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Abstract. We consider a repeatedQR updating algorithm for the so-
lution of equality constrained linear least squares problems. The con-
strained problem is first converted into the linear least squares problem us-
ing weighted factor and then it is partitioned into a small well-manageable
problem by removing a pair of blocks of rows and columns. We perform
the QR factorization of the small subproblem and then it is updated by
appending the removed data. The proposed strategy is effective for large
scale dense problems and also particulary suitable for parallel implemen-
tation due to its partitioning by using the number of passes. Some nu-
merical experiments are given to illustrate the accuracy of the proposed
algorithm and the results are compared with the solution obtained through
the nullspace method.
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1. INTRODUCTION

An equality constrained linear least squares problem (LSE)

min
x
‖Ax− b‖2, subject to Bx = d, (1. 1)

whereA ∈ Rm×n, b ∈ Rm, B ∈ Rp×n, d ∈ Rp, ‖.‖2 denotes the Euclidean norm, with
m + p ≥ n ≥ p andx ∈ Rn is considered. Further, we assume that

rank(B) = p, and rank

(
A
B

)
= n, (1. 2)

which ensures the existence and uniqueness of solution for problem (1. 1 ). The LSE
problems arises in important applications such as constrained surface fitting, geodetic
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least squares adjustment, optimal design of structures, beam-forming in signal process-
ing, penalty function methods in nonlinear optimization, analysis of large scale structure,
curve fitting, electromagnetic data processing and obtaining the solution of inequality con-
strained least squares problems [3, 5, 6, 7, 13, 14, 15, 16, 17, 22]. There exists various
direct methods such as direct elimination, nullspace method, method of weighting, gener-
alized singular value decomposition (GSVD), generalizedQR factorization (GQR) for the
solution of LSE problems [1, 7, 12, 13, 19, 21, 24, 18]. In weighting method, the LSE prob-
lem is converted into the unconstrained linear least squares problem (LLS) and then it can
be solved using existing methods such asQR factorization, singular value decomposition
(SVD) [7, 13].

In the present article, we re-write (1. 1 ) as

min
x(γ)

∥∥∥∥
(

γB
A

)
x−

(
γd
b

)∥∥∥∥
2

, (1. 3)

whereγ is a weighted factor and chosen asγ ≥ ‖A‖2/‖B‖2εM , whereεM is the machine
epsilon [7, 21]. The assumption in (1. 2 ) ensures that it is a full rank least-squares problem
and has a unique solution denoted byx(γ) such thatlimγ→∞ x(γ) = xLSE , wherexLSE

represents the solution of LSE problem (1. 1 ). The problem (1. 3 ) is then solved using
repeatedQR updating algorithm. Numerous aspects of updating in various matrix factor-
izations are discussed in [2, 4, 7, 8, 9, 10, 11, 20, 23]. The updating approach is desired
when further information is arrived and the user is interested to avoid solving the prob-
lem afresh. In [23], the author studied the updating techniques as a solution tool for LLS
problems. We exploit the large structure of the problem (1. 3 ) by removing block of rows
and columns usingP times partition process to reduce it to a small incomplete problem,
whereP stands for the number of passes as explained in section 3. TheQR Householder
factorization of the small incomplete problem is obtained and then it is updated uptoP
times after appending the removed data in order to get the required structure for the back
substitution. The proposed repeatedQR updating algorithm is useful for large scale dense
problems. Moreover, it is also suitable for parallel implementation due to its usage of the
number of passes for reducing the problem data into the small well-manageable problems
and then applying the updating techniques.

The present article is organized as follows. We discuss the basic concepts in section
2. In section 3, we present the repeatedQR updating algorithm for LSE problem (1. 1 ).
Numerical experiments and conclusion are provided in section 4 and 5 respectively.

2. PRELIMINARIES

We recall some important concepts in this section.

2.1. The Method of Weighting. The method of weighting is used for the solution of prob-
lem (1. 3 ) by applying the subroutines or programs which are applicable for the solution
of linear least squares problems. However, care is required in selection of large values of
γ for solution of (1. 3 ). Otherwise, the matrix under consideration will become poorly
conditioned. In particular, the method of normal equations fails for large values ofγ. For
details, we refer to [7].

2.2. The Nullspace Method. The solution of LSE problem (1. 1 ) can be obtained using
nullspace method [7]. Assuming the conditions given in (1. 2 ) are satisfied, we compute
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theQR factorization of matrixBT

QT
BBT =

(
RB

0

)
, (2. 4)

where
QB = (Q1, Q2), Q1 ∈ Rn×p, Q2 ∈ Rn×(n−p),

andRB ∈ Rp×p is upper triangular and nonsingular. ThenQ2 forms an orthogonal basis
for the nullspace ofB i.e. N (B) = R(Q2). Hence, any vectorx ∈ Rn which satisfies
Bx = d is then written as

x = x1 + Q2y2, x1 = B†d = Q1R
−T
B d. (2. 5)

Therefore, we can write

Ax− b = Ax1 + AQ2y2 − b, y2 ∈ Rn−p.

Now, we need to solve the LLS problem

min
y2
‖(AQ2)y2 − (b−Ax1)‖2, (2. 6)

by applying existing techniques for its solution. Lety2 be the minimum length solution to
(2. 6 ) such that

y2 = (AQ2)†(b−Ax1),
and letx1 be given in (2. 5 ). Then, sincex1⊥Q2y2, it follows that

‖x‖22 = ‖x1‖22 + ‖Q2y2‖22 = ‖x1‖22 + ‖y2‖22,
wherex is the minimum norm solution to LSE problem (1. 1 ).

3. REPEATEDQR UPDATING ALGORITHM FOR SOLUTION OF LSE PROBLEMS

This section is devoted to repeatedQR updating algorithm. We consider the problem
(1. 3 ) and write it as

min
x(γ)

‖ Cx− f ‖2, (3. 7)

whereC =
(

γB
A

)
∈ R(m+p)×n andf =

(
γd
b

)
∈ Rm+p,

and limγ→∞ x(γ) = xLSE . The problem (3. 7 ) is reduced to a small well-manageable
incomplete problem by repeated partition process of removing pairs of block of rows and
columns. LetP be the number of passes used for partitioning of the problem (3. 7 ). The
partitioning process is carried out in the following manner:
We remove the block of rowsU1r = C(m1 + 1 : m + p, :) ∈ Rr1×n from matrixC of the
problem (3. 7 ) andu1 = f(m1+1 : m+p) ∈ Rr1 from the corresponding right-hand-side
(RHS) as follow:

C1r = C(1 : m1, :), f1 = f(1 : m1),
wherem1 = (m+p)−r1 andr1 is the size of the removed block of rows. The incomplete
problem is

min
x1r

‖C1rx1r − f1‖2 . (3. 8)

Now, let us remove the block of columnsU1c = C1r(:, n1 +1 : n),∈ Rm1×c1 from matrix
C1r of incomplete problem (3. 8 ) as

C1c = C1r(:, 1 : n1), f1 = f(1 : m1),
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wheren1 = n− c1 andc1 is the size of the removed block of columns. Hence, we get the
following incomplete problem after a single pass

min
x1c

‖C1cx1c − f1‖2 . (3. 9)

In pass-2, the incomplete problem (3. 9 ) is reduced further to a small problem by removing
a block of rows and a block of columns respectively. By removing block of rows, we obtain

min
x2r

‖C2rx2r − f2‖2 , (3. 10)

where

C2r = C1c(1 : m2, :), f2 = f1(1 : m2),

andU2r = C1c(m2 +1 : m1, :), u2 = f1(m2 +1 : m1), is the removed block of rows and
m2 = m1 − r2. Furthermore, removing a block of columnsU2c = C2r(:, n2 + 1 : n1) ∈
Rm2×c2 from the matrixC2r of the incomplete problem (3. 10 ), we have

C2c = C2r(:, 1 : n2), f2 = f1(1 : m2),

wheren2 = n1 − c2 and c2 is the size of the removed block of columns. Thus, the
incomplete problem after this pass is now

min
x2c

‖C2cx2c − f2‖2 . (3. 11)

Continuing in the same fashion until theP th-pass, we obtain

min
xP c

‖CPcxPc − fP ‖2 . (3. 12)

The algorithm for the partitioning process is described below.

Algorithm 1 Partitioning

Input: C ∈ R(m+p)×n, f ∈ Rm+p, P the number of passes
1: for i = 1 : P do
2: mi = Enter the number of rows for sub-problem in theith pass
3: Ur(i) = {Ci(mi + 1 : end, :)}
4: Ci = Ci(1 : mi, :)
5: u(i) = {fi(mi + 1 : end, :)}
6: fi = fi(1 : mi, :)
7: ni = Enter the number of columns for sub-problem in theith pass
8: Uc(i) = {Ci(:, ni + 1 : end)}
9: Ci = Ci(:, 1 : ni)

10: end for

Now, we compute theQR decomposition of the reduced incomplete problem (3. 12 )
using the following algorithm.
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Algorithm 2 QR factorization

Input: CPc ∈ RmP×nP , fP ∈ RmP

Output: QP ∈ RmP×mP , RP ∈ RmP×nP , lP ∈ RmP

1: RP ←− CPc

2: QP ←− I
3: n1 = min(mP − 1, nP )
4: for i = 1 : n1 do
5: [v, τ, RP (i, i)] = house (RP (i, i), RP (i + 1 : mP , i))
6: W1 = RP (i, i + 1 : nP ) + vT RP (i + 1 : mP , i + 1 : nP )
7: RP (i, i + 1 : nP ) = RP (i, i + 1 : nP )− τW1

8: if i < nP then
9: RP (i + 1, i + 1 : nP ) = RP (i + 1, i + 1 : nP )− τvW1

10: end if
11: W2 = QP (1 : mP , i) + QP (1 : mP , i + 1 : mP )v
12: QP (1 : mP , i) = QP (1 : mP , i)− τW2

13: QP (1 : mP , i + 1 : mP ) = QP (1 : mP , i + 1 : mP )− τW2v
T

14: end for
15: lP = QT

P fP

wherehouse represents the Householder algorithm applied on the concerned matrix and
W1 andW2 are self explanatory intermediary variables used in the algorithm. Here, we
use the Householder algorithm based on Parlett’s formula [10] which provides a triangular
matrixR with positive diagonal elements in contrast with the MATLAB build-in command
qr used for theQR factorization of the matrices. Hence, we obtain

RP = HP · · ·H1CPc, lP = HP · · ·H1fP , (3. 13)

wherelP is the updated (RHS) offP . In addition to it, we also find the updated block of
columnsVPc = QT

P UPc.
From now onward, we are ready for updating the factorRP and the corresponding RHS

lP after appending the blocks of columns and rows respectively. By appending the block
of columnsVPc to theRP factor of (3. 13 ), we obtain

RPc =
(

RP VPc

)
. (3. 14)

Now if RPc in equation (3. 14 ) is upper trapezoidal or upper triangular, then no further
efforts are needed. Otherwise, we reduceRPc to upper triangular form by introducing the
Householder matricesHnP−1 , · · · ,HnP+1 such that

R̃Pc = HnP−1 , · · · ,HnP+1RPc and l̃Pc = HnP−1 , · · · ,HnP+1 lP , (3. 15)

wherenP−1 = nP + cP .
The process of appending the block of columns and then updated theRP factor is per-

formed with the help of the following algorithm.
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Algorithm 3 Updating after appending a block of columnsVPc to RP

Input: QP ∈ RmP×mP , RP ∈ RmP×nP , UPc ∈ RmP×cP , lP ∈ RmP

Output: Q̃Pc ∈ RmP×mP , R̃Pc ∈ RmP×(nP +cP ), l̃Pc ∈ RmP

1: VPc = QT
P UPc

2: RP (1 : mP , n + 1 : nP + cP ) ←− VPc(1 : mP , 1 : cP )
3: if mP ≤ nP then
4: R̃Pc = triu(RPc)
5: l̃Pc ←− lP
6: Q̃Pc ←− QP

7: else
8: for j = k to min(mP , nP + cP ) do
9: [v, τ, RP (j, j)] = house(RP (j, j), RP (j + 1 : mP , j))

10: W1 = RP (j, j + 1 : nP + cP ) + vT RP (j + 1 : mP , j + 1 : nP + cP )
11: W2 = QP (1 : mP , j) + QP (1 : mP , j + 1 : nP + cP )v
12: RP (j, j + 1 : nP + cP ) = RP (j, j + 1 : nP + cP )− τW1

13: if j < nP + cP then
14: RP (j +1 : mP , j +1 : nP +cP ) = RP (j +1 : mP , j +1 : nP +cP )−τvW1

15: end if
16: QP (1 : mP , j) = QP (1 : mP , j)− τW2

17: QP (1 : mP , j + 1 : nP + cP ) = Q(1 : mP , j + 1)− τW2v
T

18: lPj = lP (j)
19: lP (j) = (1− τ)lP (j)− τvT lP (j + 1 : mP )
20: lP (j + 1 : mP ) = lP (j + 1 : mP )− τvlPj − τvvT lP (j + 1 : mP )
21: end for
22: end if
23: R̃Pc = triu

(
RPc

)

24: Q̃Pc ←− QP

25: l̃Pc ←− lP

Next, the block of rows removed during the partition process will be appended and the
resulting factor will be updated accordingly. Let us append the block of rowsUPr to R̃Pc

anduPr to its corresponding RHS as

RPr =
(

R̃Pc

UPr

)
and lPr =

(
l̃Pc

uPr

)
.

Furthermore, we construct the Householder matricesHnP−1 · · ·H1 in order to obtain the
upper triangular factor̃RPr as follow:

R̃Pr = HnP−1 · · ·H1

(
R̃Pc

UPr

)
and l̃Pr = HnP−1 · · ·H1

(
l̃Pc

uPr

)
. (3. 16)

The procedure described above is presented in the following algorithm.
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Algorithm 4 Updating after appending a block of rowsUPr to R̃Pc

Input: Q̃Pc ∈ RmP×mP , R̃Pc ∈ RmP×(nP +nc), UPr ∈ Rr×nP , l̃Pc ∈ RmP , uPr ∈
Rr

Output: Q̃Pr ∈ R(mP +r)×(mP +r), R̃Pr ∈ R(mP +r)×(nP +nc), l̃Pr ∈ RmP +r

1: QPr ←−
(

QPc 0
0 IPr

)

2: for k = 1 to min(mP , (nP + nc)) do
3: [v, τ, RPr(k, k)] = house(RPr(k, k), Ur(1 : r, k))
4: W1 = RPr(k, k + 1 : (nP + nc)) + vT UPr(1 : r, k + 1 : (nP + nc))
5: RPr(k, k + 1 : (nP + nc)) = RPr(k, k + 1 : (nP + nc))− τW1

6: if k < n then
7: UPr(1 : r, k + 1 : (nP + nc)) = UPr(1 : r, k + 1 : (nP + nc))− τvW1

8: end if
9: W2 = QPr(1 : mP + r, k) + QPr(1 : mP + r,mP + 1 : mP + r)v

10: QPr(1 : mP + r, k) = QPr(1 : mP + r, k)− τW2v
11: QPr(1 : mP +r,mP +1 : mP +r) = QPr(1 : mP +r,mP +1 : mP +r)−τW2vvT

12: lPck = lPc(k)
13: lPc(k) = (1− τ)lPc(k)− τvT uPr(1 : r)
14: uPr(1 : r) = uPr(1 : r)− τvlPck − τvvT uPr(1 : r)
15: end for
16: if mP < (nP + nc) then
17: [QPr, RPr] = qr(Ur(:,mP + 1 : (nP + nc))
18: RPr(mP + 1 : mP + r,mP + 1 : (nP + nc)) ←− RPr

19: uPr = QT
r uPr

20: QPr(1 : mP + r,mP + 1 : mP + r) = QPr(1 : mP + r,mP + 1 : mP + r)QPc

21: end if

22: R̃Pr ←−
(

RPr

0

)

23: Q̃Pr ←− QPr

24: l̃Pr ←−
(

lPr

uPr

)

We continue in the same fashion until we reached to the1st-pass. In last step of updating
process, we obtained the final upper triangular factorR of the problem (3. 7 ) and the
corresponding RHSl after appending block of columnsU1c and block of rowsU1r which
were removed in the first pass of partition. That is, we append the block of columns
U1c ∈ Rm1×c1 to R̃2r by first computingV1c = Q̃T

2rU1c, we have

R1c =
(

R̃2r V1c

)
. (3. 17)

Now if matrix R1c of equation (3. 17 ) is upper triangular then we will move to the next
step. If that is not the case, then we define Householder matricesHn · · ·Hn1+1 in order to
reduceR1c of equation (3. 17 ) to upper triangular form. We obtain

R̃1c = Hn · · ·Hn1+1

(
R̃2r V1c

)
and l̃1c = Hn · · ·Hn1+1 l̃2r, (3. 18)

wheren = n1 + c1. This procedure is performed by using Algorithm 3.
Furthermore, the block of rowsU1r ∈ Rr1×n andu1 ∈ Rr1 are appended to matrix̃R1c

and to its corresponding RHS̃l1c of equation (3. 18 ).
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Here, we used again the Algorithm 4, and the process is performed as below:

R1r =
(

R̃1c

U1r

)
, l1r =

(
l̃1c

u1

)
,

whereU1r andu1 are blocks of rows and the corresponding RHS which were removed
in the1st-pass of partition process. In order to obtain the upper triangular factorR̃1r, we
construct Householder matricesH1, · · · ,Hn as follows.

(
R̃1r

0

)
= H1 · · ·Hn1+c1

(
R̃1c

U1r

)
and l̃1r = H1 · · ·Hn1+c1

(
l̃1c

u1

)
. (3. 19)

We know thatn = n1 + c1 and(m + p) = m1 + r1. So we can write

R =
(

R̃1r

0

)
and l = l̃1r,

whereR ∈ R(m+p)×n is the updated factor ofQR factorization of matrixC and l ∈
R(m+p) is the corresponding RHS of the problem (3. 7 ) obtained through repeated up-
dating process. The solution to the problem (3. 7 ) is then obtained through the MATLAB
built-in commandbacksubfor back-substitution.

Finally, we state the repeatedQR updating algorithm in a compact manner as follow.

Algorithm 5 RepeatedQR Updating Algorithm

Input: A ∈ Rm×n, b ∈ Rm, B ∈ Rp×n, d ∈ Rp,
Output: xLSE ∈ Rn

1: C =
(

γB
A

)
andf =

(
γd
b

)

2: for i = 1 to P do
3: [Cir, fir, Uir, Cic, Uic] ←− partition (C, f)
4: end for
5: [QP , RP , lP ] ←− qrv(CPc, fPc)
6: for i = P : −1 : 1 do
7: [Qic, Ric, lic] ←− minsertbcols(Qir, Rir, lir, Uic)
8: [Qir, Rir, lir] ←− minsertbrows(Qic, Ric, lic, Uir, uir)
9: end for

10: [R, d] ←− [Rir, lir]
11: xLSE ←− backsub(R(1 : n, :), l(1 : n))

This algorithm calls upon the partition process,qrv, minsertbcols, minsertbrows and
backsub which are the MATLAB implementations of Algorithm 1, Algorithm 2, Algorithm
3, Algorithm 4 and the backward substitution respectively.
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In addition to this, we also performed complexity analysis of Algorithm 5 as follow:

TABLE 1. Complexity Analysis of Proposed Algorithm 5
Function Cost Comments

qrv 2/3n3
P + 2sP n2

P − 2cP n2
P + 4cP sP nP QR factorization of subproblem

(3. 12 ) andVPc = QT
P UPc.

minsertbcols 2sP (2nP + c2
P )− 2/3(c3

P + 3nP c2
P ) Appending block of columnscP

to RP .
minsertbrows 2n2

P rP Appending block of rowsrP to
R̃Pc.

backsub n2 Back-substitution ofR(1 : n, :)
andd(1 : n).

The total approximated cost of the algorithm isO(n2 +n3
P +(sP +rP −cP )n2

P −c3
P −

nP c2
P + (cP + 1)sP nP ) which depends on the number of passesP used in the reduction

of the problem (3. 7 ) to a small subproblem andmP ¿ s, nP ¿ n, rP ¿ s, cP ¿ n,
ands = m + p ≥ n ≥ p.

4. NUMERICAL EXPERIMENTS

In this section, we consider equality constrained linear least squares problems. The
problem matrices are generated randomly with fixed elements using MATLAB built-in
functionrand(′twister′). The matrices are taken as dense which means that most of its el-
ements are non-zero. The description of the problem matrices with size, condition number
κ and frobenius norm‖.‖F are given in Table 2. The condition number and frobenius norm
of a matrixX are calculated with MATLAB commandcond(X) andnorm(X, ′fro′) re-
spectively.

TABLE 2. Description of Test Problems

Problem Size of (A) κ(A) ‖A‖F Size of (B) κ(B) ‖B‖F

1. 20×15 3.9189e+023.9050e+02 10×15 8.1331e+019.3514e+01

2. 50×30 3.0930e+028.7314e+02 20×30 1.6462e+021.8742e+02

3. 80×70 2.2092e+031.6860e+03 60×70 3.8523e+024.9304e+02

4. 500×300 1.1473e+038.7325e+03 300×300 4.0400e+042.2920e+03

5. 1000×500 1.1602e+031.5942e+04 400×500 9.3239e+023.4156e+03

The error obtained between the two solutions are given in Table 3 wherexLSE denotes
the solution obtained by the proposed updating algorithm andx is the solution through
nullspace method. Moreover, the size of the subproblems are given in the table which
shows that for problem (1) and (2) we used two number of passes while for the rest of the
problems we considered three passes in our experiments.
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TABLE 3. Results Comparison

Problem
Proposed Algorithm Nullspace Method Relative Error

Size of Subproblem Elapsed time (sec)Elapsed time (sec)‖x− xLSE‖2 / ‖x‖2
1. (8,6), (3,3) 0.0580 0.0013 4.0040e-15
2. (15,15), (5,3) 0.0623 0.0016 1.1842e-14
3. (50,50), (30,20), (10,5) 0.0723 0.0056 1.0079e-14
4. (100,90), (50,40), (5,5) 2.8662 0.0886 3.4076e-14
5. (500,500), (100,100), (50,50) 23.7295 0.0987 1.7551e-14

The relative error obtained between the two solutions showed that the proposed Algo-
rithm 5 provided satisfactory results despite large weighted factor. Moreover, the obtained
solutionxLSE satisfy the equality constraint systemBx = d. We calculated the elapsed
time of both the methods. The elapsed time for our algorithm can be reduced further
through its parallel implementation.

5. CONCLUSION

The linear least squares problem with equality constraint is considered. The problem
is first reduced to unconstrained linear least squares problem using weighted factor. Then
repeatedQR updating algorithm is used in order to solve the obtained linear least squares
problem. The proposed strategy is effective for large scale dense problems and particularly
suitable for parallel implementation. In future, the work needs to be carried out in order to
test the applicability of the proposed algorithm on ill-conditioned type matrices arising in
constrained linear least squares problems.
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