralla € Y7 and for
all asby € FQ,
(i) ProD((a1,c)(b1,c)) = inf(ProD1(a1b1), ProCs(c)) for all ¢ € Y; and for
all a1b; € F,
(lV) PkOD((CLl, ag)(bl, bg)) = inf(PkoDl(albl), PkODQ(CLQbQ)) for all aib; €
F1 and for allasby € Fs.

We state the following Theorem without its proof.

Theorem 2.22. Let G; and G2 be m-polar fuzzy graphs of G and G, respectively.
Then G is the strong product of G; and G5, if and only if G, wheret € [0,1]™,¢ =
(a1, a9, -+, am), isthe strong product of (G1); and (G2);.

3. CONCLUSION

An m-polar fuzzy set is an extension of a bipolar fuzzy set. Aspolar fuzzy
model is useful for multi-polar information, multi-agembulti-attribute and multi-
object network models which gives more precision, flexiiland comparability to
the system as compared to the classical, fuzzy and bipotayfmodels. In this
research article, we have presented certain characierizaftim-polar fuzzy graphs
by level graphs. We have aim to extend our work to (1) singlieted neutrosophic
soft graph structures, (2) single-valued neutrosophiginduzzy graph structures, (3)
single-valued neutrosophic rough fuzzy soft graph stmestuand (4) single-valued
neutrosophic fuzzy soft graph structures.
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