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Abstract. A topological index is a function which associates real num-
ber to the graphs. Graph theory is significant in the subject of structural
chemistry. In this paper we calculatedRα, Mα, χα, ABC, GA, ABC4

andGA5 indices ofL(S(CNCk[n])).
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1. INTRODUCTION AND BASIC FACTS

Let G denote a simple graph,V (G) denotes vertex set andE(G) is an edge set. The
degreeda is the number incidental edges of vertexa andSa =

∑
b∈Na

db whereNa =
{b ∈ V (G)|ab ∈ E(G)}. The subdivision graphS(G) is constructed fromG by substi-
tuting every edge with length of path 2. The line graphL(G) of G have vertices that are
edges ofG, two verticese andf are incident iff they have a common end vertex inG.
Topological indices are the arithmetical numbers that matches up to the configuration of
any graph. They are unchanged in graph isomorphisms. The impact of topologically in-
dices is typically connected with QSPR and QSAR (see [17]).
Thought of topological index came into view by the efforts of Wiener (see [20]) when
he was finding paraffin’s boiling point. At that time theory of the topological index was
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established and he entitled this index as Wiener index. The Wiener index ofG is

W (G) =
1
2

∑

ab∈E(G)

d(a, b)

whered(a, b) is a− b geodesic. The earliest index based on degrees of graphs build up by
Randic [14] is as follows

R(G) =
∑

ab∈E(G)

(dadb)−1/2.

Afterwards, this index was globalized and recognized as the generalized Randic index
Rα(G):

Rα(G) =
∑

ab∈E(G)

(dadb)α. (1. 1)

The general Zagreb index initiated by Li and Zhao in [10]:

Mα(G) =
∑

a∈V (G)

(da)α. (1. 2)

The general sum-connectivity indexχα(G) was launched in [21]:

χα(G) =
∑

ab∈E(G)

(da + db)α. (1. 3)

Estrada et al. developed atom-bond connectivity index (ABC) in [3]. TheABC index is

ABC(G) =
∑

ab∈E(G)

√
da + db − 2

dadb
. (1. 4)

The geometric arithmetic index (GA) is initiated in [19]. TheGA index is

GA(G) =
∑

ab∈E(G)

2
√

dadb

da + db
. (1. 5)

Ghorbani et al. launched 4th ABC index in [5]:

ABC4(G) =
∑

ab∈E(G)

√
Sa + Sb − 2

SaSb
. (1. 6)

Graovac et al. proposed 5th GA index in [6]:

GA5(G) =
∑

ab∈E(G)

2
√

SaSb

Sa + Sb
. (1. 7)

For additional information on the topological indices see [2, 4, 7, 9, 13].
The following lemma is useful to prove our results and it is recognized as handshaking
Lemma.

LEMMA 1.1. LetG be a graph. Then
∑

a∈V (G) da = 2|E(G)|.
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2. TOPOLOGICAL INDICES OF L(S(G))

Ranjini et al. computed Shultz index ofS(G) whereG is ladder, wheel, tadpole and
helm graphs in [16]. They also considered the Zagreb indices of theL(S(G)) whereG
is ladder, wheel and tadpole graph in [15]. Bindusree et al. computedABC index of
the L(S(G)) whereG is ladder, lollipop and helm graph in [1]. Su and Xu computed
χα(G) and its co-index of theL(S(G)) whereG is ladder, wheel and tadpole graph in
[18]. In [11], M. F. Nadeem et al. computedABC4 andGA5 indices ofL(S(G)) where
G is ladder, wheel and tadpole graph. They also calculatedRα, Mα, χα, ABC, GA,
ABC4 and GA5 indices ofL(S(G)) whereG is 2D−lattice, nanotube and nanotorus
TUC4C8[p, q] in [12]. In this paper, we have computedRα, Mα, χα, ABC, GA, ABC4

andGA5 indices ofL(S(CNCk[n])).
The graphical structure ofCNCk[n] nanocones have a cycle ofk-length at its central part
andn levels of hexagons positioned at the conical exterior around its central part. The
graph ofCNCk[n] is shown in Fig. 1. For detailed study on some topological properties
of nanoconesCNCk[n], we refer to the articles [8, 13].

Figure 1:CNCk[n]

THEOREM 2.1. LetG beL(S(CNCk[n])). Then

Mα(G) = k (n + 1) 2α+1 + k
(
n2 + n

)
3α+1.

Proof. The graphG is shown in Fig. 2. InG we havek(3n2 + 5n + 2) vertices. The
vertices of degree2 are2k(n + 1) and remaining vertices are of degree3. Hence we get
Mα(G) by using Formula ( 1. 2 ). ¤

THEOREM 2.2. LetG beL(S(CNCk[n])). Then:

(1) Rα(G) = k (n + 2) 4α + 2 · 6αkn +
(

9
2kn2 + 7

2kn
)
9α;

(2) χα(G) = k (n + 2) 4α + 2 · 5αkn +
(

9
2kn2 + 7

2kn
)
6α;
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(3) ABC(G) = 3 kn2 +
(

3√
2

+ 7
3

)
nk +

√
2k;

(4) GA(G) = 9
2kn2 +

(
9
2 + 4

√
6

5

)
nk + 2k.

Proof. It is easily seen from Theorem 2.1 and Lemma 1.1 that|E(G)| = k( 9
2n2+ 13

2 n+2).
Hence we obtain the edge division, on the basis of the vertex degrees as shown in Table 1.
Formulas ( 1. 1 ), ( 1. 3 ), ( 1. 4 ) and ( 1. 5 ) are applied to the information in Table 1 and
obtain the required indices. ¤

(da, db) whereab ∈ E(G) (2, 2) (2, 3) (3, 3)
Number of edges k (n + 2) 2kn k

(
9
2n2 + 7

2n
)

Table 1: The edge division of the graphG w.r.t degree

THEOREM 2.3. LetG beL(S(CNCk[n])). Then:

(1) ABC4(G) = 2kn2+
(

2
√

2
5 +

√
110
10 +

√
14
8 +

√
30
6 + 2

9

)
kn+

(√
6

4 +
√

35
5 − 2

√
2

5

)
k;

(2) GA5(G) = 9
2kn2 +

(
5
2 + 8

√
10

13 + 24
√

2
17

)
kn + 8

√
5

9 k.

Proof. The edge division, on the basis of the degree sum of neighbor vertices of each edge
is shown in Table 2. Formula ( 1. 6 ) and ( 1. 7 ) are applied to the Table 2 and obtain the
required indices.

¤
(Sa, Sb) whereab ∈ E(G) (4, 4) (4, 5) (5, 5) (5, 8) (8, 8) (8, 9) (9, 9)

Number of edges k 2k k(n− 1) 2kn kn 2kn k
�

9
2
n2 + 1

2
n
�

Table 2: The edge division of the graphG w.r.t degree sum

Figure 2:L(S(CNCk[n]))
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