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Abstract. A topological index is a function which associates real num-
ber to the graphs. Graph theory is significant in the subject of structural
chemistry. In this paper we calculatét),, M, x., ABC, GA, ABC,
andG Aj; indices of L(S(C'NCx[n])).
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1. INTRODUCTION AND BASIC FACTS

Let G denote a simple grapl¥,(G) denotes vertex set arfd(G) is an edge set. The
degreed, is the number incidental edges of verieand S, = ZbeNa d, whereN, =
{b € V(G)|ab € E(G)}. The subdivision grap¥(G) is constructed frontz by substi-
tuting every edge with length of path 2. The line grapiz) of G have vertices that are
edges of, two verticese and f are incident iff they have a common end vertexdn
Topological indices are the arithmetical numbers that matches up to the configuration of
any graph. They are unchanged in graph isomorphisms. The impact of topologically in-
dices is typically connected with QSPR and QSAR (see [17]).
Thought of topological index came into view by the efforts of Wiener (see [20]) when
he was finding paraffin’s boiling point. At that time theory of the topological index was
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established and he entitled this index as Wiener index. The Wiener indgxsof

Z d(a,b)

abEE (@)

whered(a, b) is a — b geodesic. The earliest index based on degrees of graphs build up by
Randic [14] is as follows

RG)= Y (dady)™'/?.

abeE(G)

Afterwards, this index was globalized and recognized as the generalized Randic index
R.(G):

Ra(G) = ) (dady)™. (1.1)

abeE(G)

The general Zagreb index initiated by Li and Zhao in [10]:
Mo (G) = > (do)™. (1.2

a€V(G)

The general sum-connectivity indgx, (G) was launched in [21]:

Xa(G) =D (da+dp). (1. 3)

abeE(G)
Estrada et al. developed atom-bond connectivity index (ABC) in [3]. AR index is
dg +dy — 2
AB .
cG = > “ga (1. 4)
abeE(G)

The geometric arithmetic index (GA) is initiated in [19]. TG index is

B 2v/dadp
GAG) = > PR (1.5)
abeE(G)
Ghorbani et al. launched 4th ABC index in [5]:
Se + Sy —2
ABC4(G) = # (1. 6)
a”b
abeE(G)
Graovac et al. proposed 5th GA index in [6]:
B AV
GA;(G) = ) S 5 1.7)
abeE(G)

For additional information on the topological indices see [2, 4, 7, 9, 13].
The following lemma is useful to prove our results and it is recognized as handshaking
Lemma.

LEMMA 1.1 LetG be agraph. The}_ .y () da = 2[E(G)|.
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2. TOPOLOGICAL INDICES OF L(S(G))

Ranjini et al. computed Shultz index 6{G) whereG is ladder, wheel, tadpole and
helm graphs in [16]. They also considered the Zagreb indices of {¢G)) whereG
is ladder, wheel and tadpole graph in [15]. Bindusree et al. compdfed index of
the L(S(G)) whereG is ladder, lollipop and helm graph in [1]. Su and Xu computed
X« (G) and its co-index of thd.(S(G)) whereG is ladder, wheel and tadpole graph in
[18]. In [11], M. F. Nadeem et al. computetiBC, andG A5 indices of L(S(G)) where
G is ladder, wheel and tadpole graph. They also calculdgd M, x., ABC, GA,
ABCy and GAj indices of L(S(G)) whereG is 2D—lattice, nanotube and nanotorus
TUC4Csg[p, q] in [12]. In this paper, we have computét),, M., xo, ABC, GA, ABC,
andG A5 indices of L(S(CNCg[n])).
The graphical structure @' N C[n] nanocones have a cycle fength at its central part
andn levels of hexagons positioned at the conical exterior around its central part. The
graph of CNCy[n] is shown in Fig. 1. For detailed study on some topological properties
of nanocone&’ N Cy.[n], we refer to the articles [8, 13].

R

Figure 1:CNCy[n]

THEOREM2.1 LetG be L(S(CNCg[n])). Then
Mo (G) =k(n+1)2°"" + k (n® +n) 3%

Proof. The graphG is shown in Fig. 2. InG' we havek(3n? + 5n + 2) vertices. The
vertices of degree are2k(n + 1) and remaining vertices are of degrzeHence we get
M, (G) by using Formula (1. 2). O
THEOREM2.2. LetG be L(S(CNCy[n])). Then:

(1) Ra(G) =k (n+2)4% +2-6%kn + (3kn? + Tkn) 9%;

() Xa(G) =k(n+2)4% +2-5%%n + (kn? + 1kn) 6*;
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(8) ABC(G) =3kn* + (&5 + ) nk + V2;

(4) GA(G) = $kn? + (§ + 248 ) ks + 24,

Proof. Itis easily seen from Theorem 2.1 and Lemma 1.11B4G)| = k(Zn?+12n+2).

Hence we obtain the edge division, on the basis of the vertex degrees as shown in Table 1.
Formulas (1.1),(1.3),(1.4)and (1. 5) are applied to the information in Table 1 and
obtain the required indices. O

(dq,dy) Whereab € E(G) | (2,2) |(2,3) 3,3)
Number of edges | k(n+2) | 2kn | k(3n®+ In)

Table 1: The edge division of the graphw.r.t degree

THEOREM2.3. LetG be L(S(CNCj[n])). Then:

k
(1) ABC4(G) = 2kn2+(¥ + VA0 | VI VEO g) kn+(§ L VB _ m) e

(2) GA5(G) = $kn? + (3 + 10 + 2042) ko + S5k,
Proof. The edge division, on the basis of the degree sum of neighbor vertices of each edge

is shown in Table 2. Formula (1. 6 ) and ( 1. 7 ) are applied to the Table 2 and obtain the
required indices.

(S, So)whereab € E(Q) | (4,4) | (4,5) | (5,5) | (5,8) | (8,8) | 8,9) 9,9)
Number of edges k 2k [ k(n—1)] 2kn | kn [ 2kn [k 3n°+

Table 2: The edge division of the graphw.r.t degree sum

cecouly

e

Figure 2: L(S(CNCy[n)))
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