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Abstract. In this paper, we prove that the Gardner equation with

the small parameter is approximately nonlinear self-adjoint. This
property is important for constructing approximate conservation
laws associated with approximate symmetries. We utilize first-
order approximate symmetries for constructing approximate con-
servation laws.

AMS (MOS) Subject Classification Codes: 76M60, 70S10
Key Words: Gardner equation, KdV equation, Approximate nonlinear self-adjoint,

Approximate conservation laws, Approximate symmetry.

1. INTRODUCTION

Canonical form of the Kortewege-de Vrise (KdV) equationig,— 6uu, +
uzze = 0. This PDE is a mathematical model for describing weakly nonlinear
long waves. Gardner et al.(1967-1974) published several papers about KdV equa-
tion. In (1968), "Miura transformation” was intruduced by Miura, in ([7],[8])

uw=v+1,, (1.1)

to determine an infinite number of conservation law. If we put 1/2¢7* + ew
wheree is an arbitrary real parameter, then Miura transformation becomes:

uw=1/4¢? +w+ ew, + w? 1.2
25
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However, since any arbitrary constant is a trivial solution of KdV equation, it may
be removed by a Galilean transformation, so we just consider ?Gardner transfos-
mation?, means,

u=w+ ew, + w?, (1. 3)

wheree is an arbitrary real parameter. Substituting the above transformation in
KdV equation shows that satisfies in "Gardner equationiy —6(w+e2w?)w, +
Wz = 0, for all e. (see [2]):

0 = wuy— 6uty + Upgy (1 4)
= Wi + €Wy + 262 WwW;s — 6(w + ewy + EW?) (Wy + Wayp + 26 WW,)

FWans + Wagaa + 26 (W) oo

0
=(1+ €5 + 2¢2w){wy — 6(w + Ew*)wy + Wape }-
In other words, if we consider
0
(1+ e + Ew?)F(x,t,e,w) =0, (1.5)

ox

we haveF = h(t, e, w)e” 2w~ <, whereh is an arbitrary function. As a special
case, forh = 0, we have a Gardner equation.

If we pute = €2 for small real paramete;, it becomes:
wi — 6(w + ew?)wy + Wepe = 0, (1. 6)

for all e. Approximate symmetries of Eq.( 1. 6 ) are analysed with a method
introduced by Baikov, Gazizov and lbragimov, in [1].

The method of nonlinear self-adjointness and new conservation law theorem
was introduced by Ibragimov in [3]. Consequently, conservation laws which can-
not be obtained by Noether theorem, are constructed using this method. This
method can be extendend to differential equation with small parameter.

In this paper, we calculate approximately adjoint equation to "Gardner equa-
tion” and then we construct approximate conservation laws using approximate
symmetries and carry out all computations to first order of approximation with
respect ta.

2. PRELIMINARIES

In this section, we recall the procedure in [3],[4],[5]. We consider a system of
m (linear or nonlinear) differential equations,

Fo(z,u, 1y, - ugs)) =0 a=1,..,m, 2.7

wherez = (z!,..,2") andu = (u,..,u™) are independent and dependent vari-
ables, andi(;) = du®/9z", u(s) = 0*u®/0z'd27. The equation adjoint to (2. 7
) are written in the form:

* oL
Fa(LU,U,U,U(l),U(l),..,U(S),’U(s)) = 57 =0 a=1,.,m, (2 8)

u&
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where,v = (v!,..,v™) are new dependent variables. Hérés called formal La-
grangian for equation ( 2. 7), and given by= >"%_, v/ F(z, u, U1y o U(s) )
andd/ou® = 9/0u® + 32 (=1)*D;, --- D; 8/0us: , , is the variational de-
rivative whereD; is the operator of total differentiation. The system (2. 7 ) is
said to be nonlinearly self-adjoint if the adjoint system ( 2. 8) is satisfied for all
the solutions of ( 2. 7)) after a substitution,

ve = ¢%(z,u) a=1,.,n, (2. 9)
under the condition that not ali“ vanish identically. This definition is equvalent
to the condition,

Fi(z,u, ¢(z,u), .., u(s), Gs)) = /\gFg(%u, HUuy) a=1,..,m, (2.10)

where \? are indeterminate variable coefficients’(don‘t become infinite on
solutions of the equation (2. 7)). When our system is perturbed system (system
with small parameter) and if we use,

ve = ¢%(z,u) + ep®(x, u) a=1,.,n, (2. 11)
such that not alb> and«® are identically equal to zero instead of condition ( 2.
9), the perturbed system is called approximate nonlinear self-adjointness, and we

can find approximate conservation laws associated with approximate symmetry
with the following theorem. We have a main theorem [5]:

Theorem 2.1. Any infinitesimal symmetry

0
ng?(l‘,’u,,’U,(l),)74‘770‘(1),11,,“(1),) (2 12)

Ox? Oue’
of a nonlinearly self-adjoint system leads to a conservation WC?) = 0
constructed by the formula,

A . oL oL oL
‘= 'L Ne——-D;( =— DiDp{——)—--- 2.13
¢ SL+w dug ](3u%)+ J k(@u%k) ] ( )
oL oL oL
DWW - D D.D o — ...
+D;(W )lau% k(@u?jk) + + D;Dy(W )lauf‘jk 1’
whereW < = ¢* — §ju§‘, and L is the formal Lagrangian.
3. APPROXIMATE SELFADJOINTNESS
We write Eq.( 2. 7) in the form:
F =us — 6(u+ eu®)uy + tppy = 0. (3. 14)
Formal Lagrangian for Eq.( 3. 14 ) is:
L =v(us — 6(u+ eu?)ug + Uppz)- (3. 15)

Then the following equation,
F* = v, — 6(u + eu®)vy + Vppr = 0, (3. 16)
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is approximately adjoint to Eq.( 3. 14 ) . We look for the substitution

v(t, z,u,€) ~ ¢t x,u) + ep(t, z,u), 3.17)
that is satisfying in nonlinear self-adjointness condition
F*|ott,2,0,0)~ (tz,u) +e(ta,u) = A (L2, 0,€). (3. 18)
After substitutiong (3. 14 ) and ( 3. 16 ) into ( 3. 18 ), we conclude that:
A= ¢y, (3. 19)

and we have,
3¢urutts + 30zuutty + 3bzutice + Guva
+3Puntizlar + Guuuy + Gt + €Yt + Wy
—6(u + euz)gbm — 6e(u + euz)% + Py tss
+3€Vuratie + Wruutt? + 36 putizy + 3€uytiztze = 0. (3. 20)

For calculatingp, we consider the non contairierms in ( 3. 20 ) and for calculat-
ing v, we consider in (3. 20), only the linear termseirTheng,,, = 0, ¢y, = 0
and6bug, — ¢y — druy = 0 lead to:

Accordingly, 1y, = 0, Yys = 0 and6ey,u — ¥ — Ppae + 64102 = 0 lead to

1
¢ = (H1t++H2)u+6Hlac+H3, 3. 22)
andA; =0.

Proposition 3.1. The approximate substitution is,
1
v = A2U+A3 +6[(A4t++A5)U+ 6A4LE+A6], (3 23)

whereA;, i = 2,..,6 are arbitrary constant. That makes the Gardner equation (
3. 14 ) approximately self-adjoint.

4. APPROXIMATE CONSERVATION LAWS

Approximate symmetries of (3. 14 ) in [9] are:
v = Oy, vy = O, vy = 6t0; + (2eu — 1)0,, vy = €vq,

V5 = €V, vg = 6(625(,% - 3u>, vy = e(x@x + 315% - 2u8u>.(4. 24)

We can now construct approximate conservation laws
[Di(C) + D,(C?)] |Eq.(3.14) 0, (4. 25)

By applying the formula ( 2. 13). We perform all computations to first order of
approximation with respect t© The conserved vector for ( 3. 14 ) is:

ct = Wo,
C?* = W(—=6(u+ eu®)v + vyz) — 0. Dp(W) +vD2(W). (4. 26)
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We obtainl¥; = W for corresponding;, i = 1..7 as showen in Tablé. We can
calculate the conserved vecto! andC? ( 4. 26 ) for the approximate symme-
triesv;,s = 1..7in (4. 24 ) in Table2. We eliminateu; with the help of ( 3.

14 ). We can consider the special cases for calculating approximate conservation
laws by substituting variety constants insteaddef For instance, by considering

Ay = 1landA; = Ay = A5 = Ag = 0, we have one approximate conserved
vector.

Table 1
approximate symmetry correpondify;
vy = Oz Wi = —ug
vy = O Wo = —uy
v3 = 6t0; + (2eu — 1)0, W3 = (2ue — 1) — 6tu,
vy = €vy Wy = —€euy
V5 = €V W5 = —euq
ve = €(6t0y — Oy) We = —e — 6teuy
vy = €(x0y + 30y — 2ud,,) Wy = —2eu — 3teu; — exu,
Table 2
case ct C?
—uy — 6Azu —6A3 — 66((A4t + A5)u
+1/6Asx + Ag) + Azuas
v —uy Asu + Az + e((Aat + As)u Fe((Aat + As)ugs) + Uze Asuy

+1/6A4{L’ =+ Ag)

+E((A4t + A5)’U...,¢ + 1/6A4)
—Ugze A2u+ As
+6((A4t =+ A5)u —+ 1/6A4:E =+ Ag)

— 6eu’ Uz Upae (A2u + A3)
4+ — 6uugUpeqs (A2u + Az
+e((Ag + As)u + 1/6Asx + Ag)

V2

€ ((A4t + Ar;)u.,« + 1/6A4)
(36uui + 36U Uz s — BUULUppoe
76uiu$wx — 6UUzz Ugza
Hloroloree) + 36A2u’ud
+36A2ulUp s — 6u Uy AsUspes
+72A2u2ui + 36A2u3uium1
712Aguu3mugmI — 6A2usu U Usrs
— 6Asu — 6A3 + Asuy,
+ 36A2uui + 36A2u2uiumw
—6A2ulz Usa Usas + A2UsUszalozaae
— 6Asu — 6A36€((A4t + A5)u
+1/6Asx + Ag) + Azuay
+e((Aat + As)uzr)
+ E((A4t + A5)'u. + 1/6A4ZE + AG)
— BUzr Uy — 12U Ugy
—6UUrrr + Uzzree + Acu+ Az
(—12eu? + (—12eu — 6)uzy )us
+2(—12eu — 6)uzpUugy
+(—6Eu2 — 6“)“3‘7”‘ + Ugzaza
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v3

€ —2uy, — 12tuug, — 12tugus
—6A2u — 6A3 4+ Azugy)
—(A2uy + —6Asu—6A3
766((14415 =+ A5)u + 1/6A4x + Ag)
+AoUzy + €((Ast + As)uga))
7(A2u:,,- + 6((A4t —+ A5)ul + 1/6A4)
36t2ustizy + 6ttgs
+ Asu+ Az €uge
+ Asu + Az + e((Aat + As)u
+1/6A4{£ + Ag) — 6tugpa

2eu(Agu + Az) + (—6tuy, — 1)
><(A2u + Az + E((A4 + A5)u
+1/6A4$ —+ Ag))

Vg

—€eu, — 6Asu
—€uy Azu+ As —6A3 + Asugr + Azuz €Uy
— Asu+ A3 €Uzqes

Us

—€ 6UuUy — Uzga
— 6Asu — 6A3 + Asuyze — Asuy
- 56u§ — 6UULy + €Uggaa
+e Asu + As
— BUgp Uy — 12U Ugy
—bUuUgrs + Uzazza

—€ 6UUL — Upge Aou-+ Az

Ve

— 6teu, —€ — 6Azu — 6A3
— 6teu, — e Asu + Az +AsUzy + Bty Asug
—6etUpry Asu + Az

vr

€ —2u — 3t(6uty — Uges) — TUL
— 6Asu — 6A3 + Asugy
—e Aguy, —ug
+(—2 — 3tbug)uy + (—3t(6u) — T)ugs
+3tugrer + € Asu + Az
— Upy — 18Uz Uy + (—3 — 36tuy)Ugs
+(=18tu — T)Uzze + 3tUszros

Asu + Az — 2eu — 3te
(6uty — Ugas) — ETUL

(1]

(2]
(3]
(4]
(5]
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