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Abstract. Zadeh introduced the concept of fuzzy sets as a mathemat-
ical tool to deal with uncertainty, imprecision and vagueness. Since
then, many higher order fuzzy sets, including intuitionistic fuzzy
sets, bipolar fuzzy sets andm-polar fuzzy set, have been reported
in literature to solve many real life problems, involving ambiguity
and uncertainty. In this paper, we present certain characterization of
m-polar fuzzy graphs by level graphs.
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1. INTRODUCTION

Graph theory is a enjoyable playground for the research of proof techniques in
discrete mathematics. There are many applications of graphtheory in different fields.
The world of theoretical physics discovered graph theory for its own purposes. In the
study of statistical mechanics, the points represent molecules and two adjacent points
indicate nearest neighbor interaction of some physical kind, like magnetic interac-
tion or repulsion. The study of Markov chains in probabilitytheory involves directed
graphs in the sense that events are given by points and a directed line from one point
to another shows a positive probability of direct succession of these two events. Job
assignments problem is solved by bipartite graphs.
In 1994, Zhang [19] initiated the idea of bipolar fuzzy sets, which is a generalization
of fuzzy set [17]. The membership degree range in a bipolar fuzzy set is[−1, 1].
In a bipolar fuzzy set, the membership degree 0 of an element means that the ele-
ment is irrelevant to the corresponding property, the membership degree(0, 1] of an
element indicates that the element somewhat satisfies the property, and the member-
ship degree[−1, 0) of an element indicates that the element somewhat satisfies the
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implicit counter-property. The idea ofm-polar fuzzy set which is an extension of a
bipolar fuzzy set, studied by Chenet al. [9] and exposed that2−polar and bipolar
fuzzy set are cryptomorphic mathematical notions. The background of this concept is
that “multipolar information” (not like the bipolar information which give two-valued
logic) arise because information for a natural world are frequently fromn factors
(n ≥ 2). The statement ‘Pakistan is a good country’, consider as an example. The
truth value of this statement may not a real number in[0, 1]. Being good country may
have several components: good in public transport system, good in political aware-
ness, good in medical facilities, etc. The each component may be a real number in
[0, 1]. If n is the number of such components under consideration, then the truth value
of fuzzy statement is an-tuple of real numbers in[0, 1], that is, an element of[0, 1]n.
In 1973, Kauffmann [12] illustrated the notion of fuzzy graphs based on Zadeh’s fuzzy
relations [18]. The fuzzy graphs structure was described byRosenfeld [16]. Later,
Bhattacharya [8] gave some remarks on fuzzy graphs. 1994, Mordeson and Chang-
Shyh [14] defined some operations on fuzzy graphs. In 2011, Akram introduced the
notion of bipolar fuzzy graphs in [1]. Dudek and Talebi [10] described operations on
level graphs of bipolar fuzzy graphs. Recently, Akramet al. [3−7] has discussed sev-
eral new concepts, includingm-polar fuzzy graphs, certain metrics inm-polar fuzzy
graphs, certain types of edgem-polar fuzzy graphs andm-polar fuzzy hypergraphs.
In this research paper, we present characterization ofm-polar fuzzy graphs by level
graphs.

2. CHARACTERIZATION OF m-POLAR FUZZY GRAPHS BY LEVEL GRAPHS

Definition 2.1. [9] An m-polar fuzzy set in a universeY is a functionC : Y →
[0, 1]m. The degree of each elementa ∈ Y is written asC(a) = (P1oC(a), P2oC(a)
, · · · , PmoC(a)), wherePkoC : [0, 1]m → [0, 1] is thekth projection mapping.
Note that[0, 1]m (m-th power of[0, 1]) is considered as a poset with the point-wise
order≤, wherem is an arbitrary ordinal number (we make an appointment thatm =
{n|n < m} whenm > 0), ≤ is defined bya ≤ b ⇔ Pk(a) ≤ Pk(b) for eachk ∈ m

( a, b ∈ [0, 1]m), andPk : [0, 1]m → [0, 1] is thek-th projection mapping(k ∈ m).
1 = (1, 1, · · · , 1) is the greatest value and0 = (0, 0, · · · , 0) is the smallest value in
[0, 1]m.

Definition 2.2. [4] Let C be anm-polar fuzzy subset of a non-emptyY . An m-polar
fuzzy relation onC is anm-polar fuzzy subsetD of Y × Y defined by the mapping
D : Y × Y → [0, 1]m such that for alla, b ∈ Y

PkoD(ab) ≤ inf{PkoC(a), PkoC(b)}

1 ≤ k ≤ m, wherePkoC(a) denotes thek-th degree of membership of a vertexa
andPkoD(ab) denotes thek-th degree of membership of the edgeab.

Definition 2.3. [4, 9] An m-polar fuzzy graph is a pairG = (C,D), whereC : Y →
[0, 1]m is anm-polar fuzzy set inY andD : Y × Y → [0, 1]m is anm-polar fuzzy
relation onY such that

PkoD(ab) ≤ inf{PkoC(a), PkoC(b)}
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1 ≤ k ≤ m, for all a, b ∈ Y andPkoD(ab) = 0 for all ab ∈ Y × Y − F for all
k = 1, 2, · · · ,m. C is called them-polar fuzzy vertex set ofG andD is called the
m-polar fuzzy edge set ofG, respectively.

We now definet-level set onY andF ⊆ Y × Y.

Definition 2.4. LetC : Y → [0, 1]m be anm-polar fuzzy set onY . The set

Ct = {a ∈ Y | PkoC(a) ≥ αk, 1 ≤ k ≤ m}

wheret ∈ [0, 1]m and t = (α1, α2, · · · , αm), is called thet-level set ofC. Let
D : Y × Y → [0, 1]m be anm-polar fuzzy relation onY . The set

Dt = {ab ∈ Y × Y | PkoD(ab) ≥ αk, 1 ≤ k ≤ m}

wheret ∈ [0, 1]m andt = (α1, α2, · · · , αm) is calledt-level set ofD. Gt = (Ct, Dt)
is calledt-level graph.

Example 2.5. Consider a 3-polar fuzzy graph onY = {s, t, u, v}.

s(0.7,0.7,0.4)

t(0.8,0.6,0.5)u(0.9,0.6,0.6)

v(0.5,0.6,0.3)

(0.5,0.6,0.3)

(0.5,0.6,0.3)

(0.7,0.6,0.4)

(0.8,0.6,0.5)

(0.7,0.6,0.4)

(0.5,0.6,0.3)

b

bb

b

FIGURE 1. 3-polar fuzzy graphG = (C,D)

Taket = (0.6, 0.5, 0.4). It is easy to see thatC(0.6,0.5,0.4) = {s, t, u},D(0.6,0.5,0.4) =
{st, su, tu}. Clearly, the(0.6, 0.5, 0.4)-level graph =G(0.6,0.5,0.4) is a subgraph of
crisp graphG∗ = (Y, F ).

We formulate a proposition.

Proposition 2.6. The level graph Gt = (Ct, Dt) is a crisp graph.

Theorem 2.7. G is an m-polar fuzzy graph if and only if Gt = (Ct, Dt) is a crisp
graph for each t ∈ [0, 1]m, t = (α1, α2, · · · , αm).

Proof. For everyt ∈ [0, 1]m, t = (α1, α2, · · · , αm). Takeab ∈ Dt. ThenPkoD(ab) ≥
αk, 1 ≤ k ≤ m. SinceG is anm-polar fuzzy graph, it follows that

αk ≤ PkoD(ab) ≤ inf{PkoC(a), PkoC(b)}.

This shows thatαk ≤ PkoC(a), αk ≤ PkoC(b), for k = 1, 2, · · · ,m, that is,a, b ∈
Ct. Therefore,Gt = (Ct, Dt) is a graph for eacht ∈ [0, 1]m, t = (α1, α2, · · · , αm).
Conversely, letGt = (Ct, Dt) be a graph for allt ∈ [0, 1]m, t = (α1, α2, · · · , αm).
For everyab ∈ Y × Y , let PkoD(ab) = αk, 1 ≤ k ≤ m. Thenab ∈ Dt. Since
Gt = (Ct, Dt) is a graph, we havea, b ∈ Ct; hencePkoC(a) ≥ αk, PkoC(b) ≥ αk,
1 ≤ k ≤ m.

PkoD(ab) = αk ≤ inf{PkoC(a), PkoC(b)}.
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Thus,G is anm-polar fuzzy graph. �

Definition 2.8. Let G1 = (C1, D1) andG2 = (C2, D2) bem-polar fuzzy graphs of
G∗

1 = (Y1, F1) andG∗

2 = (Y2, F2), respectively. The Cartesian productG1 × G2 is
the pair(C,D) of m-polar fuzzy sets defined on the Cartesian productG∗

1 ×G∗

2 such
that

(i) PkoC(a1, a2) = inf(PkoC1(a1), PkoC2(a2)) for all (a1, a2) ∈ Y1 × Y2,

(ii) PkoD((a, a2)(a, b2)) = inf(PkoC1(a), PkoD2(a2b2) for all a ∈ Y1 and for
all a2b2 ∈ F2,

(iii) PkoD((a1, c)(b1, c)) = inf(PkoD1(a1b1), PkoC2(c)) for all c ∈ Y2 and for
all a1b1 ∈ F1.

Theorem 2.9. Let G1 = (C1, D1)and G2 = (C2, D2) be m-polar fuzzy graphs of
G∗

1 = (Y1, F1) and G∗

2 = (Y2, F2), respectively. Then G = (C,D) is the Cartesian
product of G1 and G2 if and only if for each t ∈ [0, 1]m, t = (α1, α2, · · · , αm) the
t-level graph Gt is the Cartesian product of (G1)t and (G2)t.

Proof. For eacht ∈ [0, 1]m, t = (α1, α2, · · · , αm), if (a, b) ∈ Ct, then

inf(PkoC1(a), PkoC2(b)) = PkoC(a, b) ≥ αk,

1 ≤ k ≤ m, soa ∈ (C1)(t) andb ∈ (C2)(t), that is,(a, b) ∈ (C1)(t) × (C2)(t).
Therefore,Ct ⊆ (C1)t × (C2)t. Let (a, b) ∈ (C1)t × (C2)t, thena ∈ (C1)t and
b ∈ (C2)t. It follows that inf(PkoC1(a), PkoC2(b)) ≥ αk, 1 ≤ k ≤ m. Since
(C,D) is the Cartesian product ofG1 andG2, PkoC(a, b) ≥ αk, that is,(a, b) ∈ Ct.

Therefore,(C1)t × (C2)t ⊆ Ct and so(C1)t × (C2)t = Ct. We now proveDt = F,

whereF is the edge set of the Cartesian product(G1)t and (G2)t for eacht ∈ [0, 1]m,
t = (α1, α2, · · · , αm). Let (a1, a2)(b1, b2) ∈ Dt. Then,PkoD((a1, a2)(b1, b2)) ≥
αk, 1 ≤ k ≤ m. Since(C,D) is the Cartesian product ofG1 andG2, one of the
following cases hold:

(i) a1 = b1 anda2b2 ∈ F2.

(ii) a2 = b2 anda1b1 ∈ F1.

For the case (i), we have

PkoD((a1, a2)(b1, b2)) = inf(PkoC1(a1), PkoD2(a2b2)) ≥ αk,

soPkoC1(a1) ≥ αk, PkoD2(a2b2) ≥ αk. It follows thata1 = b1 ∈ (C1)t, a2b2 ∈
(D2)t, that is, (a1, a2)(b1, b2) ∈ F. Similarly, for the case (ii), we conclude that
(a1, a2)(b1, b2) ∈ F. Therefore,Dt ⊆ F. For every(a, a2)(a, b2) ∈ F, PkoC1(a) ≥
αk, PkoD2(a2b2) ≥ αk, 1 ≤ k ≤ m. Since(C,D) is the Cartesian product ofG1

andG2, we have

PkoD((a, a2)(a, b2)) = inf(PkoC1(a), PkoD2(a2b2)) ≥ αk,

1 ≤ k ≤ m. Therefore(a, a2)(a, b2) ∈ Dt. Similarly, for every(a1, c)(b1, c) ∈ F,

we have(a1, c)(b1, c) ∈ Dt. Therefore,F ⊆ Dt, and soDt = F.

Conversely, suppose thatGt = (Ct, Dt) is the Cartesian product of(G1)t =
((C1)t, (D1)t) and(G2)t = ((C2)t, (D2)t) for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm).
Let inf(PkoC1(a1), PkoC2(a2)) = αk, 1 ≤ k ≤ m for some(a1, a2) ∈ Y1 × Y2.
Thena1 ∈ (C1)t anda2 ∈ (C2)t. By hypothesis,(a1, a2) ∈ Ct, hence

PkoC(a1, a2) ≥ αk = inf(PkoC1(a1), PkoC2(a2))
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TakePkoC(a1, a2) = βk, 1 ≤ k ≤ m, then(a1, a2) ∈ Ct′ wheret′ ∈ [0, 1]m,
t′ = (β1, β2, · · · , βm). Since(Ct′ , Dt′) is the Cartesian product of((C1)t′ , (D1)t′)
and((C2)t′ , (D2)t′), thena1 ∈ (C1)t′ anda2 ∈ (C2)t′ . Hence,

PkoC1(a1) ≥ βk, PkoC2(a2) ≥ βk

It follows that

inf(PkoC1(a1), PkoC2(a2)) ≥ PkoC(a1, a2)

Therefore,

PkoC(a1, a2) = inf(PkoC1(a1), PkoC2(a2)) for all (a1, a2) ∈ Y1 ×Y2.

Similarly, for everya ∈ Y1 and everya2b2 ∈ F2, let

inf(PkoC1(a), PkoD2(a2b2)) = αk,

PkoD((a, a1)(a, b2)) = βk, 1 ≤ k ≤ m.

Then we havePkoC1(a) ≥ αk, PkoD2(a2b2) ≥ αk, that is,a ∈ (C1)t, a2b2 ∈
(D2)t, t = (α1, α2, · · · , αm) and(a, a2)(a, b2) ∈ Dt′ , t′ = (β1, β2, · · · , βm). Since
(Ct, Dt)(resp.(Ct′ ,Dt′)) is the Cartesian product of((C1)t, (D1)t) and((C2)t, (D2)t)
(resp.(C1)t′ , (D1)t′) and((C2)t′ , (D2)t′) we have(a, a2)(a, b2) ∈ Dt, a ∈ (C1)t′

anda2b2 ∈ (D2)t′ , which impliesPkoC1(a) ≥ βk, PkoD2(a2b2) ≥ βk. It follows
that

PkoD((a, a2)(a, b2)) ≥ αk = inf(PkoC1(a), PkoD2(a2b2)),

inf(PkoC1(a), PkoD2(a2b2)) ≥ βk = PkoD((a, a2)(a, b2)).

Therefore,

PkoD((a, a2)(a, b2)) = inf(PkoC1(a), PkoD2(a2b2))

for all a ∈ Y1 anda2b2 ∈ F2. Similarly, we can show that

PkoD((a1, c)(b1, c)) = inf(PkoD1(a1b1), PkoC2(c))

for all c ∈ Y2 anda1b1 ∈ F1. This completes the proof. �

Definition 2.10. LetG1 andG2 bem-polar fuzzy graphs ofG∗

1 andG∗

2, respectively.
The compositionG1[G2] is the pair(C,D) of m-polar fuzzy sets defined on the
compositionG∗

1[G
∗

2] such that

(i) PkoC(a1, a2) = inf(PkoC1(a1), PkoC2(a2)) for all (a1, a2) ∈ Y1 × Y2,

(ii) PkoD((a, a2)(a, b2)) = inf(PkoC1(a), PkoD2(a2b2)) for all a ∈ Y1 and for
all a2b2 ∈ F2,

(iii) PkoD((a1, c)(b1, c)) = inf(PkoD1(a1b1), PkoC2(c)) for all c ∈ Y2 and for
all a1b1 ∈ F1,

(iv) PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoC2(a2), PkoC2(b2)) for all
a2, b2 ∈ Y2, wherea2 6= b2 and for alla1b1 ∈ F1.

Theorem 2.11. Let G1and G2 be m-polar fuzzy graphs of G∗

1 and G∗

2, respectively.
Then G is the composition of G1 and G2 if and only if for each t ∈ [0, 1]m, t =
(α1, α2, · · · , αm) the t-level graph Gt is the composition of (G1)t and (G2)t.
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Proof. By the definition ofG1[G2] and in the same way as in the proof of Theorem
2.9, we haveCt = (C1)t × (C2)t. We proveDt = F, whereF is the edge set
of the composition(G1)t[(G2)t] for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm). Let
(a1, a2)(b1, b2) ∈ Dt. ThenPkoD((a1, a2)(b1, b2)) ≥ αk, 1 ≤ k ≤ m. SinceG is
the compositionG1[G2], one of the following cases hold:

(i) a1 = b1 anda2b2 ∈ F2.

(ii) a2 = b2 anda1b1 ∈ F1.

(iii) a2 6= b2 anda1b1 ∈ F1.

For the cases (i) and (ii), similarly as in the cases (i) and (ii) in the proof of Theorem
2.9, we obtain(a1, a2)(b1, b2) ∈ F. For the case (iii), we have

PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoC2(a2), PkoC2(b2)) ≥ αk

Thus,PkoC2(a2) ≥ αk, PkoC2(b2) ≥ αk, PkoD1(a1b1) ≥ αk, 1 ≤ k ≤ m. It
follows thata2, b2 ∈ (C2)t anda1b1 ∈ (D1)t, that is,(a1, a2)(b1, b2) ∈ F. Therefore,
Dt ⊆ F. For every(a, a2)(a, b2) ∈ F, PkoC1(a) ≥ αk, PkoD2(a2b2) ≥ αk, 1 ≤
k ≤ m. SinceG = (C,D) is the compositionG1[G2], we have

PkoD((a, a2)(a, b2)) = inf(PkoC1(a), PkoD2(a2b2)) ≥ αk,

1 ≤ k ≤ m. Therefore,(a, a2)(a, b2) ∈ Dt. Similarly, for every(a1, c)(b1, c) ∈ F,

we have(a1, c)(b1, c) ∈ Dt. For every(a1, a2)(b1, b2) ∈ F wherea2 6= b2, a1 6= b1,
PkoD1(a1b1) ≥ αk, PkoC2(a2) ≥ αk, PkoC2(b2) ≥ αk, 1 ≤ k ≤ m. SinceG is
the compositionG1[G2], we have

PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoC2(a2), PkoC2(b2)) ≥ αk

1 ≤ k ≤ m. Thus,(a1, a2)(b1, b2) ∈ Dt. Therefore,F ⊆ Dt, and soF = Dt.

Conversely, suppose thatGt = (Ct, Dt), wheret ∈ [0, 1]m, t = (α1, α2, · · · , αm)
is the composition of(G1)t = ((C1)t, (D1)t) and(G2)t = ((C2)t, (D2)t). By the
definition of the composition and the proof of Theorem 2.9, wehave

(i) PkoC(a1, a2) = inf(PkoC1(a1), PkoC2(a2)) for all (a1, a2) ∈ Y1 × Y2,

(ii) PkoD((a, a2)(a, b2)) = inf(PkoC1(a), PkoD2(a2b2)) for all a ∈ Y1 and for
all a2b2 ∈ F2,

(iii) PkoD((a1, c)(b1, c)) = inf(PkoD1(a1b1), PkoC2(c)) for all c ∈ Y2 and for
all a1b1 ∈ F1.

Similarly, by using same arguments as in the proof of Theorem2.9, we obtain

PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoC2(a2), PkoC2(b2))

for all a2, b2 ∈ Y2 (a2 6= b2) and for alla1b1 ∈ F1. This completes the proof. �

Definition 2.12. LetG1 andG2 bem-polar fuzzy graphs ofG∗

1 andG∗

2, respectively.
The unionG1 ∪G2 is defined as the pair(C,D) of m-polar fuzzy sets determined on
the union of graphsG∗

1 andG∗

2 such that

(i) PkoC(a) =







PkoC1(a) if a ∈ Y1 and a 6∈ Y2,

PkoC2(a) if a ∈ Y2 and a 6∈ Y1,

sup(PkoC1(a), PkoC2(a)) if a ∈ Y1 ∩ Y2.

(ii) PkoD(ab) =







PkoD1(ab) if ab ∈ F1 and ab 6∈ F2,

PkoD2(ab) if ab ∈ F2 and ab 6∈ F1,

sup(PkoD1(ab), PkoD2(ab)) if ab ∈ F1 ∩ F2.
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Theorem 2.13. Let G1 and G2 be m-polar fuzzy graphs of G∗

1 and G∗

2, respectively,
and Y1 ∩ Y2 = ∅. Then G is the union of G1 and G2 if and only if each t-level graph
Gt is the union of (G1)t and (G2)t.

Proof. We show thatCt = (C1)t∪(C2)t for eacht ∈ [0, 1]m, t = (α1, α2, · · · , αm).
Let a ∈ Ct, thena ∈ Y1 \ Y2 or a ∈ Y2 \ Y1. If a ∈ Y1 \ Y2, thenPkoC1(a) =
PkoC(a) ≥ αk, 1 ≤ k ≤ m which impliesa ∈ (C1)t. Analogouslya ∈ Y2 \ Y1

impliesa ∈ (C2)t. Therefore,a ∈ (C1)t ∪ (C2)t, and soCt ⊆ (C1)t ∪ (C2)t. Now
let a ∈ (C1)t ∪ (C2)t. Thena ∈ (C1)t, a 6∈ (C2)t or a ∈ (C2)t, a 6∈ (C1)t. For the
first case, we havePkoC1(a) = PkoC(a) ≥ αk, 1 ≤ k ≤ m which impliesa ∈ Ct.

For the second case, we havePkoC2(a) = PkoC(a) ≥ αk, 1 ≤ k ≤ m. Hence
a ∈ Ct. Consequently,(C1)t ∪ (C2)t ⊆ Ct.

To prove thatDt = (D1)t ∪ (D2)t, for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm),
considerab ∈ Dt. Thenab ∈ F1 \ F2 or ab ∈ F2 \ F1. For ab ∈ F1 \ F2 we
havePkoD1(ab) = PkoD(ab) ≥ αk, 1 ≤ k ≤ m. Thusab ∈ (D1)t. Simi-
larly ab ∈ F2 \ F1 givesab ∈ (D2)t. ThereforeDt ⊆ (D1)t ∪ (D2)t. If ab ∈
(D1)t ∪ (D2)t, thenab ∈ (D1)t \ (D2)t or ab ∈ (D2)t \ (D1)t. For the first case
PkoD(ab) = PkoD1(ab) ≥ αk, 1 ≤ k ≤ m, henceab ∈ Dt. In the second case we
obtainab ∈ Dt. Therefore,(D1)t ∪ (D2)t ⊆ Dt.

Conversely, let for allt ∈ [0, 1]m, t = (α1, α2, · · · , αm) the level graphGt =
(Ct, Dt) be the union of(G1)t = ((C1)t, (D1)t) and (G2)t = ((C2)t, (D2)t).
Let a ∈ Y1, PkoC1(a) = αk, PkoC(a) = βk, 1 ≤ k ≤ m, Then a ∈ (C1)t
wheret ∈ [0, 1]m, t = (α1, α2, · · · , αm) anda ∈ Ct′ wheret′ ∈ [0, 1]m, t′ =
(β1, β2, · · · , βm). But by the hypothesisa ∈ (C1)t′ anda ∈ Ct. Thus,PkoC1(a) ≥
βk, PkoC(a) ≥ αk, 1 ≤ k ≤ m. Therefore,PkoC1(a) ≤ PkoC(a) andPkoC1(a) ≥
PkoC(a). HencePkoC1(a) = PkoC(a). Similarly, for everya ∈ Y2, we get
PkoC2(a) = PkoC(a). Thus we conclude that

(i)

{

PkoC(a) = PkoC1(a) if a ∈ Y1,

PkoC(a) = PkoC2(a) if a ∈ Y2.

By a similar method as above, we obtain

(ii)

{

PkoD(ab) = PkoD1(ab) if ab ∈ F1,

PkoD(ab) = PkoD2(ab) if ab ∈ F2.

This completes the proof. �

Definition 2.14. LetG1 andG2 bem-polar fuzzy graphs ofG∗

1 andG∗

2, respectively.
The joinG1+G2 is the pair(C,D) of m-polar fuzzy sets defined on the joinG∗

1+G∗

2

such that

(i) PkoC(a) =







PkoC1(a) if a ∈ Y1 and a 6∈ Y2,

PkoC2(a) if a ∈ Y2 and a 6∈ Y1,

sup(PkoC1(a), PkoC2(a)) if a ∈ Y1 ∩ Y2.

(ii) PkoD(ab) =















PkoD1(ab) if ab ∈ F1 and ab 6∈ F2,

PkoD2(ab) if ab ∈ F2 and ab 6∈ F1,

sup(PkoD1(ab), PkoD2(ab)) if ab ∈ F1 ∩ F2,

inf(PkoC1(a), PkoC2(b)) if ab ∈ F ′.
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Theorem 2.15. Let G1 and G2 be m-polar fuzzy graphs of G∗

1 and G∗

2, respectively,
and Y1 ∩ Y2 = ∅. Then G is the join of G1 and G2 if and only if each t-level graph
Gt is the join of (G1)t and (G2)t.

Proof. By the definition of union and the proof of Theorem 2.13,Ct = (C1)t∪(C2)t,
for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm). We show thatDt = (D1)t ∪ (D2)t ∪ F ′

t

for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm), whereF ′

t is the set of all edges joining the
vertices of(C1)t and(C2)t.
From the proof of Theorem 2.13, it follows that(D1)t ∪ (D2)t ⊆ Dt. If ab ∈ F ′

t ,

thenPkoC1(a) ≥ αk, PkoC2(b) ≥ αk, 1 ≤ k ≤ m. Hence

PkoD(ab) = inf(PkoC1(a), PkoC2(b)) ≥ αk

It follows thatab ∈ Dt. Therefore,(D1)t ∪ (D2)t ∪ F ′

t ⊆ Dt. For everyab ∈ Dt, if
ab ∈ F1 ∪F2, thenab ∈ (D1)t ∪ (D2)t, by the proof of Theorem 2.13. Ifa ∈ Y1 and
b ∈ Y2, then

inf(PkoC1(a), PkoC2(b)) = PkoD(ab) ≥ αk,

soa ∈ (C1)t andb ∈ (C2)t. Thusab ∈ F ′

t . Therefore,Dt ⊆ (D1)t ∪ (D2)t ∪ F ′

t .

Conversely, let each level graphGt = (Ct, Dt) be the join of(G1)t = ((C1)t, (D1)t)
and(G2)t = ((C2)t, (D2)t). From the proof of the Theorem 2.13, we have

(i)

{

PkoC(a) = PkoC1(a) if a ∈ Y1,

PkoC(a) = PkoC2(a) if a ∈ Y2.

(ii)

{

PkoD(ab) = PkoD1(ab) if ab ∈ F1,

PkoD(ab) = PkoD2(ab) if ab ∈ F2.

let a ∈ Y1, b ∈ Y2, inf(PkoC1(a), PkoC2(b)) = αk, PkoD(ab) = βk. Thena ∈
(C1)t, b ∈ (C2)t wheret ∈ [0, 1]m, t = (α1, α2, · · · , αm) andab ∈ Dt′ wheret′ ∈
[0, 1]m, t′ = (β1, β2, · · · , βm). It follows thatab ∈ Dt, a ∈ (C1)t′ andb ∈ (C2)t′ .
So,PkoD(ab) ≥ αk, PkoC1(a) ≥ βk andPkoC2(b) ≥ βk. Therefore,

PkoD(ab) ≥ αk = inf(PkoC1(a), PkoC2(b)) ≥ βk = PkoD(ab).

Thus,
PkoD(ab) = inf(PkoC1(a), PkoC2(b)).

�

Definition 2.16. LetG1 andG2 bem-polar fuzzy graphs ofG∗

1 andG∗

2, respectively.
The cross productG1 ∗ G2 is the pair(C,D) of m-polar fuzzy sets defined on the
cross productG∗

1 ∗G
∗

2 such that

(i) PkoC(a1, a2) = inf(PkoC1(a1), PkoC2(a2)) for all (a1, a2) ∈ Y1 × Y2,

(ii) PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoD2(a2b2)) for all a1b1 ∈
F1 and for alla2b2 ∈ F2.

Theorem 2.17. Let G1 and G2 be m-polar fuzzy graphs of G∗

1 and G∗

2, respectively.
Then G = (C,D) is the cross product of G1 and G2 if and only if each level graph
Gt is the cross product of (G1)t and (G2)t.

Proof. By the definition of the Cartesian product and the proof of Theorem 2.9, we
haveCt = (C1)t × (C2)t, for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm). We show that

Dt = {(a1, a2)(b1, b2) | a1b1 ∈ (D1)t, a2b2 ∈ (D2)t}
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for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm). Infact, if (a1, a2)(b1, b2) ∈ Dt, then

PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoD2(a2b2)) ≥ αk

soPkoD1(a1b1) ≥ αk andPkoD2(a2b2) ≥ αk, 1 ≤ k ≤ m. So,a1b1 ∈ (D1)t and
a2b2 ∈ (D2)t. Now if a1b1 ∈ (D1)t anda2b2 ∈ (D2)t, thenPkoD1(a1b1) ≥ αk and
PkoD2(a2b2) ≥ αk, 1 ≤ k ≤ m. It follows that

PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoD2(a2b2)) ≥ αk

SinceG = (C,D) is the cross product ofG1 ∗G2. Therefore,(a1, a2)(b1, b2) ∈ Dt.

Conversely, let eacht-level graphGt = (Ct, Dt) be the cross product of(G1)t =
((C1)t, (D1)t) and(G2)t = ((C2)t, (D2)t). In view of the fact that the cross prod-
uct (Ct, Dt) has the same vertex set as the Cartesian product of((C1)t, (D1)t) and
((C2)t, (D2)t), and by the proof of Theorem 2.9, we have

PkoC((a1, a2)) = inf(PkoC1(a1), PkoC2(a2)) for all (a1, a2) ∈ Y1 × Y2.

Let inf(PkoD1(a1b1), PkoD2(a2b2)) = αk andPkoD((a1, a2)(b1, b2)) = βk, 1 ≤
k ≤ m for a1b1 ∈ F1, a2b2 ∈ F2. ThenPkoD1(a1b1) ≥ αk, PkoD2(a2b2) ≥
αk and (a1, a2)(b1, b2) ∈ Dt′ wheret′ ∈ [o, 1]m, t′ = (β1, β2, · · · , βm), hence
a1b1 ∈ (D1)t, a2b2 ∈ (D2)t, wheret ∈ [o, 1]m, t = (α1, α2, · · · , αm) and con-
sequentlya1b1 ∈ (D1)t′ , a2b2 ∈ (D2)t′ , sinceDt′ = {(a1, a2)(b1, b2) | a1b1 ∈
(D1)t′ , a2b2 ∈ (D2)t′}. It follows that (a1, a2)(b1, b2) ∈ Dt, PkoD1(a1b1) ≥
βk, PkoD2(a2b2) ≥ βk, 1 ≤ k ≤ m. Therefore,PkoD((a1, a2)(b1, b2)) = βk ≤
inf(PkoD1(a1b1), PkoD2(a2b2)) = αk ≤ PkoD((a1, a2)(b1, b2)). Hence

PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoD2(a2b2)).

This completes the proof. �

Definition 2.18. LetG1 andG2 bem-polar fuzzy graphs. The lexicographic product
G1 •G2 is the pair(C,D) of m-polar fuzzy sets defined on the lexicographic product
G∗

1 •G
∗

2 such that

(i) PkoC(a1, a2) = inf(PkoC1(a1), PkoC2(a2)) for all (a1, a2) ∈ Y1 × Y2,

(ii) PkoD((a, a2)(a, b2)) = inf(PkoC1(a), PkoD2(a2b2)) for all a ∈ Y1 and for
all a2b2 ∈ F2,

(iii) PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoD2(a2b2)) for all a1b1 ∈
F1 and for alla2b2 ∈ F2.

Theorem 2.19.Let G1 and G2 be m-polar fuzzy graphs. Then G is the lexicographic
product of G1 and G2 if and only if Gt = (G1)t • (G2)t for all t ∈ [0, 1]m, t =
(α1, α2, · · · , αm).

Proof. By the definition of Cartesian productG1 × G2 and the proof of Theorem
2.9, we haveCt = (C1)t × (C2)t for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm). We
show thatDt = Ft ∪ F ′

t for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm), whereFt =
{(a, a2)(a, b2) | a ∈ Y1, a2b2 ∈ (D2)t} is the subset of the edge set of the cross
product(G1)t × (G2)t, andF ′

t = {(a1, a2)(b1, b2) | a1b1 ∈ (D1)t, a2b2 ∈ (D2)t}
is the edge set of the cross product(G1)t ∗ (G2)t. For every(a1, a2)(b1, b2) ∈
Dt, a1 = b1, a2b2 ∈ F2 or a1b1 ∈ F1, a2b2 ∈ F2. If a1 = b1, a2b2 ∈ F2,

then(a1, a2)(b1, b2) ∈ Ft, by the definition of the Cartesian product and the proof of
Theorem 2.9. Ifa1b1 ∈ F1, a2b2 ∈ F2, then(a1, a2)(b1, b2) ∈ F ′

t , by the definition
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of cross product and the proof of Theorem 2.17. Therefore,Dt ⊆ Ft ∪ F ′

t . From the
definition of the Cartesian product and the proof of Theorem 2.9, we conclude that
Ft ⊆ Dt, and also from the definition of cross product and the proof of Theorem
2.17, we obtainF ′

t ⊆ Dt. Therefore,Ft ∪ F ′

t ⊆ Dt.

Conversely, letGt = (Ct, Dt) = (G1)t•(G2)t for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm).
We know that(G1)t • (G2)t has the same vertex set as the Cartesian product(G1)t ×
(G2)t. Now by the proof of Theorem 2.9, we have

PkoC((a1, a2)) = inf(PkoC1(a1), PkoC2(a2)) for all (a1, a2) ∈ Y1 × Y2.

Let for a ∈ Y1 anda2b2 ∈ F2 will be inf(PkoC1(a), PkoD2(a2b2)) = αk and
PkoD((a, a2)(a, b2)) = βk, 1 ≤ k ≤ m. Then, in view of the definitions of the
Cartesian product and lexicographic product, we have

(a, a2)(a, b2) ∈ (D1)t • (D2)t ⇐⇒ (a, a2)(a, b2) ∈ (D1)t × (D2)t,

(a, a2)(a, b2) ∈ (D1)t′ • (D2)t′ ⇐⇒ (a, a2)(a, b2) ∈ (D1)t′ × (D2)t′ .

From this, by the same way as in the proof of Theorem 2.9, we conclude

PkoD((a, a2)(a, b2)) = inf(PkoC1(a), PkoD2(a2b2)).

Now letPkoD((a1, a2)(b1, b2)) = αk, inf(PkoD1(a1b1), PkoD2(a2b2)) = βk, 1 ≤
k ≤ m for a1b1 ∈ F1 anda2b2 ∈ F2. Then in view of the definitions of cross product
and the lexicographic product, we have

(a1, a2)(b1, b2) ∈ (D1)t • (D2)t ⇐⇒ (a1, a2)(b1, b2) ∈ (D1)t ∗ (D2)t,

(a1, a2)(b1, b2) ∈ (D1)t′ • (D2)t′ ⇐⇒ (a1, a2)(b1, b2) ∈ (D1)t′ ∗ (D2)t′ .

By the same way as in the proof of Theorem 2.17, we can conclude

PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoD2(a2b2)),

which completes the proof. �

Proposition 2.20. Let G1 and G2 be m-polar fuzzy graphs of G∗

1 = (Y1, F1) and
G∗

2 = (Y2, F2), respectively, such that Y1 = Y2, C1 = C2 and F1 ∩ F2 = ∅. Then
G = (C,D) is the union of G1 and G2 if and only if Gt is the union of (G1)t and
(G2)t for all t ∈ [0, 1]m, t = (α1, α2, · · · , αm).

Proof. Let G = (C,D) be the union ofm-polar fuzzy graphsG1 andG2. Then
by the definition of the union and the fact thatY1 = Y2, C1 = C2, we haveC =
C1 = C2, henceCt = (C1)t ∪ (C2)t. We now show thatDt = (D1)t ∪ (D2)t for
all t ∈ [0, 1]m, t = (α1, α2, · · · , αm). For everyab ∈ (D1)t we havePkoD(ab) =
PkoD1(ab) ≥ αk, 1 ≤ k ≤ m, henceab ∈ Dt. Therefore,(D1)t ⊆ Dt. Similarly
we obtain(D2)t ⊆ Dt. Thus,(D1)t ∪ (D2)t ⊆ Dt. For everyab ∈ Dt, ab ∈ F1

or ab ∈ F2. If ab ∈ F1, PkoD1(ab) = PkoD(ab) ≥ αk, 1 ≤ k ≤ m and hence
ab ∈ (D1)t. If ab ∈ F2, we haveab ∈ (D2)t. Therefore,Dt ⊆ (D1)t ∪ (D2)t.
Conversely, suppose that thet-level graphGt = (Ct, Dt) be the union of(G1)t =
((C1)t, (D1)t) and(G2)t = ((C2)t, (D2)t). LetPkoC(a) = αk, PkoC1(a) = βk, 1 ≤
k ≤ m for somea ∈ Y1 = Y2. Thena ∈ Ct wheret ∈ [o, 1]m, t = (α1, α2, · · · , αm)
and a ∈ (C1)t′ where t′ ∈ [0, 1]m, t′ = (β1, β2, · · · , βm), so a ∈ (C1)t and
a ∈ Ct′ , becauseCt = (C1)t andCt′ = (C1)t′ . It follows thatPkoC1(a) ≥ αk,

andPkoC(a) ≥ βk, 1 ≤ k ≤ m. Therefore,PkoC1(a) ≥ PkoC(a)andPkoC(a) ≥
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PkoC1(a). So,PkoC(a) = PkoC1(a). SinceC1 = C2, Y1 = Y2, thenC = C1 =
C1 ∪C2.

By a similar method, we conclude that

(1)

{

PkoD(ab) = PkoD1(ab) if ab ∈ F1,

PkoD(ab) = PkoD2(ab) if ab ∈ F2.

This completes the proof. �

Definition 2.21. LetG1 andG2 bem-polar fuzzy graphs ofG∗

1 andG∗

2, respectively.
The strong productG1 ⊠G2 is the pair(C,D) of m-polar fuzzy sets defined on the
strong productG∗

1 ⊠G∗

2 such that

(i) PkoC(a1, a2) = inf(PkoC1(a1), PkoC2(a2)) for all (a1, a2) ∈ Y1 × Y2,

(ii) PkoD((a, a2)(a, b2)) = inf(PkoC1(a), PkoD2(a2b2)) for all a ∈ Y1 and for
all a2b2 ∈ F2,

(iii) PkoD((a1, c)(b1, c)) = inf(PkoD1(a1b1), PkoC2(c)) for all c ∈ Y2 and for
all a1b1 ∈ F1,

(iv) PkoD((a1, a2)(b1, b2)) = inf(PkoD1(a1b1), PkoD2(a2b2)) for all a1b1 ∈
F1 and for alla2b2 ∈ F2.

We state the following Theorem without its proof.

Theorem 2.22. Let G1 and G2 be m-polar fuzzy graphs of G∗

1 and G∗

2, respectively.
Then G is the strong product of G1 and G2 if and only if Gt, where t ∈ [0, 1]m, t =
(α1, α2, · · · , αm), is the strong product of (G1)t and (G2)t.

3. CONCLUSION

An m-polar fuzzy set is an extension of a bipolar fuzzy set. Anm-polar fuzzy
model is useful for multi-polar information, multi-agent,multi-attribute and multi-
object network models which gives more precision, flexibility, and comparability to
the system as compared to the classical, fuzzy and bipolar fuzzy models. In this
research article, we have presented certain characterization of m-polar fuzzy graphs
by level graphs. We have aim to extend our work to (1) single-valued neutrosophic
soft graph structures, (2) single-valued neutrosophic rough fuzzy graph structures, (3)
single-valued neutrosophic rough fuzzy soft graph structures, and (4) single-valued
neutrosophic fuzzy soft graph structures.
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