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Abstract. A multi-step frozen Jacobian iterative scheme for solv-
ing system of nonlinear equations associated with IVPs (initial
value problems) and BVPs (boundary value problems) is constructed.
The multi-step iterative schemes consist of two parts, namely base
method and a multi-step part. The proposed iterative scheme uses
higher order Fréchet derivatives in the base method part and offers
high convergence order (CO) 3s+ 1, here s is the number of steps.
The increment in the CO per step is three, and we solve three upper
and lower triangles systems per step in the multi-step part. A single
inversion of the is not working in latexfrozen Jacobian is required
and in fact, we avoid the direct inversion of the frozen Jacobian
by computing the LU factors. The LU-factors are utilized in the
multi-step part to solve upper and lower triangular systems repeat-
edly that makes the iterative scheme computationally efficient. We
solve a set of IVPs and BVPs to show the validity, accuracy and
efficiency of our proposed iterative scheme.
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1. INTRODUCTION

The closed form solution of a nonlinear problem is not always possible and then
we seek a numerical solution. One of the possible ways to solve IVPs and BVPs is to
solve associated discretized nonlinear problems. In most of the cases, we end with a
system of nonlinear algebraic equations and it is an active area of research to develop
a high CO iterative scheme for solving a system of nonlinear equations. In the
majority of iterative schemes researchers employed the first order Fréchet derivative
for the solution of the system of nonlinear equations because the computational cost
of higher order Fréchet derivatives is high. But it is not the case always; we show
that in many IVPs and BVPs, the computational cost of higher order Fréchet
derivatives is almost equivalent to the single function evaluation and hence it is not
a bad idea to propose higher order iterative schemes that consist of higher order
Fréchet derivatives. In the case of scalar nonlinear equations, there is a conjecture
(Kung-Traub conjecture) that states the relationship between the optimal CO and
the number of function evaluations. If an iterative scheme without memory to find
a simple root of a scalar nonlinear equation uses d function evaluations, then it
can attain an optimal CO 297! [10, 6]. But we do not have a conjecture about
the optimal CO of an iterative method for solving a system of nonlinear equations.
The direction of research in the development of iterative schemes for solving system
of nonlinear equations is to construct iterative schemes with high CO but low
computational cost. The frozen Jacobian multi-step iterative schemes offer efficient
iterative schemes. The efficiency of frozen Jacobian iterative schemes is hidden
in the single LU factorization of the frozen Jacobian and solution of upper and
lower triangular systems. Actually, the solutions of upper and lower triangular
systems are computationally efficient that makes the entire method computationally
attractive. The majority of IVPs or BVPs after discretization can be written as

K(q) =Aq+g(q)+b=0, (1. 1)

A is the differentiation approximation matrix, g(q) is a nonlinear function, b is a
constant vector and 0 is a zero vector. The higher order Fréchet derivatives of ( 1.
1) are listed as

K'(q) = A + diag (¢'(q))
K" (q) = diag (9" (q)) (1. 2)
K" (q) = diag (¢"'(q)) ,

where diag (-) represents a diagonal matrix. The Fréchet derivative is the existence
of the following limit
. |[K(q+h) —K(q) —Bh|| _

1 —
wb ] 0

which ensures the Fréchet differentiability. The linear operator B is called the first
order Fréchet derivative, and we denote it by K’(q). The higher order Fréchet
derivatives can be computed recursively

K'(q) = Jacobian (K(q)),
K’(q)uw’~"' = Jacobian (K7~ ' (q)v/ '), j>2,
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where u is a vector independent from q. The classical Newton-Raphson iterative
scheme for solving system of nonlinear equations can be expressed as

NR — qo = initial gue?s »
dn+1 = dn — K'(an) " K(aqn),

where det (K'(q,)) # 0. The CO of NR method is two. The multi-step frozen
Jacobian Newton-Raphson iterative scheme can be described as

qo = initial guess
NOS =5 Base method — K'(qo) ¢; = K(qop)
CO =s+1 a1 =do— ¢
MNR — FE =35 forz:/l,s—l
JE = K (QO)¢i+1 =K(q;)
LUF = Multi-step part — Qiv1 = qi — P4
LUTS =s end
do = Qs

where NOS, FE, JE, LUF and LUTS are number of steps, function evaluations,
Jacobian evaluations, number of LU-factorizations and number of solutions of up-
per and lower triangular systems respectively. The per step increment in the CO of
MNR is one in the multi-step part. The computational efficiency of MNR method
is better than that of NR because the computation of the Jacobian and its LU
factorization for solving upper and lower triangular systems are expensive. We
are interested in constructing an iterative scheme that solves the system of non-
linear equations associated with IVPs and BVPs and offers a good computational
efficiency. The computational efficiency means we achieve high CO with low com-
putational cost. Many researchers [11, 8, 1, 12, 2, 3, 13, 7, 9] have proposed the
high CO iterative scheme for solving the system of nonlinear equations.

2. THE PROPOSED ITERATIVE SCHEME

We construct an iterative scheme IZFZA with CO 3s+1. The per step increment
in the CO is three in the multi-step part. If we assume that the computational cost
of second and third order Fréchet derivatives is equivalent to that of K(-) then the
total number of function evaluations is s + 2. The Iterative method IZFZA is an
efficient iterative scheme because we solve three upper and lower triangular systems
per multi-step.
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qp = initial guess
K’ (q0) ¢1 = K (q0)
NOS =s
K’ (a0) $2 = K" (ao) ¢7
coO =3s+1 Base method —
K’ (ao) ¢3 = K" (a0) ¢192
K(-) evaluations =s
, K’ (a0) ¢4 = K"/ (a0) ¢1
K'(-) evaluations =2
a1 =qo — ¢1 — 74’2;4’3 + 4%4
K’ () evaluations =1
1ZFZA = fori=2,s
K'”(-) evaluations =1
K’ (qo) ¢5 = K (a;—1)
LUF =1
K’ (q0) ¢6 = K’ (a1) ¢5
M-V multipliations = 2(s — 1)
Multi-step part — K’ (a0) 67 = K' (a1) ¢
V-V multiplications = s+ 7
i =qi—1 — 3(¢5 — $6) — &7
LUTS =3s+1

where M-V and V-V stand from matrix-vector and vector-vector respectively.
The iterative scheme IZFZA for solving ( 1. 1) can be written as

I1ZFZA =

where ®

KY)(q) denotes the j-th order Fréchet derivative of K(q).

NOS

CcO

K(-) evaluations
K’ (-) evaluations
LUF

M-V multiplications
V-V multiplications

LUTS

=2(s—1)
=s+7

=3s+1

Base method —

Multi-step part —

qp = initial guess
B = A + diag (g/(qo))
B¢, =Aqo+g(qo) +b
B¢y =g" (a0) © ¢1 O ¢1
B¢z =g" (a0) ©¢1 © ¢2
B¢y =g"" (q0) 0 ¢1 ©¢1 O ¢y
'2112(10*¢1*%+4:T4
fori=2,s
Bé¢; =Aq;—1+9g(qi—1) +b
B¢g =Ads +g'(a1) © ¢5
B¢, =Ads + g’ (a1) O ¢
A = qi—1 — 3(d5 — $6) — b7
end

qo0 = 4ds »

is the component-wise multiplication of two vectors of same length.

3. CONVERGENCE ANALYSIS

Theorem 3.1. Let K : T' C R™ — R"™ be a Fréchet differentiable function (with
required order of differentiability) on an open convexr neighborhood T' of q* € R™
with K(q*) = 0 and det(K'(q*)) # 0, where K'(q) denotes the Fréchet derivative
of K(q). Let Ay = K'(q*) and A; = %K’(q*)*1 KU)(q*), for j > 2, where

Then, with an initial
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guess in the neighborhood of q*, the sequence {q,,} generated by IZFZA converges
to q* with local order of convergence at least eight and error

es=Ley" + 0 (eos) ,

p times

—_——
where €y = qo — q*, eop = (eo,eg, AN 7eo), and L = —24A§A3A2 — 16A%A3 +
7 times
8A3A 4 + 40AS is a 7-linear function, i.e. L € L (R™, R" R" --- R"™) with Ley’ €

R™.

Proof. We define the error at the n-th step e, = q, — q*. To complete the conver-
gence proof, we performed the detailed computations by using Maple and details
are provided below in sequence.

K'(a0) ! = (T - 24200 + (—3A5+4A3)ed + ( — 444+ 6A5A; + 6424,
- 8A§)e3 n ( _5As — 12A2A5 — 12A5A2 — 12A5A5A, + SA,A,
+9A3 +8ALA, + 16A§)eg n ( ~ 6Ag— 16A2A, — 32A3

— 16A4A3 — 18A2A, — 16A2A A, — 18A3AA; — 18A,A2

+24A3A3 + 24AA3A2 + 24A2A3A, + 10A5A, + 12A4A5

+12A5A4 + 10A,A;5 + 24A§A3)e3 4o +0(e) )A;l

K(qO) = A1 (eo 4+ Age% + A3eg + A4eé + A5e8 + A688 + A7eg + Ageg + 0] (eg) )

¢, = eo — Age? + ( —92As+ 2A§)e3 ¥ ( —3A, 4 4AsA5 + 3A3A, — 4A§)eg
n ( ~4A5 + 6AsAy + 4A4A, — 6AsA3A, + 6AZ + SAL — GA;A2
- 8A§A3)eg + ( —5A6 — 12A3A5A5 — 8AsA, Ay + 8AsA5 + 9A5A,

+ 8A4A3 +5A5A, +12A2A3A, + 12A5A3A32 + 12A3A5 — 9A2A,

—12A5A3 — 16A5 — 12A3A, — 8A4AZ + 16A§A3)e8 + 0 (ef)
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by = 2A582 + ( —8A2 ¢ 6A3)eg + (12A4 — 20AsA;5 + 26A3 — 18A3A2)e3
+ (60A§A3 ~76A% — 36AsA4 + 52A5A5A, — 32A4 A, + 54A;A2
+ 20A5 — 42A§)e3 + ( — 142A2A3A, — 146AA3A2 — 150A3A3
+ 86A2A A, + 102A2A5 + 92A,A2 + 116A5A2 + 120A3A,A5 — 168A3A3
£ 102A2A, + 208A3 — 56AsAs — T2A3A4 — T2A4A; — 50A5A + 3OA6)68

+ (372A§A3A2 +380A3A3A2 + 388A2A3A3 +396A3A5 + 128A,A5A,

+ 162A3A4 A5 + 140A5A% 4 168A,A3A, — 308A2A2% — 316A5A3A5A

— 324A3A2A5 + 222A3 + 188A5A A3 + 200A4A0A5 + 192A5A3A,
+198A3A5A, +448A5A5 — 276 A5 A, —224A2A Ay — 544A5 — 264A,A2A,
—236A2A4A5 — 270A3A5A3A, — 2T6A5A3 — 248A, A3 + 152A3A;

— 80AsAq — 108A3A5 — 120A2 — 110A5A5 — T2A6A, + 42A7)eg +0 (ef)

¢ = 4A2e + ( _98A3 4 12A,A, + 12A3A2)eg4J n (24A4A2 1 132A1
+24AsA, — T6A2A; — 68AA3A, — T2A3A2 + 36A§)eg + (292A§A3A2
+296A5A3A3% + 312A3A5 — 124A5A A, — 168A2A, — 136A4A2
— 180A5A2 — 192A3A,A3 + 336A5A3 — 144A2A, — 516A)
40A0A5 + T2A5A 4 + T2A4 A5 + 4OA5A2)e8 + ( — 1076A3A3A,
— 1080A2A3A3 — 1100A2A3A3 — 1152A3A5 — 196A2A5A,
—300A3A4A, — 220A5A3 — 312A,A3A, + T24A2A2
+ T40A2A3A5A3 + T80A3A5 A3 — 432A3 — 324A,A4A;
— 360A4A2A3 — 336AA3A, — 360A3A,A, — 1256A5A3
+612A3A, + 508A2A A, + 1800AS + 636 A2 A2ZA, + 520A5A 4 A2
+ 672A3A5A3A, + 672A2A2 4+ 568A, A3 — 232A2A5 + 60A5A¢

£ 120A3A5 + 144A2 + 120A5A; + 60A6A2)eg +0 (ef)

6, = 6A2e3 + (24A4 —12A,A4 — 18A3A2)e3 n (60A5 4 36A5A5A,
4 54A3A2 — 48AsA, — 54A2 — T2A4A, + 24A§A3)e3 + (120A6
—T2A2A3A; — 108A2A3A3 — 150A3A3 + 144A5 A4 A, + 144A2A,
+216A4A2 + 108A5A2 + 144A3A,A5 — 48A3A; + 96A3A,
— 120A5A5 — 126A3A, — 168A,A5 — 180A5A2>e8 + <144A§A3A2
+216A3A3A3% + 300A2A3A3 + 396A3A35 + 360A2A5A, + 342A3A4 A,
+ 540A5A3 + 432A,A3A, — 216A2A3 — 288A5A3A,A; — 37T2A3A3A;
4 342A3 + 336A5 A A3 + 480A4 A0 Az + 252A,A3A 4 + 306A3A0A,
+96A5A3 — 192A3A, — 288A2A A, — 288A,A%A, — 432A,A A%
— 354A3A,A3A, — 408A2A2 — 600A4A3 + 240A%A5 — 240A5A4

~ 252A5A5 - 31243 — 390A5A5 — 360AsA; + 210A7 )ef + O (ef)
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e, = (A4 £ 5A3 — 2AA; — 3A3A2)eg n (20A2A3A2 +24A;A2 — 36A4

¢5:

¢6:

+4A5 — 8AsA — 12A2 — 12A4A, + 20A§A3)eg + ( — 99A2A5A,

— 105A2A3A3 — 118A3A3 + 51A2A, Ay + 66A3A, + 66A4A3 + 62A5A3
+ 72A3A5A3 — 108A3 A3 +49A2A, + 170A5 — 20A5A5 — 30A3A,

~ 36A4A5 — 30A5As + 10A6)e8 + (4OOA§A3A2 + 410A2A ;A2

+ 430A5A3A3 + 468A3A5 + 104A2A5A, + 138A3A, A5 + 140A5A3

+ 156A4A3A, — 268A2A3 — 284A5A3AA5 — 314A3A3A 3 + 180A3

+ 140A5A A3 + 176 A4 AgAs + 132A5A3A, + 150A3A5A 4 + 452A5A 3
— 224A3A 4 — 206A3A, A5 — 660AS — 252A,A2A, — 230A5A A3

— 278 A3A2A3A, — 284A3A3 — 276 A4A + 96A5A5 — 40A5A¢

— 60A3A5 — T6A2 — 80A5A3 — 60AGA, + 20A7) e+ 0 (ef)

(A4 +5A3 — 2A,A; — 3A3A2)e3 n (4A5 +26A2A5A, + 24A5A2 — 46A%
~10AsA4 — 12A2 — 12A4A, + 24A§A3)e3 n (10A6 ~151A2A5A,

— 153A5A3A% — 133A3A3 + T5A2A, Ay + T5A2A, + 66A4A2 + 86A5A2
+78A3A5A5 —156A3 A5 +69A2A, +262A5 —28A5A5 —33A3A, —36A4A3
- 3OA5A2)e8 + (702A§A3A2 + 716A2A3A2 + 696A3A3A3 + 606A3A3

+ 164A5A5A, + 17T4A3A A5 + 140A5A3 + 168A,A3A, — 440A3A3

— 440AA3A5A5 — 386A3A3A3 + 216A35 + 212A5A A3 + 184A,A0A;
+ 198A5A3A, + 180A3A,A, + T64A5A3 — 362A5A, — 356A2A,A,

—1184A5 — 402A2A2A, — 362A5A4A% — 356A3A5A3A,
— 356A2A2 — 296A4A3 4 152A2A5 — 60A2A6 — T2A3A5
~ 80A% — 80A5A3 — 60A¢Az + 20A7 )ef + O (ef)

(A4 1 5A% — 2A5A; — 3A3A2)eg + (321AQA;,3A2 +24A3A2 — 56A4
F4As — 12A5A, — 12A2 — 12A4A, + 28A§A3)eg n ( —215A2A5A,
—201AA3A3 — 148A3A3 + 99A A A, +84A2A, + 66A4A3 + 110A,A2
+ 84A3A5A5 — 212A3 A5 + 93A2A, + 37T4A5 — 36A5A5 — 36A3A,

~ 36A1A5 — 30AsA; + 10A¢ )ef + (1132A5A5A; + 1118434543
+992A5 A3 A3 + TT4A3A5 + 224A5 A5 A5 + 210A3A A5 + 140A5A3

+ 180A4A3A, — 660AZAZ — 608A3A3A,A3 — 4T0A3AZA; + 252A3

+ 284A5A4A3 + 192A, A0 A5 + 27T0AA3A, + 216A3A5A 4 + 1188A3A3
— 548A3A, — 554AZA A5 — 1932A5 — 5T0AAZA, — 494A,A A3

— 452A3A,A3A, — 428A2A3 — 316A4 A3 + 224A5A5 — 80A A,

— 84A3A5 — 84A7 — 80A5A;5 — 60AcA; + 20A7) e) + O (ef)
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¢, = <A4 £ 5A3 —2A,A; — 3A3A2)eg + (38A2A3A2 +24A3A2 — 66A%
F4As — 14A5A, — 12A2 — 12A4A, + 32A§A3)eg + ( —291A2A5A,
— 249A,A3A3 — 163A3A3 + 123A,A A5 + 93A2A, + 66A4 A3 + 134A5A3
+90A3A2A;5 — 276A3 A3 + 121A2A, + 506A5 — 44A5A5 — 39A3A,
—36A4A5 —30A5A, + 10A6)e3 + (1714A§A3A2 +1616A2A3A2
+ 1318A5A3A3 + 972A3A75 + 284A5 A5 Ay + 246A3A4 A, + 140A5A2
+192A,A3A, — 928A2A% — 788A5A3AA3 — 566A3A2A5 + 288A3
+356A5A4A3 + 200A4 A2 A3 + 348A5 A3 A, + 258 A3A5A, + 17T40A5A
— 790A3A 4 — 800A3A A, — 2944A5 — T56 A2 A3A, — 626A2A A3
— 566A3A2A3A5 — 500A2A2 — 336A4A35 + 312A2A5 — 100A5A¢
— 96A3A5 — 88A2 — 80A5A; — 60AGA, + 2OA7) el + 0 (ef)

e = ( — 24A3A3A, — 16A%A, + SASA, + 40Ag)eg +0(ef) .
Which completes the proof. ([

Now we present the proof of convergence of IZFZA via mathematical induction.
Theorem 3.2. Prove that the CO of IZFZA method is 3s + 1 for s > 2.

Proof. All the computations are made under the assumption of Theorem 3.1. We
know from Theorem 3.1 that the CO of IZFZA method is seven for s = 2 and the
error equation is

e = (_ 24A3A3A, — 16A3A; + SAZA, + 40Ag)eg +0 (ef) - (3.3)

Now we assume that the CO of IZFZA is 3s + 1 for s > 2, and we will prove that
the CO of IZFZA is 3s + 4 for (s + 1)th step. If the CO of IZFZA is 3s+ 1 then

es=qs—q" ~ dlegsJrl , (3. 4)

where d; is the asymptotic constant and the symbol ~ means the approximation.
By using ( 3. 4 ), we perform the following steps to complete the proof.

K(qo) ™" ~(I—2Aze0) A}’
K(qs) ~Aidieg*t
b5 ~ — 2A5d 3 + diep
K'(qi) ~A; + ( — 6A1A2A3A, + 10A AL 1+ 2A,ApA, — 4A1A§A3)eg
b ~die* T — 4Asdie) T + 4A3d el
¢, ~diep ™ — 6Asdied T + 12A2d 3T — 8ASd el
eosr ~8ALdlEl .

Which completes the proof. ([l
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4. NUMERICAL TESTING

The verification of CO is important and we adopt the following definition of
computational CO (CCO)

108K (@)oo K ()] o)
CC0 = oa (K (@)oo /K () o)

4.1. Verification of computational CO. Consider the following system of non-
linear equations K(q) = [K1(q), K2(q), K3(q), K4(q)]T =0,

Ki(a) =q3¢2+ (a2 +¢3) g2 =0
Ko(a) =q3q1 + (1 +q3)qa =0
Ki(@)=qaq+(g1+¢)qu=0
Kid)=q@a+ (@ +g)=1.

Let d = [dy, d2,ds, ds)” be a constant vector, and K’'(q) and K" (q)d = (K'(q)d)’
can be written as

(4. 5)

(4. 6)

0 G3+aq q2+q q2+g3
+q 0 G1+aq @ +ags
KI — q3
(a) G2+qs q1+qs 0 q1+q2
G2 +4q3 @1+4g3 q1+qe 0

0 d3s+dy do+dy do+ds
ds + dy 0 di+dy dy+ds
do+dy dy+dy 0 dy+da|’
|d2+d3 di+d3 di+do 0

and K”’(q)d® = 0. Table 1 shows that the computational COs are in agreement
with the theoretical CO of the iterative scheme [ZFZA.

K"(q)d =

Iter \ Steps s=2 s=3 s=4 s=5
1 K Q)]s 2426  9.19e9 27811  9.4%-14
2 - 4.71e-42  1.67e-84  8.94e-142  7.28e-214
3 - 5.05e-292  2.00e-841 3.55e-1838 1.19e-3415
CCO 7 10 13 16
Theoretical CO (3s+ 1) 7 10 13 16

TABLE 1. IZFZA : verification of CO for the problem ( 4. 6 ).

4.2. Lane-Emden problem. Next we consider the Lane-Emden boundary value
problem

u”(z) + %u'(m) +u(z)? =0, 4(0)=0, u(0)=1. (4. 8)

In Tables 2, 3, 4, 5, we computed the computational CO for p € {2,3,4,5} and
use different number of steps. By performing three iterations, we found that the
CCO confirms the theoretical COs. In Figure 1, we plotted the numerical solution
of Lane-Emden equation for different indices ranging from two to five.
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Tter \ s 2 3 4 5

1 (1K (aw)]]e 412%¢1  1.60e2  270e4 2506
2 - 9.58e-26  5.88e-61  2.37e-110  1.18e-172
3 - 7.40e-216 6.91e-664 1.14e-1498 5.97e-2853
CCO (p=2) 7.71 10.32 13.09 16.11
Theoretical CO (3s+ 1) 7 10 13 16

TABLE 2. IZFZA : verification of CO for the problem ( 4. 8 ) over
the domain [0,3], number of grid points 50.

Tter \ s 2 3 4 5

1 K ()]s 8621  4.70e2  2.75¢-3  8.53¢5
2 - 2.69e-15  2.09e-38 1.45e-74 3.69e-123
3 - 8.91e-133 3.23e-433 2.81e-1041 6.93e-2059
CCO (p=3) 8.10 10.86 13.56 16.35
Theoretical CO (3s+ 1) 7 10 13 16

TABLE 3. IZFZA : verification of CO for the problem ( 4. 8 ) over
the domain [0,3], number of grid points 50.

Iter \ s 2 3 4 5

1 IK(aw)]]s 250  39lel  2.83e2  1.12-2
2 - 2.58e-14  1.94e-29 2.41le-51 3.41e-84
3 - 2.06e-116 3.41e-330 3.18e-731 3.51e-1435
CCO(p=4) 7.30 10.63 13.86 16.57
Theoretical CO (3s+ 1) 7 10 13 16

TABLE 4. IZFZA : verification of CO for the problem ( 4. 8 ) over
the domain [0,3], number of grid points 50.
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Tter \ s 2 3 4 5

1 IK(@w)]]e 2.25¢+1  0.78 2.24 1.70e-1
2 - 2.42e-6  8.09¢-19  4.92e-38 9.67e-59
3 - 2.74e-66 8.89e-240 5.68e-550 1.20e-1025
CCO (p=5) 8.60 11.57 13.59 16.89
Theoretical CO (3s+ 1) 7 10 13 16

TABLE 5. IZFZA : verification of CO for the problem ( 4. 8 ) over
the domain [0,3], number of grid points 50.

T
initial guess
index=2

index=3
index=4
index=5

0.8-

06l \
04f |

02f |

A — R S ————

. . 1
0 0.5 1 15 2 25 3

FIGURE 1. IZFZA: plot of Lane-Emden equation with different
indices, number of gird points 50.

4.3. 3-D Poisson nonlinear problem. The nonlinear Poisson-Dirichlet bound-
ary value problem can be describe as

Upg + Uyy + sz + g(u) = p(,y, 2), (z,y,2) € (0,1)3 (4. 9)
where p(x,y, z) is the source term and g(u) = u® is a nonlinear function. We as-
sume Dirichlet boundary conditions. Using Chebyshev pseudo-spectral collocation
method [4, 5], we perform the following discretization of ( 4. 9 ):
KU) = (Tex @, @ L) + (L © Tyy @ L) + (L ® I, ® T>..))U + f(U) —p = 0
K'(U) = (Tor @ L, ® L) + (I ® Ty ® L) + (I, ® I, ® T>..)) + diag (¢'(U))
K"(U)vivs = ¢"(U) O vi © vy
K" (U)vivavs = ¢"(U) O vi O va O vs,

(4. 10)

where I denotes the identity matrix, and vi, vy, vs are vectors, ® is a Kronecker
product and T.. is the discretization of the second order derivative. In Tables 3

and 4, We uses different grid sizes to compute the absolute error in the numerical
solution. We observe that as we refine the grid, we get more accurate results. We
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achieve almost 15-digit accuracy in the computed solution. It is important to note
that we perform only one iteration and many multi-steps. It means, we compute
only once the LU factors of the Jacobian at the initial guess and use these LU
factors repeatedly in the multi-step part to solve the system of linear equations to
achieve the high order of convergence.

s \IV 8x8x8 10x10x10 12x12x 12
2 ||Ug = Uanaigticall [0~ 5.00e-06  5.40e-06 5.62¢-06
3 - 7.82¢-09  8.03¢-09 8.37¢-09
4 - 5.63¢-10  1.17e-11 1.22e-11
5 - 5.62e-10  3.20e-13 1.51e-14
6 - 5.62c-10  3.22¢-13 9.33¢-15

TABLE 6. IZFZA: absolute error (ABE) in the solution of ( 4. 10
) versus different grid sizes, number of iterations = 1, initial guess
U =0, g(u) =us.

s \N 8x8x8 10x10x10 12x12x12
2 [|Uk — Uanalytical||oo  3.70e-04 3.99¢-04 4.14e-04
3 - 5.53e-06 6.03e-06 6.30e-06
4 - 8.21e-08 8.93e-08 9.34e-08
5 - 1.65e-09 1.31e-09 1.38e-09
6 - 5.63e-10 1.93e-11 2.02e-11
7 - 5.63e-10 3.19e-13 2.94e-13
8 - 5.63e-10 3.24e-13 7.77e-15

TABLE 7. IZFZA: ABE in the solution of ( 4. 10 ) versus different

grid sizes, number of iterations = 1, initial guess U = 0, g(u) = u*.

4.4. 2-D nonlinear wave equation. The 2-D nonlinear wave equation can be
written as

gy — ¢ (Ugy + Uyy) + g(u) = p(x,y), (z,y,t) € (—1,1)%* x (0,2] (4. 11)

where nonlinear function g(u) = u® and ¢, s are constants. By assuming the solution
u = exp(—t)sin(x+y), we compute the source term p(x,y). The 2-D nonlinear wave
equation is solved by imposing Dirichlet boundary conditions. By the application
of Chebyshev pseudo-spectral collocation method. we discretize ( 4. 11 ) and get
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the following system of nonlinear equations

KU)=(Ty oL aL) - (L ®Tep @ L) + (I © I, ® Ty,)))U
+f(U)-p=0
KU =(TuoLol)—-(L;®Tw L)+ (I @1, ® Ty,,)) + diag (¢'(U))
K'(U)viva =¢"(U) O vy O v
K" (U)vivavs =¢"(U) O vy © vy O vy,
(4. 12)

Three different size grids are used to solve the 2-D nonlinear wave equation.
Table 5 depicts that we achieve 11-digit accuracy by performing a single iteration
of our proposed iterative scheme IZFZA. In all tables, iterations are carried out
until we do not find any further improvement in the numerical accuracy of the
solution.

s\IV 10x 10 x 20 20 x 20 x 20 20 x 20 x 30
2 ||Ug = Unnaigticall|[o~ 1.86e-03 3.61e-03 1.95¢-03
3 - 1.87¢-04 1.75¢-03 1.11e-04
6 - 8.65¢-06 1.50e-04 6.47¢-06
8 - 1.20e-06 2.96¢-05 1.01e-06
10 - 1.66¢-07 5.82¢-06 1.57¢-07
12 - 2.28¢-08 1.14e-06 2.44¢-08
14 - 3.21e-09 2.25¢-07 3.80e-09
16 - 9.88e-10 4.43¢-08 5.91e-10
18 - 7.26¢-10 8.72¢-09 9.21e-11

TABLE 8. IZFZA: ABE in the solution of ( 4. 12 ) versus different
grid sizes, Number of iterations = 1, g(u) = u%, ¢ = 1, initial guess
U=0.

5. CONCLUSIONS

It is true that the use of Fréchet derivatives of higher orders for solving a sys-
tem of nonlinear equations is not of practical interest and the reason is the high
computational cost. We have shown that it is not the case when we deal with the
system of nonlinear equations associated with IVPs and BVPs. The applicability of
higher order Fréchet derivatives is their low computational cost in the case of IVPs
and BVPs. We exploit this benefit to constructing the multi-step frozen Jacobian
higher order iterative scheme. The frozen Jacobian provides us the LU factors that
we repeatedly use in the multi-step part to achieve high CO. In two problems, we
compute the CCO that confirms the theoretical CO but in many BVPs, it is not
possible to verify the theoretical CO. We employ a single iteration in all simulations
to achieve good numerical accuracy.
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