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Abstract. We prove that the homogeneous and non-homogeneous
linear Volterra summation equations are Hyers—Ulam stabl& on

AMS (MOS) Subject Classification Codes: Primary 35B35.
Key Words: Hyers—Ulam stability, Linear operator, Volterra summation equation.

1. INTRODUCTION

Ulam in [23] posed a problem related with the stability of functional equations for
homomorphism in 1940when an approximate homomorphism from gr@ijpto a
metric groupG, can be approximated by an exact homomorphigiearly, for the
case wher¢; andg, are assumed to be Banach spaces, Hyers [9] brilliantly answered
to the question by a direct approach. Aoki [2] and Rassias [19] latter improved the
partial answer of Hyers. In fact, the most exciting result was of Rassias [19], who
putted more general conditions on the bounds. Recently, Zada et al. studied Hyers—
Ulam stability of different functional equations with different approaches [13, 14, 24,
25]. For more details about this area we recommend the book of Jung [10].
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To find solutions of equations with continuous time like differential, integral and
integro differential equations is a challenging task but Volterra equations provide us
a powerful tool to handle such type of problems; e.g., the asymptotic behavior of
\olterra equations are studied very well in [17, 21]. Furthermore, for Volterra sum-
mation equations the theory of stability via boundedness are studied with the approach
of the direct Lyapunov methods [4, 6, 7]. About the solutions (existence and approx-
imation) of Lyapunov summation equations we recommend [1]. While for Volterra
summation equations with degenerate Kernels the stability criteria are derived in [5].
The stability problems and conditions in terms of the characteristic equations of some
Volterra summation equations are investigated in [11]. On the other hand for the ex-
istence of unique solutions of Volterra summation equations weighted norms were
utilized in [12, 15]. The problem of asymptotic equivalence in Volterra summation
equations has been investigated in [18]. On the other hand the periodic solutions of
linear and nonlinear Volterra summation equations of convolution or non-convolution
types are studied in [3]. A detailed study on the oscillatory behavior, asymptotic
behavior and properties of Volterra equations can be found in [8, 16, 17, 21, 22].

In this note, we study Hyers—Ulam stability of the homogeneous linear Volterra
summation equation

m
Wy = TIZK(WLVS)U](S) (1 1)
s=0
and non-homogeneous linear Volterra summation equation

Wiy = frn +1 Y K(m, s)w(s), (1. 2)
s=0

where the nucleug((m, s) of the summation equation anf}, are convergent se-
quences on the sef, , the parameten is a fixed real constant. Sind€(m, s) is
convergent ol < s < m, there exists a positive constatguch that| K (m, s)|| < d.

2. NOTATION AND PRELIMINARIES

Here we list some definitions, notation and some tools which would be helpful in
deriving our main results. Let be a Banach space a3{X', Z, ) denote the space
of all bounded linear operators with notm ||, defined by

Definition 2.1. The summation equation (1.2) is said to have Hyers—Ulam stability
on Z, if and only if for every sequengec B(X, Z,) satisfying

Ym — fm - nZK(m,s)y(s)

s=0

for all m € Z, and for some > 0, there exists a solution € B(X, Z,) of (1.2)
such that

<e

Y

[y — wlloo < Me,
where is a non-negative constant.
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Definition 2.2. Letker)V denote the kernel of the bounded linear operator A —
I1. We define the induced one to one operdois a subspaces ol from A /ker (W)
into IT by W(w + kerW) = W(w) for all w € A.

Definition 2.3. LetW : A — 1I be an operator from spacé to another spacél.
We say thatV has Hyers—Ulam stability if and only if, for anye W(A) and f € A
such thafjWf — g||o < e for somee > 0, there exists arfy, € A with Wf, = g and
IIf = follee < MewhereM is non- negative constant. The smallest siiflis called
the Hyers—Ulam constant.

We will use the following theorem [20] for summation equation in deriving our
main results.

Theorem 2.4. Let)V be a bounded linear operator frothinto IT, i.e., W : A — 11,
whereA andII are complex Banach spaces. Bar we state the following equivalent
statements:

(1) W has the Hyers—Ulam stability.

(2) W(A) is closed.

(3) W~ is a linear operator such thgp/V 1| o, < .

Moreover if one of these conditions is true, tHew | ., = M is the Hyers—Ulam
stability constant oiV.

Proof. The equivalence of (2) and (3) is well-known. We have to show the equiva-
lence of (1) and (3) by the fact th#¥ has the Hyers—Ulam stability and by definition
of Hyers—Ulam stability.

Another way of stating this definition is:

forany y € A we can find ayg € ker(W) such that ||y—yollco < M|IWYy|loo. (H)

If this condition holds, then
ly + ker(W)lloo < M|[[Wylloo,

for all y € A, and hence/V~! is bounded andW~!||.. < M which shows that
(1) = (3). A )

Now we have to find3) = (1). Assume that’V~! is bounded ang W' < L,
for anyy € A we have

ly + kerOV) oo = W Wy)lloo < IV oo [Wylloo < LWy oo,
so we can find @y € ker(W) such that (H) holds, and tha® has the Hyers—Ulam
stability, hence3) = (1). O
3. MAIN RESULTS

Now we state our first result, for some bounded positive sequences.

Theorem 3.1. If the kernel K (m, s) is convergent o) < s < m, then (1.1) is
Hyers—Ulam stable oz for all 7.
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Proof. Define the operatorV : B(X, Z,) — B(X, Z;) by
(Wg =9m — T]ZKms S7 m€Z+

Clearly, W is well defined on spacB(X, Z,). Next we have to show that is
bounded. For this consider

Wl = sup [Wylle
lgll=1
m
= sup sup |lgm —n > K(m,s)g(s)
lgll=1meZ por

< sup sup (gm+n|Z|lK(m7S)llg(8)ll)

lgll=1meZ =

< sw ( sup o+l sup S 1, ) (s >||)
llgll=1 meZ4 Ty

< <1+|n|§msup I Gm.5)1 gl (using 23

< <1+|77le>||9||00

< sup, (1+[nldm)|lglle

< (I+[nldm) < oo,

thus, we can write

Wl < 00,

this shows thatV is bounded. Next we have to show tha{(B(X, Z.)) is closed.
As for every sequencg € B(X, Z,), there is a sequengé e B(X, Z,) such that
Wf =y. Moreover,B(X, Z,) is a complex Banach space from which it follows that
W is closed. From Theorem 2.4, we can say ihahas Hyers—Ulam stability, i.e., if
for each sequenage W(B(X, 2, )) andy € B(X, Z;) we have

Wy — gl <€,
for somee > 0, then there existsa € B(X, Z.) such thalWw = g and
ly — wlleo < Me,

where we can call/ by Hyers—Ulam constant d/w = g. Sinced € W(B(X, Z,)),
therefore, replacing by 0, the above statement is then read as: if for gny
B(X7 Z+)

s=0

<e€

)
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for allm € Z, and for some > 0, then there existsa € B(X, Z,) such that
Wy =1 Z K(m,s)w(s),
s=0

and||ly — w||oc < Me where we can calM as a Hyers—Ulam constant of (1.1)C]
By repeating the above process in the same way, one can prove that:

Theorem 3.2. If the kernelK (m, s) is convergentof < s <mandf € B(X, Z,),
then (1.2) is Hyers—Ulam stable @, for all 1.

Proof. Sincef € B(X, Z,), from the stability of\V it follows that if for anyy €
B(X> Z+)

Wy = flle <6,
for somee > 0, then there existsa € B(X, Z.) such thatWw = f and

1y — wlloo < Me,

which implies that if fory € B(X, Z) we have

<e€

ym—fm_UZK(m»S)y(S) )

s=0
for allm € Z, and for some > 0, then there existsa € B(X, Z) such that

Wi = fm +772K<m73)w(5)

s=0
and
ly — wlleo < Me
where we can calM by Hyers—Ulam constant of (1.2). a
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