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Abstract. We consider a repeate@ R updating algorithm for the so-
lution of equality constrained linear least squares problems. The con-
strained problem is first converted into the linear least squares problem us-
ing weighted factor and then it is partitioned into a small well-manageable
problem by removing a pair of blocks of rows and columns. We perform
the QR factorization of the small subproblem and then it is updated by
appending the removed data. The proposed strategy is effective for large
scale dense problems and also particulary suitable for parallel implemen-
tation due to its partitioning by using the number of passes. Some nu-
merical experiments are given to illustrate the accuracy of the proposed
algorithm and the results are compared with the solution obtained through
the nullspace method.
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1. INTRODUCTION
An equality constrained linear least squares problem (LSE)

min||Az — blj2, subjectto Bz =d, (1.1

whereA € R™*", be R™, B € RP*", d € RP, |||, denotes the Euclidean norm, with
m+p >n>p andx € R"is considered. Further, we assume that

rankB) = p, and rank( é ) =n, 1.2

which ensures the existence and uniqueness of solution for problem (1. 1). The LSE
problems arises in important applications such as constrained surface fitting, geodetic
51
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least squares adjustment, optimal design of structures, beam-forming in signal process-
ing, penalty function methods in nonlinear optimization, analysis of large scale structure,
curve fitting, electromagnetic data processing and obtaining the solution of inequality con-
strained least squares problems [3, 5, 6, 7, 13, 14, 15, 16, 17, 22]. There exists various
direct methods such as direct elimination, nullspace method, method of weighting, gener-
alized singular value decomposition (GSVD), generali@dtifactorization (GQR) for the
solution of LSE problems[1, 7,12, 13, 19, 21, 24, 18]. In weighting method, the LSE prob-
lem is converted into the unconstrained linear least squares problem (LLS) and then it can
be solved using existing methods suchtaR factorization, singular value decomposition
(SVD) [7, 13].

In the present article, we re-write (1. 1) as

vB vd
(%)--(V)
wherey is a weighted factor and chosena% || A||2/|| B||2€a, Whereey, is the machine
epsilon [7, 21]. The assumptionin (1. 2 ) ensures that itis a full rank least-squares problem
and has a unique solution denoteddy) such thatim., . z(v) = zrgg, Wherezrsg
represents the solution of LSE problem (1. 1). The problem (1. 3) is then solved using
repeatedy) R updating algorithm. Numerous aspects of updating in various matrix factor-
izations are discussed in [2, 4, 7, 8, 9, 10, 11, 20, 23]. The updating approach is desired
when further information is arrived and the user is interested to avoid solving the prob-
lem afresh. In [23], the author studied the updating techniques as a solution tool for LLS
problems. We exploit the large structure of the problem (1. 3) by removing block of rows
and columns using® times partition process to reduce it to a small incomplete problem,
where P stands for the number of passes as explained in section 3QFhidouseholder
factorization of the small incomplete problem is obtained and then it is updatedfupto
times after appending the removed data in order to get the required structure for the back
substitution. The proposed repeate& updating algorithm is useful for large scale dense
problems. Moreover, it is also suitable for parallel implementation due to its usage of the
number of passes for reducing the problem data into the small well-manageable problems
and then applying the updating techniques.

The present article is organized as follows. We discuss the basic concepts in section
2. In section 3, we present the repeafg¢® updating algorithm for LSE problem (1. 1).
Numerical experiments and conclusion are provided in section 4 and 5 respectively.

min
z(7)

, (1. 3)
2

2. PRELIMINARIES

We recall some important concepts in this section.

2.1. The Method of Weighting. The method of weighting is used for the solution of prob-
lem (1. 3) by applying the subroutines or programs which are applicable for the solution
of linear least squares problems. However, care is required in selection of large values of
~ for solution of (1. 3). Otherwise, the matrix under consideration will become poorly
conditioned. In particular, the method of normal equations fails for large valugskdr
details, we refer to [7].

2.2. The Nullspace Method. The solution of LSE problem (1. 1) can be obtained using
nullspace method [7]. Assuming the conditions given in (1. 2 ) are satisfied, we compute
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the QR factorization of matrixB”
R
ars” = (), .4

where
Qp=(Q1,Q2), Q1 eR™P Q¢ R (n—p)

andRp € RP*? is upper triangular and nonsingular. Th@p forms an orthogonal basis
for the nullspace oB i.e. N'(B) = R(Q2). Hence, any vector € R™ which satisfies
Bax = dis then written as

=21+ Qayp, x1=B'd=Q Rz d (2.5)
Therefore, we can write
Ax —b=Ax1 + AQ2ys — b, 1y e R"P,
Now, we need to solve the LLS problem
H;:EHH(AQQ?D — (b= Azy)|l2, (2. 6)

by applying existing techniques for its solution. Lgtbe the minimum length solution to
(2. 6) such that

y2 = (AQ2)" (b — Axy),
and letx; be givenin (2. 5). Then, since | Qys-, it follows that
213 = llz1ll3 + [Q2y2113 = llz1[13 + lly2113,

wherez is the minimum norm solution to LSE problem (1. 1).

3. REPEATED@QR UPDATING ALGORITHM FOR SOLUTION OF LSE PROBLEMS

This section is devoted to repeat@d? updating algorithm. We consider the problem
(1. 3) and write it as

min[| Cz — f |2, (B.7)
z(7)
whereC = ( Vf ) € Rm*P)xn gand f = Vbd € Rm*p,

andlim.,_,., z(y) = xrsg. The problem (3. 7) is reduced to a small well-manageable
incomplete problem by repeated partition process of removing pairs of block of rows and
columns. LetP be the number of passes used for partitioning of the problem (3. 7). The
partitioning process is carried out in the following manner:
We remove the block of row8;, = C(my +1:m+p,:) € R™*" from matrixC of the
problem (3. 7)and; = f(m;1+1: m+p) € R™ from the corresponding right-hand-side
(RHS) as follow:

Cir =C(1:mq,:), fi=f(1:my),
wherem; = (m+ p) —ry andr, is the size of the removed block of rows. The incomplete
problem is

min [[Crrz1, = fills - 3.8)

Now, let us remove the block of columbg,. = C1,-(:,n1 +1 : n), € R™1*1 from matrix
C1, of incomplete problem (3. 8) as

Clczclr(:71:n1)7 flzf(l:m1)>
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wheren, = n — ¢; ande; is the size of the removed block of columns. Hence, we get the
following incomplete problem after a single pass

min [|Crez1e = fill, - 3.9)

In pass-2, the incomplete problem (3. 9) is reduced further to a small problem by removing
a block of rows and a block of columns respectively. By removing block of rows, we obtain

I?Zin HC27"I27“ - f2”2 ) (3 10)
where
Cor = Cre(1:mg,:), fa= fi(l:ma),
andUs, = Cic(ma2+1:my,:), uz = fi(ma+1:my), is the removed block of rows and

my = my — ro. Furthermore, removing a block of columbls, = Cs,.(:,ns +1: 1) €
R™=2*¢2 from the matrixCs, of the incomplete problem (3. 10 ), we have

Coe = Cop(5,1:mg),  fo= fi(l:my),

wherenys = n; — ¢ andcey is the size of the removed block of columns. Thus, the
incomplete problem after this pass is now

r;121n ||CQC{L‘QC — f2||2 . (3 11)

Continuing in the same fashion until t#"-pass, we obtain
IQI};HHCPCJ?PC—JCPHQ. (3.12)

The algorithm for the partitioning process is described below.

Algorithm 1 Partitioning
Input: C € RUmtp)xn £ c Rm+p P the number of passes
1. fori=1:Pdo
2. m; = Enter the number of rows for sub-problem in th& pass

n; = Enter the number of columns for sub-problem in ttfe pass
Uc(i) ={C;i(:,n; + 1 : end)}

9: C;, = Ci(l, 1: ’I’I,Z‘)

10: end for

3 Uq(1) ={Ci(m; +1:end,:)}
4. Ci=Ci(1:my,:)

5 (i) ={film;+1:end,:)}
6: fz:fz(]- :mi,:)

7

8:

Now, we compute thé€) R decomposition of the reduced incomplete problem (3. 12)
using the following algorithm.
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Algorithm 2 QR factorization

Input: Cp, € R™P*"P fp € R™MP
Output: Qp € R™MP*X™MP Rp € RMPX"P [p € R™P
1. Rp «+— Cpe
2. Qp— 1
3: ny =min(mp — L,np)
4: fori=1:n;do

5. [v,7,Rp(i,i)] = house (Rp(i,1), Rp(i +1: mp,i))

60 Wy =Rp(i,i+1:np)+ v Rp(i+1:mp,i+1:np)
72 Rp(i,i+1:np)=Rp(i,i+1:np)—17W;

8: ifi <npthen

o: Rp(i+1,i+1:np)=Rp(i+1,i+1:np)—7T0W;
10. endif

11 Wy =Qp(l:mp,i) +Qp(l:mp,i+1:mp)v

122 Qp(l:mp,i)=Qp(1:mp,i) — 7Ws

132 Qp(l:mp,i+1:mp)=Qp(l:mp,i+1:mp)—7WovT
14: end for

15: lp = QF fp

wherehouse represents the Householder algorithm applied on the concerned matrix and
Wi and W, are self explanatory intermediary variables used in the algorithm. Here, we
use the Householder algorithm based on Parlett’'s formula [10] which provides a triangular
matrix R with positive diagonal elements in contrast with the MATLAB build-in command
qr used for thel) R factorization of the matrices. Hence, we obtain

Rp=Hp---HCp., lp=Hp---Hifp, (3.13)

wherelp is the updated (RHS) ofp. In addition to it, we also find the updated block of
columnsVp, = QLUp..

From now onward, we are ready for updating the faétprand the corresponding RHS
lp after appending the blocks of columns and rows respectively. By appending the block
of columnsVp,. to the Rp factor of (3. 13 ), we obtain

Rpe=( Rp Vp. ). (3. 14)

Now if Rp. in equation (3. 14 ) is upper trapezoidal or upper triangular, then no further
efforts are needed. Otherwise, we rediie. to upper triangular form by introducing the
Householder matriceH.,,,, ,,--- , Hy, , such that

éPc:H

np_1s"" "y fnpyy

H,.. . Rp. and lp.=H,, ., ,Hu,,  lp, (3. 15)

yiHnpig

wherenp_1 =np + cp.
The process of appending the block of columns and then updatdéttactor is per-
formed with the help of the following algorithm.
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Algorithm 3 Updating after appending a block of columiis, to Rp

Input: Qp € R™PXmr | Rp € RMeXne, Up, € RMPXer, | € RMP
OUtpUt: Q~PC e RmP ><mp7 RPC e 7zmp><(np—‘,-cp)7 Z~Pc c RmP

1 VPc = QEUPC

22 Rp(l:mp,n+1:np+cp) — Vp(l:mp,1:cp)

3: if mp < npthen

4: Rpc :tm'u(Rpc)

5: Z.PC —Ip

6: Qpc+— Qp

7: else

8 for j = ktomin(mp,np + cp) do

o [v,7, Rp(j, 7)] = house(Rp(j, ), Rp(j +1:mp,j))

10: Wi=Rp(j,j+1:np+cp)+v"Rp(j+1:mp,j+1:np+cp)
11: WQZQp(lImp7j)+Qp(1IWLP,j+1ITLp+CP)U

12: Rp(j,j-‘rlinp—l-Cp):Rp(j,j+1:np+0p)—TW1

13: if 7 <np -+ cpthen

14: Rp(j+1:mp,j+1:np+cp)=Rp(j+1:mp,j+1:np+cp)—10W;
15: end if

16: Qp(l:mp,j)=Qp(l:mp,j) —TW2
17: Qp(ltmp,j—l—lInp+Cp):Q(lZmp7j+l)—TW2”UT

18: lpj :lp(j)

19: lp(j) =1 —7)lp(G) —mTlp(j +1:mp)

20: lp(j+1:mp)=1p(j+1:mp)—1vlp; — 00T Ip(j+1:mp)
21:  end for

22: end if

23: RPC = triu ( Rp. )

24: Qpc — Qp
25 lp. «— Ip

Next, the block of rows removed during the partition process will be appended and the
resulting factor will be updated accordingly. Let us append the block of tbwsto Rp.
andup, to its corresponding RHS as

RPT:(RPC> and lp»,a:< Lpe >
UP’I‘ Upr

Furthermore, we construct the Householder matridgs_, - - - H; in order to obtain the
upper triangular factoR ,. as follow:

RPr:an_l"'Hl < Rpe > and ZP'r*:ITZ'nP_l"'Ii'l < Lpe > . (3 16)
UPT‘ Upr

The procedure described above is presented in the following algorithm.
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Algorithm 4 Updating after appending a block of ro#s, to Rp.

Input: Qpc € RmpXmp, RPC S RmPX("P"_”C), Up, € R™*"P, ch € R™FP, up, €
RT
OUtpUt: QPT c r]’\)/(mprr)><(mp+r)7 RPT c R(mp“rT’)X(TLP*‘rTLC), ZP’I" c Rmp+r
QPC 0
0 Ip,
2: for k = 1to min(mp, (np + n.)) do

1 QP’I" A

3 [v,7,Rp.(k, k)] = house(Rp,(k, k), Ur-(1:7,k))

4 Wi=Rp.(k,k+1:(np+n.))+viUp.(1:r,k+1:(np+n.))

5. Rp.(k,k+1:(np+n.)=Rp(k,k+1:(np+n.))—7W

6. if k <nthen

7: Upr(1:mk+1:(np+n.))=Up.(1:1k+1:(np+n.))—10W1
8 endif

9:

Wo=Qp(1:mp+rk)+Qp-(1:mp+r,mp+1:mp—+r)v

10 Qpr(l:mp+rk)=Qp-(1:mp+rk)—17Wo

1. Qpr(1:mp+r,mp+1:mp+r) = Qp.(1: mp+r,mp+1: mp+r)—7Wovv?

12: lpek = lpc(k)

130 Upe(k) = (1 = 7)lpe(k) — mvlup.(1:7)

14: up.(1:7) =up(1:7) — T0lper — 70T Uup (1 :7)

15: end for

16: if mp < (np + n.) then

17 [Qpr,Rpr]| = qr(U.(:;mp +1: (np +n.))

18: Rpr(mp-i-l mp+r,mp+1: (np—l—nc)) «— Rp,

19: Upr = QIUPT

200 Qpr(l:mp+rmp+1:mp+7)=Qp-(1:mp+r,mp+1:mp+r)Qpc

21: end if

22: Rp, «— ( Repr )
0

23 QP’I’ — QPT

7 ZP’I"

24: lp, «—
" Upy

We continue in the same fashion until we reached td theass. In last step of updating
process, we obtained the final upper triangular fadtoof the problem (3. 7)) and the
corresponding RH$after appending block of columr$ . and block of rowd/;,. which
were removed in the first pass of partition. That is, we append the block of columns
Uy € R™%°1 to Ry, by first computingV;. = Q% U1, we have

Rlc - ( é2r ‘/lc ) . (3 17)

Now if matrix R;. of equation (3. 17 ) is upper triangular then we will move to the next
step. If that is not the case, then we define Householder maftiges- H,,, 1 in order to
reduceR; . of equation (3. 17 ) to upper triangular form. We obtain

Rlc =H, - Hn1+1 ( R2r Vie ) and ZlC =Hy- - Hn1+1l~27" (3 18)

wheren = ny + ¢;. This procedure is performed by using Algorithm 3. .
Furthermore, the block of rqm[s(lr € R™*™ andu; € R™ are appended to matrik, .
and to its corresponding RHSg. of equation (3. 18).
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Here, we used again the Algorithm 4, and the process is performed as below:

_ Rlc _ Zlc
er - ( Ulr > ) llr - ( uy > )
whereU;,. andu; are blocks of rows and the corresponding RHS which were removed

in the 15t-pass of partition process. In order to obtain the upper triangular fagtgrwe
construct Householder matricég, - - - , H,, as follows.

Rr Rc 7 zVc
( 01 )ZHl”'H”ﬁcl(UllT) and 517~=H1"'Hn1+01<u11 ) (3.19)

We know thatn = ny + ¢; and(m + p) = my + r1. S0 we can write

Ri, -
Rz( 01 ) and 1 =1,

where R € R(m+P)x" is the updated factor af)R factorization of matrixC’' and! €
R(m+P) is the corresponding RHS of the problem (3. 7 ) obtained through repeated up-
dating process. The solution to the problem (3. 7 ) is then obtained through the MATLAB
built-in commandoacksulfor back-substitution.

Finally, we state the repeatégl? updating algorithm in a compact manner as follow.

Algorithm 5 Repeated) R Updating Algorithm

Input: A e R™*" be R™, Be RP*" deRP,
Output: zpsp € R"

1:C:<Vf)andf:<7bd)

2: fori=1to P do

3 [Cim fir» Uir, Cic, Uw] — partition (C, f)

4: end for

5: [QP7 Rp, lp] — qu(Cpc, fpc)

6:fori=P:—1:1do

7. [Qic, Ric,lic] «— minsertbcols(Q;y-, Rir, Lir, Uic)

8  [Qir, Rir,lir] < minsertbrows(Qic, Ric, lic, Uir, ir)
9: end for

10: [R, d} — [R,‘T, l”]

11: zrgp <— backsub(R(1 : n,:),l(1 : n))

This algorithm calls upon the partition procegsp, minsertbcols, minsertbrows and
backsub which are the MATLAB implementations of Algorithm 1, Algorithm 2, Algorithm
3, Algorithm 4 and the backward substitution respectively.
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In addition to this, we also performed complexity analysis of Algorithm 5 as follow:

TABLE 1. Complexity Analysis of Proposed Algorithm 5
Function Cost Comments
qrv 2/3n% + 2spn? — 2cpn% + depspnp | QR factorization of subproblem
(3 12 ) andeC = QgUpc.
minsertbcols| 2sp(2np + %) —2/3(ch + 3npcs) | Appending block of columnasp

to Rp.
minsertbrows 2npbrp Appending block of rows p to
Rp..
backsub n? Back-substitution oR(1 : n,:)
andd(1 : n).

The total approximated cost of the algorithn@ign? +n% + (sp +7rp — cp)nb —c% —
npch + (cp + 1)spnp) which depends on the number of pasgessed in the reduction
of the problem (3. 7)) to a small subproblem angg < s,np < n,rp K s,cp K n,
ands=m+p>n>p.

4. NUMERICAL EXPERIMENTS

In this section, we consider equality constrained linear least squares problems. The
problem matrices are generated randomly with fixed elements using MATLAB built-in
functionrand('twister’). The matrices are taken as dense which means that most of its el-
ements are non-zero. The description of the problem matrices with size, condition number
x and frobenius normj. ||  are given in Table 2. The condition number and frobenius norm
of a matrix X are calculated with MATLAB commanebnd(X) andnorm(X, ' fro') re-
spectively.

TABLE 2. Description of Test Problems

Problem Size of (A)| k(A) |All |Sizeof (B)] k(B) | Bl #
1. 20x15 |3.9189e+023.9050e+02 10x15 |8.1331e+019.3514e+01
2. 5030 |3.0930e+028.7314e+02 20x30 |1.6462e+021.8742e+02
3. 80x70 |2.2092e+031.6860e+03 60x70 |3.8523e+024.9304e+02
4. 500x 300 |1.1473e+038.7325e+03 300x 300 | 4.0400e+042.2920e+03
5. 1000x500| 1.1602e+031.5942e+04 400x500 |9.3239e+023.4156e+03

The error obtained between the two solutions are given in Table 3 whefe denotes
the solution obtained by the proposed updating algorithmaaigithe solution through
nullspace method. Moreover, the size of the subproblems are given in the table which
shows that for problem (1) and (2) we used two number of passes while for the rest of the
problems we considered three passes in our experiments.
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TABLE 3. Results Comparison

Probler Proposed Algorithm Nullspace Method Relative Error
Size of Subproblem  |Elapsed time (seflapsed time (se@lx — zrsell, / ||z,
1 (8,6), (3.3) 0.0580 0.0013 4.0040e-15
2. (15,15), (5,3) 0.0623 0.0016 1.1842e-14
3. (50,50), (30,20), (10,5) 0.0723 0.0056 1.0079e-14
4 (100,90), (50,40), (5,5) 2.8662 0.0886 3.4076e-14
5. ](500,500), (100,100), (50,50) 23.7295 0.0987 1.7551e-14

The relative error obtained between the two solutions showed that the proposed Algo-
rithm 5 provided satisfactory results despite large weighted factor. Moreover, the obtained
solutionz s satisfy the equality constraint systelix = d. We calculated the elapsed
time of both the methods. The elapsed time for our algorithm can be reduced further
through its parallel implementation.

5. CONCLUSION

The linear least squares problem with equality constraint is considered. The problem
is first reduced to unconstrained linear least squares problem using weighted factor. Then
repeated) R updating algorithm is used in order to solve the obtained linear least squares
problem. The proposed strategy is effective for large scale dense problems and particularly
suitable for parallel implementation. In future, the work needs to be carried out in order to
test the applicability of the proposed algorithm on ill-conditioned type matrices arising in
constrained linear least squares problems.
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