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Abstract. The goal of this paper is to throw light on the novel concept of measurable soft mappings.
The criteria for an extended real-valued soft mapping to be a Lebesgue measurable soft mapping
would also be presented. The positive and negative parts of an extended real-valued soft mapping are
also introduced therein. The measurability of soft mappings would also be the part of discussion. The
definition of soft probability measure in connection with its applications to seaftgebra will also

be briefly discussed. In the end, an application of soft sets would also be represented.
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1. INTRODUCTION

In 1999, Russian researcher Molodtsov [17] originated the idea of soft set theory as a mathematical device for
dealing with uncertainty and decision making problems. The theory has many practical applications in a diversity
of fields. Maji et al. [14, 15] employed soft sets theory in problems related to decision making and defined many
operations on soft sets. Adit al. [2] suggested some fruitful operations on soft sets. Gitead. [7] laid foundation
of parametrization reduction of soft sets and its applications. Shabir and Naz in [24], and Cegaidann [5]
proposed the theory of soft topological spaces and accomplished various properties regarding soft topological spaces.
In [22], Rong discussed the countabilities of soft topological spaces, soft separable spaces and &@oftdpades
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and investigated some interesting results using these notions. Roy and Samanta[23] discussed some interesting results
in the theory of soft topological spaces utilizing the ideas of soft base and soft sub-base. Zorlutuna and Cakir [28]
worked on soft continuity, soft open-ness and soft closed-ness of soft mappings and also investigated the behavior of
soft separation axioms and generalized the pasting lemma in view of soft set theory. Riaz and Fatima [21] used soft
sets, soft elements and soft points to explore the notions of soft dense, nowhere soft dense sets, soft first category,
soft second category and soft Baire space for soft metric spaces and established the Baire's category theorem for soft
metric spaces. Pei and Miao [19] described remarkable relationship between the soft sets and information systems. In
[18], Mukherjeeet al. studied the notion of Measurable soft sets. Samanta and Das [8, 9, 10] proposed fundamental
properties of soft real sets and soft real numbers. They also discussed soft elements and soft points in soft sets and
proposed the idea of soft metric spaces. Samanta and Majumdar [16] proposed the notion of soft groups, and discussed
the images and inverse images in the view of soft mappings on soft sets. Kharal and Ahmad [13] established mappings
on soft classes, the images and inverse images of soft sets. Khameneh and Kilicman [12] discussatb8bfas in
connection with soft probability space. Riaz and Naeem [20] introduced different concepts of soft sets, including soft
o-ring, soft algebra, and soft-algebra. They presented different types of set functions, including soft finitely sub-
additive, soft countably sub-additive, soft finitely additive, soft countably additive and soft monotone. They studied
the concept of soft outer measure and soft Lebesgue outer measure. They also described interesting applications of
soft mappings to decision-making.

In continuance to the significant work done by the aforementioned icons of Mathematics, we explore, in the
following pages, the novel concept of measurable soft mappings. The criteria for an extended real-valued soft mapping
to be a Lebesgue measurable soft mapping would also be presented. The positive and negative parts of an extended
real-valued soft mapping would also be introduced therein. The measurability of soft mappings would be the part of
discussion. In the sequel, the definition of soft probability measure in connection with its applicationgtalgefbra
will also be briefly discussed.

2. PRELIMINARIES

Definition 2.1. [17] Let X be a universe ané a non-empty collection of decision variables. Supposeafais the
aggregate of all subsets &f and A(# ¢) C E. The double{(T, A), whereT : A — 2% is a mapping, is known as a
soft setover X. Mathematically speaking, it may be expressed as

(T, A) = {(n.Ta(n) : n€ A Ta(n) € 2%}

T is another representation f@r, A).
Maiji et al. [15] presented soft subsets as below:
Definition 2.2. [15] Let (T, A;) and(G, A2) be soft sets ovekK. If

(1) A C Ay, and
(2) T(n) CG(n),Vne A

then we write(T, A;) C (G, A,) and call(T, A;) asoft subsedf (G, Ay). (G, As) is then calledsoft superseof
(T, A;) and is expressed &6/, A3) O (T, A,).
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Definition 2.3. [8] Let B(RR) be the collection of all non-void bounded subsets of théset real numbers. Assume
that A is the collection of decision variates. The nfip A — B(R) is known as aoft real setdesignated byT’, A).
If (T, A) is a soft set comprising only one soft element , then after recogniZing) with the corresponding soft
element, it is termed assoft real number

We express a soft real number bywhereas: will represent the particular type of soft real numbers such that
7(n) = r, for ally € A. For exampleD is the soft real number whefdn) = 0, for everyn € A.

Definition 2.4. [8] Let C be the family of all closed bounded intervals of real numbers, then the mappifity— C
is known as a&oft closed intervalEach soft interval may be expressed as an ordered pair of soft real numbers. That is
if I : E — Cis defined byl (\) = [ax, by], VA € E, then the soft intervall, E) may be expressed as an ordered pair
of soft real number$Ty, T ), whereTy () = ay andT>(A) = by, VA € E.
Similarly the mapping : E — C is called asoft open intervaif I : E — C is defined byf(A) = (ax,by), VA €
E.

Definition 2.5. [26] Let < be an ordering of ', A) and let(Ty, A;) C (T, A). Forn € A, if T(n) < T1(\),VA € Ay,
thenT'(n) is known as aoft lower boundf (T3, A;) in the ordered soft sdfl’, A, <). T(u) is termed as theoft
infimumor soft greatest lower bouniflit is greatest of all soft lower bounds 61, 4,) in (T, 4, <).

Definition 2.6. [26] Let < be an ordering of T, A) and let(Ty, A;) C (T, A). Forn € A, if Ty(\) < T'(n),VA € Ay,
thenT'(n) is known as aoft upper bounaf (77, A;) in the ordered soft s€fl’, A, <). T(y) is termed as theoft
supremunor soft least upper bounidit is smallest of all soft upper bounds ¢T,, A, ) in (T, A, <).

Definition 2.7. [13] Let f : X — Y andu : Ey — E, be mappings. Thensoft mapping)y,, : (X, E1) — (Y, E2),
where(X, E;) and(Y, E,) are soft classes, is defined as:
For a softsetF, A) in (X, Ey), (Vs (F, A), B), B=u(A) C E,is asoft setinY, E5) given by

f(UmEu*l(ng)ﬂA F(nl))7 if U_l(ng) NA#¢
b, otherwise

Yru(F, A)(12) = {

forne € B C Es. (Y, (F, A), B) is calledsoft imageof a soft se{ F, A).
The soft mapping)y,, is soft injectiveif both the mappingg’ andw are injective and isoft surjectivef both of
f andu are surjective.

Definition 2.8. [12, 20] An aggregatez of soft subsets oX is termed as aofts-algebraon X if
)T, €A

2)If Ty € AthenT§ € A

3) If {./Zl (1€ N} € .Z, thenOfil .Zz € .Z

The doublet X, A) is known as aoft measurable spacEachA; € A is called aneasurable soft set

Example 2.9. Let X = {g,r, s} be the initial universe anfl = {n;, 72} be the set of parameters. Let
Ty, =Ty,
TA2 = {(7]17{9} 5 7727{})}’

) (
Tay = {(m,{r}), (n2,{g,s})},
Tay = {(m,{s}), (n2, {rH)},
TAs = {(7717 {97 T})? (772a {97 5})}'
={(m

Ta n 7{T,S}),(T]g,{g,’l",$})},
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TA7 = {(7717 {ga 8})7 (7727 {T})}, and

9

Ty, = X.
ThenA = {T4, :i=1,2,3,...,8} is a softo-algebra overX.

Definition 2.10. [20] LetAbea softr-algebra of soft subsets ové&r andy: be a soft real-valued mapping oh Let
{T4,} be a sequence of soft setsdn The soft mappingi is called

1) finitely soft sub-additivéf (U}, Tia,) < X0, fi(Ta,).

2) countably soft sub-additivié (U~ Ta,) < 252, fi(Ta,).

3) finitely soft additivef 7i(U;_, Ta,) = X, ji(Ta,), whereT,’s are pairwise soft disjoint.

4) countably soft additiver soft-additiveif 7i(U;-, Ta,) = X2, 7i(Ta,), whereT's,’s are pairwise soft disjoint.
5) soft monotoné Ty C T = [i(T4) < i(Ts), ¥ Ta, T € A.

Definition 2.11. [20] A non-negative soft extended real-valued set funcfidrdefined or2* is called asoft outer
measurdf

1) *(Ty) = 0;

2) i* is soft monotone; and

3) ii* is countably soft sub-additive i.@* (Ui, Ta,) < 322, 7* (Ta,).

Definition 2.12. [18] Let T4 be a soft set. A mapping.* : 2% — [0, ] given as
m*(Ty) = inf {Z 1(In(n)) : Ta(n) € Ty In(n),m € E}

where soft infimum is taken over soft finite or soft countable sequéhgk of soft open intervals antistands for
length of an interval, is callesoft Lebesgue outer measure
In other words

wherem* stands for the Lebesgue outer measure. Sihee2?®, so for anyl’y C R, there must exist a soft sequence
{I,,} of soft open intervals such that, () C U,, I,,(n) for all h € E. One can takd,, = R for eachn.

Remark. (1)Note thatl’y C Uy, I, < Ta(n) € U, I.(n),Vn € E.
(2) Since the length of an interval is always non-negativens¢l’,) > 0 for everyTy C R.

Proposition 2.13. [18]

(i) The soft Lebesgue outer measure of null soft sét ise. m*(T},) = 0.

(i) The soft Lebesgue outer measure of a soft singletof BgY, whereP; ERisD.

(iiif) Soft Lebesgue outer measure of a soft countable st is

(iv) The soft Lebesgue outer measure is soft monotone By i€ Tg, thenm*(Ty) < m*(Tg).

(v) If {T'4, } is any sequence of soft sets of soft real numbers, @i, T4, ) < X, m*(T4,) i.e. the soft Lebesgue
outer measuré* is countably soft sub-additive.

Definition 2.14. [18] A soft setT, € R is calledLebesgue measurable soft setsimply measurable soft seft for
eachT4 C R we have

T?L*(TA) = T?L*(TA N TE) + T?L*(TA N Tf,j)
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3. MEASURABLE SOFT MAPPINGS

Definition 3.1. Let (X, A, 1) be a soft measure space ahgde A. An extended real-valued soft mappitng,, defined
on A is said to be aneasurable soft mappirififor eacha € R, {pPre A VYru(PY) > @l € A. In particular, if A
is the clasam of Lebesgue measurable soft subset® pfhen the measurable soft mapping, is called aLebesgue
measurable soft mapping

Stated differently) s, : A= Ry is Lebesgue measurable soft mappiirend only if { P EA: Vru(Py) >al
is measurable soft set for eaghe R.

Theorem 3.2. Let ¢, be an extended real-valued soft mapping defined on a measurable s@fi.sethen the
following statements are equivalent:

1) ¢4, is soft measurable.

2) {P? : 5, (PZ) = @} is measurable for aliy € R.

3) {PZ : ¢y, (PF) < @} is measurable for aliy € R.

4) {PF : ¢y, (P?) < @} is measurable for aliy € R.

Proof: (1) = (2):

We prove first tha{ P? : ¢, (PY) > a} = Mooy {PF : ¢ (PT) > a — L}, For this, letP? € (P2 :
Y (PT) > a}. Thenyys, (PI) > @, Va € R. In particular,y s, (Py*) > @ — £ for everyn € N. This implies in
turn thatP?* € {Py: %fgc()OPg) >a— 1} for eNachﬁ €N, and hence??* € N,_, {P? : ¢y, (PT) >a— 2}. Thus,
(P2 pu(P2) S} C Ay {PF s pu(P2) S — 1},

Conversely, suppose th@?z € N,_, {PF : ¢z, (P?) > @ — £} so thatP?2 € {P? : ¢ (PT) > a —
1}, va € N and hencepy, (P*) > @ — £, Vi € N. Thus,¢,(P?) > @, Va € R. Therefore,P¥: € {P* :
Gru(PY) > @}. S0,0,y {Py : pu(Py) Sa— 2} C{PY : dyu(Py) > @}

Hence,

. o < ~o0 [ a o~ 1
1By = ¥pu(B) 2@t = Ny {B] 1 ¥pu(BP) >a = =}

Since soft intersection of countable number of measurable soft sets is soft measur@big; soy.,(P;)) >al
is soft measurable.
(2) = (3): N ~

We prove that{ P} : o, (PY) <@} = Ta \ {Py : s (PF) > @}. For this, letPlt € {P¥ € Ty :
Yru(PF) 2 @), ltmeans thats, (P2) < @. Thus, P € Ty butP2 & (P : s, (P) > a}ie. P €Ty \ {P -
Yru(PF) = a). Therefore{P? : iy, (P2) @} C Ta \ {P? : ¢, (PY) > @)

The converse follows by reverse steps.

Since bothl’y and{ Py : 1. (Py) > @} are soft measurable and soft difference of two measurable soft sets is
again soft measurable, so it follows tHa? : ¢ s, (Py) < @} is soft measurable.
(3) = (4) : .

Since{P? : ¢y, (P¥) <@} =N,y {P¥ € Ta : ¥y (P¥) <@+ L}, soitfollows that{ P2 : 9, (P2) < @}
is soft measurable.
(4) = (1): 3 )

We know that{ P} € Ta : ¢, (Py) > a} = Ta \ {Pj € Ta : p.(P}) < @}. Since both ofls, and
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{PreTa: pru(PY) < @} are soft measurable and soft difference of two measurable soft sets is also soft measurable,
so{Py € Ta : ¢y, (P}) > @} should be a measurable soft set.

Corollary 3.3. The softse{ Py : ;. (P;) = @} is soft measurable for each extended soft real nuraber

Proof: Leta@ € R. Then{P? : ¢, (PF) = @} = {P? : ¢, (P¥) < @} N {P? : ¢y, (P?) = @}, being the soft
intersection of two measurable soft sets, is soft measurable.
o If @ =0, then
{Py :dpu(Py) =0} = 0,2y {Fy : dru(Py) > 7}
o If @ = —¢, then
(P} ¥pu(Py) = =50} = Ny {Py - Wpu(Py) < — T}
Hence { P} : ¢;.(P;) = @} is a measurable soft set for each extended soft real number

Example 3.4. Let T» be a hon-measurable soft subseﬁ%fSuppose that’y = {Pg ETp : Py >0} andTp =
{Py €Tp: Py < 0}. Assume that),, : Ta — Tp andey, : Tg — T'§ are any bijective soft mappings. Define a
soft mappingy ., : Tp — R as

Ygu(PE), if PreTy

W(PF) = _ <
XsulFy) {¢hU(P;), it PrETy

Clearly x s, is soft bijective and assumes at most one value at each soft point. Thus for any soft real number
@, the soft sef P € Tp : xs.(Py) = @} contains exactly one soft point and hence it is a measurable soft set.
However, the soft se{Py cTp: Xfw(Py) > @} being the same &Bp is non-measurable soft set. Hengg, is a
non-measurable soft mapping.

Definition 3.5. Let ¢4, be an extended real-valued soft mapping defined on some sdftyseThe positiveand
negative part®f ¢, are defined, respectively, as

U, (Pr) = max{yyu(Py), 0} = ¢, VO
Uy, (Py) = max{—tu(Py),0} = =, VO

for all P7 € T)4.
Obviouslygbjfu andy ., are extended real-valued soft mappings azﬁg, Vi >0.

Lemma 3.6. Let w]fu and Yt be the positive and negative parts of an extended real-valued soft mapping
respectively. Thenps, = ¥}, — 7,

Proof: Let Py € T4. Then there are three possibilities for the valueg pf at Py

o If Y (P7) =0, thenw;{u(P;) = max{¢r,(P]),0} = 0andyy, (P7) = max{—v,(P7),0} = 0, so that
(VFu = V7 )(PF) = 07, (PF) =7, (Py) =0—0=0= v, (Py), VPy € Ta.

o If Y5 (P7) >0, thenyf, (PT) = max{pu(PZ),0} = ¢, (PF) andy;, (PF) = max{—¢,(Py),0} =0, so
that (v, — 7, )(Py) = U7, (Py) = 7, (P)) = Ypu(Py) = 0 = $yu(Py), ¥ Py € Ta.

o If wfu(P,'f) <0, thenf+(P,f) = max{wfu(ij),ﬁ} =0 andw;u(Pj,”) = max{—wfu(P,'f),ﬁ} = —z/qu(P,f),
so that(y}, — v5, ) (Py) = ¥, (Py) = ¢7,(Pr) = 0 — (=¢7u(Py)) = Ysu(Py), VP € Ta.

Lemma 3.7. Let 1/)qu and Vi, be the positive and negative parts of an extended real-valued soft mapping
respectively. Theny .| = ¥}, + ¢7,.



Measurable Soft Mappings 25

Proof: Let Py € T4. Then there are three possibilities for the values gf at Py

o If ¢, (PF) =0, thenyf, (PF) = max{tp,(P2),0} = 0 andy, (PF) = max{—,(P?),0} =0, so that
(WF, + V) (PE) = o7, (PE) +47,(PE) =040 =0 = [0] = [¢osu(PF)| = [tb5ul(PF), VPF € Ta.

o If P (PF) >0, thenw;{u(P;) = max{q/)f“(P,f),ﬁ} = Yru(P]) andw]?u(P;) = maX{*ﬂ}fu(P;),ﬁ} =0, so
that (v, +v7,) (Py) = 7, (Py) + 95, (Pr) = ¥pu(Py) +0 = ¥pu(Py) = [Ysu(Py)| = [$rul(Py), ¥ Py € Ta.

o If 7, (Py) <0, thenyy, (Pr) = max{y s, (Py),0} = 0 andyy, (Py) = max{—v7.(Py), 0} = —ru(Py),
so that(vy, + ¥, ) (Py) = Y7, (Pr) + 47, (Pr) = 0+ (=¢pu(Py)) = —bru(Py) = [ru(P)] = [rul(Py),
VP2 ETy.

Theorem 3.8. Let v, and ¢;,, be two measurable soft mappings defined on the same soft measurable dgmain
and¢ be some soft real number. Then (L), + ¢ (2) sy (3) Yu + Ono (8) Yy — Oho (5) q/;J%u (6) Yrudno (7)

i}%, Ono 7 0(8) Y su V Gno (9) Ysu A dno (10) |10, | are measurable soft mappings.

Proof: (1) Conside{ P? : (V5 4+ ¢)(P7) > a} = {P? : ¢y, (PF) +¢>a} = {PF : ¢, (P?) > a — ¢} for each
acR. Since) ., is given to be soft measurable, §8 : vy, (PY) > @ — ¢} is soft measurable. Thug,,, + ¢is a
measurable soft mapping.
(2) There arise three cases depending upon whetked, ¢ > 0 or¢ < 0.
Case | Whene =0

elf @>0,then{P? € Tp : (cyp,)(PF) >a} = {P? € Tp : &psu(PF) > a} = Ty, which is a measurable soft
set.

o If @ <0, we have{ P € T, : (e, )(PE) > @} = {P? € Tp : &y (P2) > @} = Tp, which is a measurable
soft set.
Case Il Whene > 0

Here{P? € Tp : (¢ )(PY) >a} = {P¥ € Tp : s (P7) > a} = {PF € Tp : ¢y (PF) >2}, whichis a
measurable soft set far;,, is soft measurable.
Case It Whent < 0

Here{P? € Tp : (¢, )(Py) > a} = {P¥ € Tp : ey (PF) > a} = {P7 € Tp : ¥y (PF) < £}, which is
a measurable soft set by Theorem 3.2.

(3) If Yyu(PF) + ¢no(PY) > @ thenyy, (PF) > @ — ¢py(PF),V @ € R. Thus we can find a soft rational num-
ber7 such thaty s, (Py) > T > @ — ¢po(Py). We show tha{ Py : (¢ + éno)(Py) > @} = U e g ({Py
Ypu(PY) > TN {PE @ — ¢pyo(PF) < T}]. For this, letP? € {PT : (Y5, + dno)(PY) > @}, Then, (g, +
Gno)(PEY) > @i gy (PI) 4 ¢no(PF) > a and hencey, (P') > a — ¢py (PI). Thus, there exists € Q such
thaty s, (PF) > T > @ — ¢no(Py*). This implies that

Pr e {PY 95 (PF) >TrandPit € {PF:a — ¢py(PY) < T}

= Ppt €{P]  ¢ru(P]) STIO{P) s — dno(P)) <7}
= Pt €U e o {P 1 ru(Py) >~F} NA{Py 1@ — dno(Py) < ?N}.

Conversely, suppose thf? € U ¢ ¢ { Py : ¥pu(Py) > T} N {Py - @ — ¢no(Py) < T}]. It means that there
exists7 € Q such thatP?= € {P¥ : ¢, (PF) > T} A {P? : @ — ¢po(PF) < T}. S0P € {PF : ¢y, (PF) > T}
and Py» € {P} : @ — ¢no(P}) < T}. This yieldsy,(Py?) > 7 anda — ¢n,(Py?) < 7. Therefore, we get
Vru(PF2) >T > @ — ¢py(P7?). In particular,p, (P7?) > @ — ¢po(Pr?) i.. pu(P?) + ¢po(PF?) > @. Thus,
qu + (bhv)(an) >a@and henCdji;cz € {an : (¢fu + (bhv)(Prg;) > a}'

Since countable soft union of measurable soft sets is soft measurable, so the desired result follows.

(4) The result follows quickly from (2) and (3).

(5) If @ <0, then{z : ¥},(Py) < a} = Tp, which is a measurable soft set. df > 0, then we may write
{z:97,(P7) <a} = {Py : ru(PF) <Va} U{P} : ¢5u(Py) > — va}. Both the soft sets on the RHS are soft
measurable and hence their soft union should also be soft measurable.

(6) Sincey t,ppy = %{(wfu+¢hv)2 — (Y 5u—dnv)?}, soit follows from above results théty, ¢y, is soft measurable.
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(7) Forén,(Py) # 0, we have

8
i 2 {P7 : éno(P7) © 0} ~ it @=0
et g Wy P enFe0R R enyeE o ws
(P2 : ono(PZ) 8 0} € [{PF : ¢y (PF) €0} O {PF : pny(PE) & 1Y if T&D

This implies thathlw is a measurable mapping. Singgj— = wfu.i, Oy # 0, SO by (6),% is a measurable soft

mapping.
(8) For anya € R, we have

{P7: (Yru V ono)(P)) >a} = {Py :bpu(P7) >} U{P] : pno(P]) > a}

Since soft union of two measurable soft mappings is a measurable soft mapping, so the result follows.
(9) By definition, (v s, A ¢po)(PF) = min{t s (P2), by (P2)}. Thus, For anyr € R, we have

{Py s (pu A ono)(Py) >at = {P] s pu(Py) > NPT : oo(Py) > @}

Since soft intersection of two measurable soft mappings is a measurable soft mapping, so the result follows.
(10) From (2) and (8), we conclude thaf, = ¢, V 0 andy;, = (~¢y,) V 0 are measurable soft mappings.
Moreover, sinceé s, | = w}ru + 47, S0 by (3), the measurability ¢f ., | follows.

Remark. If @/;;{u andw;u are soft measurable, then by (4) of above theorgm,= w;{u —V5, is also soft measurable.
Thus, ¢, is soft measurable if and onlyvjzfju andw;u are soft measurable.

If, however,|v ¢, | is soft measurable then it is not necessaryfgy, to be soft measurable. For an illustration,
assume thdl’4 is a non-measurable soft set. Define a soft mapgipgby ¢, = x1, — % where the characteristic
soft mappingyr, is defined as

. I if PTETa
XTA(PT,){ T if P}éTA

Hereyy, is not soft measurable blib ;| = = is soft measurable.

INJE]

Theorem 3.9. Letys,, be an extended real-valued measurable soft mapping definég amd 7’4 be a measurable
soft subset of'p. Then the soft restriction af ¢, to T4 is also soft measurable.

Proof: Since{P? € Ty : ¥y (P?) > a} C{P? € Tp : yu(P?) > a},Va € R; s0{P? € Ta : ¢pu(PF) S @} =
TaN{PF€Tp : s (PF) > a}.
Since soft intersection of two measurable soft sets is also soft measurable, so the result follows.

Corollary 3.10. LetT4 and Tz be measurable soft sets. Suppose that is a soft mapping with domaifiy U Ts.
Thenyy, is soft measurable if and only if its soft restrictionslig and Tz are soft measurable.

Proof: Let, be soft measurable dfiy andT’z. Then clearly
(P €TaUTp : ppu(P)) >a} ={P; €Ta: Y5 (P) >} U{P] € T : ¢y, (P]) > a}

By assumptions, the soft sets on the RHS are soft measurahlg, $s soft measurable.
Conversely suppose that;,, is measurable off'y U Tz. Then by Theorem 3.9, the soft restrictionsyof, to
T4 andT's must be soft measurable.
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Theorem 3.11. Lety, be a mapping with soft measurable dom@ip. Thenyy,, is soft measurable if and only if
the soft mapping
Vru(Py) if Py €Tp

d)h”(P;):{ 0 it P g1y

is soft measurable.

Proof: If Py cTp, thenqb,w(P;) = wfu(P;) andy ¢, is given to be soft measurable @, S0¢y, is soft measurable
onTp. In caseP; % Tp, we havepy,, (P;) = 0 which is soft measurable, being a constant mapping.

Conversely suppose that,, is a measurable soft mapping & U Tf,. Then the soft restrictiot,, |7, = ¥ 5.
is a measurable soft mapping by Theorem 3.9.

Definition 3.12. A property is said tdold almost everywheiiéthe set of soft points where this property fails to hold
has soft measur@ Thus, two soft mappings,, and¢y,, with same soft domaifi, aresoft equal aimost everywhere

if m({P2 € Tp : s (PT) # dno(PF)}) = 0.

Example 3.13. Definef,, : R — {T,2} by

1 if Pr¢Q
u PI e _ n o~
VrulPr) {2 if PrEQ
theny 7, = 1 almost everywhere becausgQ) = 0.
Example 3.14. Definef,, : R — {T,2} by
1 if Pr¢Q
u PI e _ n o~
VrulPr) { 3 it PrEQ
andoy,, : R—R by
, 1 if Pr¢Q
" P.zc _ . n Lol
Ono(Fy) {Pg if PrEQ

thenyy,, = ¢, almost everywhere becaue({ P2 € R : 14, (P?) # ¢ (P2)}) = m(Q) = 0.
Example 3.15. Defineyy,, : R — @@, Wherefi@ denotes the soft set of extended soft real numbers, by

o | 3 if PrdQ

theny,, is soft finite almost everywhere becaus¢{ P : 1 s, (z) = 55}) = m(Q) = 0.

Definition 3.16. A sequence (¢ 4., ), } of soft mappings defined dh, is said to besoft convergent almost everywhere
to a soft mapping), if the soft set of soft points whergv+,, ), } fails to be soft convergent t;,, has soft measure
0.

Theorem 3.17. Lety¢, be a measurable soft mapping with,, = ¢, almost everywhere ofis. Theng,, is also
soft measurable.
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Proof: LetTp = {Py € Ta : ¥ru(PY) # ¢no(P7)}. Then, by hypothesigs is soft measurable with(Tz) = 0.
Moreover,T4 \ T, being the soft difference of two measurable soft sets, is also soft measurable.
SinceTy = (T4 \ Ts) U T, so for anya € R we have
(PPETs: pu(PE)Sa) = (PP ET4\Tp : dpo(P2) S a) U{P?E Ty : ¢no(P) > @)
Sincey sy = ¢ny, ONTy Y Tz, SO we obtain
(P2ETs: dpo(PE)Sa) = {PPETu\ T : ¥yu(P2) S} U{P? € Ty : ¢no(PY) > @)

e Sinceyy, is soft measurable ofis Y Tz, so the first soft set on RHS is soft measurable.
e Since{ Py €Ty : bno(Py) > a} C T andm(Ts) = 0, so the second soft set on RHS is also soft measurable.
Hence the sef P? € Ts : ¢y, (PY) > a} is soft measurable, as required.

Definition 3.18. Let L and M, respectively, be the soft sets of soft rational and soft irrational numb@slip Then,

m(M) = (L) + m(M) = (L U M) =m([0,1]) =1
Defineyy, : [0,1] — {0,1} by
if PreL
if PrEM

Al =

,(/qu(an) = {

theny s, = 0 almost everywhere. Furthermore, the constant soft mapping having/eaecontinuous soft mapping
but ey, is not soft continuous. Thus, we conclude thapj, is soft continuous angh¢,, = ¢, almost everywhere,
thengy, is not necessarily soft continuous. The soft mapping is calledDirichlet’s soft mapping
The mapping),, : R — {0,T} defined as
; 1 if Pr¢Q
wf’“«(Pn) = Y : Z ~
0 if P7eqQ
theny s, = 1 almost everywhere oR. Since a constant soft mapping is soft measurable, so by Theoremy3,17,
must be soft measurable.
Definegy, : R — {0,1} as
if Py % @
if P7eqQ

= 3l

Ono(Py) = {

theng¢;,, = 0 almost everywhere oR. Since a constant soft mapping is soft measurable, so by Theoreny3,17,
should be soft measurable.

Theorem 3.19. Let{(¢'s, ). } be a sequence of extended real-valued measurable soft mappings with same soft domain
T4. Then

1) max; < ; < » (¥pu); is SOft measurable for each

2)min; < ; < » (¥yy,); is soft measurable for each

3)inf,en (Y fu)n iS SOft measurable.

4) sup,,en (Y fu)n iS sOft measurable.

5)lim (¢ 44 )n = limsup (¥ 7,), is Soft measurable.

6) lim (¢ 7y ), = liminf (¢y,), is soft measurable.

7) I limy, oo (Yu)n(B) = ¢fu(ij) exists, then),, is soft measurable.
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Proof:
1) Let¢p, = maxy < <p (Ypu)i. We show that{P7 : g, (z) > @} = Uy {PF : (Ypa)i(PF) > @}, for
anya@. For this, letPy' € {P} : ¢, (P7) > @}, thenyy, (P7') > a@. But, by our assumptiony, (Py) =
maxy < i <n (Yyu)i(Py). So there isj € {1,2,3,...,n} such that)r,(Py) = (Yru);(P7) i.€. Ypu(Prt) =
(W) (P7*) > @ which implies thatPy* € {P? : (¢Y5.);(PY) > @} for somej € {1,2,3,..,n}. Hence,
Py €Uy {Py : (dra)i(Py) > @l

Conversely suppose that € O?:
somek € {1,2,3,...,n} i.e. (Ypu)r(Py?
Ypu(Py), Vi =1,2,3,...,n and o, )k
bra(Py) > al.

Since finite soft union of measurable soft sets is soft measurable, so this concludes the proof.
2) Lett)y, = min; < ; < (¥yu)s- Itcan be easily shown thaPe : oy, (P2) S a} = My {P? : (1hy.)i(PT) > @}, Va.
3)Letehy, = infren (Vpu)n. If P21 E {PT 1 by, (P2) > @}, thempy, (P1) > @. Clearly, s, (PE1) < (dpu)n(PE)
foreachn € N. Thus,

AP (Wra)i(PY) > @, then P2 € {PF : ($ru)r(Py) > @} for
) > @. Also, by definition, (¢ 7., );(PY) < maxi < i <n (V5a)i(PY) =
(P2) < 4y, (P22). This means thaby, (P2) > @. Thus, P2 € {P2

a<Yp(Pyt) < (Wpu)a(Py), n € N

Therefore P21 € {PZ: (17,)n(P?) > @} foreachn € Nand hence?? €N,_, {PZ : (¢5.)n(PF) > a}. Thus,
{Py () > @y O P (ra)n(P) > @)

Conversely, suppose th&’2 € N)"; {P? : (Yyu)n(PT) > @}, so that(ys,)n(P2?) > @, Vn € N. This
shows thatv is a soft lower bound of (Y .)1(F52), (Y5u)2(Py?), (VW ru)a(Py?), ... }. But

Gru(Py?) = f{(ru)1 (B2), (Vru)2(Py?), ($ru)a(By?), -}

A soft lower bound is always less or equal to the soft greatest lower bourtd.ZS‘:pfu(P;2). Therefore P> € 1Py
Vru(P?) > @} and hence),— {P2 : (Yyu)n(P2) > @} C {PT : pu(PT) > @l

Thus, {P; : ¥7u(Pg) 5@} = Pty (P (p)a(Py) > @),

Since soft intersection of a countable number of measurable soft sets is soft measurahle=s@ing < ; <, (Y ry);
must be soft measurable.
4) Lettpy, = sup, ey (Vru)n. Since the sef P : 4y, (PT) > @} = U,y {P : (pu)n(P2) > @} is soft measur-
able, sy, = sup, ey (¥ru)n IS @ measurable soft mapping, as desired.
5) We know thatim (¢¢y)n = inf,, (sup;s,, (¢¥r.)s) = A, say. Suppose that

(wFU)n = Sup{(wfu)na (wfu)n—&-la (¢fu)n+27 ey (¢f’u)n+i7 }7 n= 1, 27 37

Since eacl{y,,), is given to be soft measurable, so by part (4), eaehy),, is soft measurable. NOW(¢,,)n } IS
a sequence of measurable soft mappingsiardinf,, (¢ 5y ), SO that, by (3)A = lim (¥f,), is @ measurable soft
mapping.

6) We know thatim (¢, ), = sup,, (inf;>, (¥ 1,):) = A, say. Suppose that

(wFU)n = inf{(wfu)nv (qpfu)n-&-la (wfu)n+27 ceey (djfu)n—i-M }7 n= 1, 27 37

Each (¢ ), is soft measurable due to the soft measurabilityf, ), for eachn and part (3). Consequently,
A = lim (¢44)n is @ measurable soft mapping, by part (4)
7) By hypothesisy s, = lim (¢44), = lim (¢1..),, which are soft measurable by parts (5) and (6) respectively. So

1., Should be soft measurable.
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Remark. The results in parts (3) to (7) of above theorem cannot be extended to the case of soft uncountable operations.
For example, ifl is any indexing set and eacy+,,); is soft measurable far € I, thensup,c; (¢4,,); need not be
soft measurable as can be seen in forthcoming example.

Example 3.20. Let EC [0, 1] be a non-measurable soft set. Define a soft mapping

NP B =~
(wfu)z(Pn) - { 1 if P} -

Foreach € F, the mappind s, ); is soft measurable betip, g (v'1.): = X g, the characteristic soft mapping,
which is not soft measurable.

Theorem 3.21. A continuous soft mapping defined on a measurable soft set is soft measurable.

Proof:

Let 1, be a continuous soft mapping defined Bp C R. For soft measurability of ¢, it suffices to show
that{P? : ¢, (PY) > @} is soft measurable for eache R.

Notice that{PI Yro(PF) >} = g/;f (@,5). Sinceyy, is soft continuous, sd;;ul(a, o) is a soft open
subset ofl'p. By definition of soft relative topology ofip, there exists a soft open &t C R such thavz/z):u1 (a,>0) =
Tp N Tg. The soft sefl;, being a soft open set, is soft measurable. Tldl}#,(@ 0) is a measurable soft set and
hencey,, is a measurable soft mapping.

Theorem 3.22. Let v, be a measurable soft mapping affie a soft open set, thefPy : 7. (Py) €Tg}isa
measurable soft set.

Proof:
We know that every non-empty soft sEt in R is the soft union of a countable soft collection of soft open
intervals, sal'; = Uy, I, Wherel;, = (ay, by,) are pairwise soft disjoint soft open intervals. Thus,

{Py :vru(Py) €T} = Uply [{Py : ¢pu(Py) > @} DRy  ¥ru(Py) < i}

and hence the result.

Theorem 3.23. Lety ¢, and¢y,,, be measurable soft mappings defined on a same sdfizs€then the soft sets
DAPY  ¥pu(P)) > dno(P)}

2 {Py : ru(Py) < bno(Py)},
Py dpu Pl) < <Z>hv(Pf,”)} and
4) {P wfu( )>¢hv(P7gf)}

are soft measurable.

Proof:
1) We know that between any two soft real numbers, there is a soft rational numher,, ;)
Thus, we have the desired result from

>T > dno(Py).

{Py :ru(P)) > dno(P))} = Ur e g [{ Py = pu(Py) > T} O AP : d1o(Py) < T}



Measurable Soft Mappings 31

2) We know that between any two soft real numbers, there is a soft rational numher, §8") < 7 < ¢, (PY).
Thus, we have the desired result from

(P2 pu(PE) < dno(PE)} = U, o g {PZ - 90pu(PE) ST} A{PE : o (PT) S T)]

3) Since{ Py : ¥ ru(Py) < bno(P7)} =Tp Y {P7: pu(PF) > dno(PF)}, so the result follows from (1).
4) The result follows from

{PZ: 0pu(PE) = ¢ (PY)} = (P2 - pu(P2) < dno (P2} \ AP : u(PE) < 10(P2)}

Theorem 3.24.Letvy ¢, be areal-valued soft mapping defined on a soft measurable ddfizaamd7; be a soft open
setinR. Thenyy,, is soft measurable if and onlyziﬁfﬁ}(TG) is soft measurable.

Proof:

Let 45, be soft measurable arit; be a soft open set iR. ThenTg = Up., Ir, wherel, = (ay,by) are
pairwise soft disjoint soft open intervals. Sinbe= (ay, by) = (—39, bi) 1 (ay, 30), SO

Ua () = g (@ bi) = P70 (=55, b) A 0,1 (@, )

={P? €Tp : Ypu(P7) < by} N {PT ETp : Yy (PT) > @y}

Thus;,! (i) is soft measurable for eaghsoy ;) (Tc) = v, (Up2, Ir) = Up2, ¥5, (I1) is soft measurable.

Conversely, suppose thaig?ul (T¢) is a measurable soft set for any soft open’Eetin R. In particular, for
Te = (a,0), @ € R, Vra(Ta) = ¥, (@,50) = {P7 € Tp : ¢, (Py) > a} is a measurable soft set. Henge, is
soft measurable.

4. SOFT PROBABILITY MEASURE

In this section, we first discuss some basic definitions related to elementary probability theory and then focus on our
main topic viz. Soft Probability Measure. Soft probability space was inroduced by Khameneh and Kilicman (See [12]).

Definition 4.1. A process by which we obtain some information, is calle@gperiment.e. any observation or action

whose outcome is uncertain is known as an experiment. For an illustration, suppose that someone wishes to buy a car.
Assume that the collection of choices¥s= {c, ca, ..., ¢;} and the set of specificationsis= {7, 2, ...,9 }. Then

the selection of a car amongst the choices available in accordance with the specifications desired by the person is an
experiment.

Definition 4.2. The aggregate of all possible outcomes of an experiment is cadfedample spacand is designated
by Ta.

Definition 4.3. Any particular soft subset of the soft sEj is termed as amvent

Definition 4.4. Two eventsl’s, andT 4, of soft sample spacg, are calledsoft mutually exclusiver soft disjointif
Ta, NTa, =Ty,

Definition 4.5. Two eventsTs, andT4, of soft sample spacg, are calledsoft exhaustivef Ty, U T4, = Ta.

Definition 4.6. [12] Let A be a softr-algebra onX. The mappingP : A— [0, 1] is calledsoft probability measure
on A if
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) P(X)=1
||) P(Ul (TZ,E)) =3 P(Ti,E), Where(Ti7E) N (T’J,E) = T¢7 Vi 7& 7.

A soft probability space ovek is denoted by the tripleX, A, P) whereA is a softo-algebra overX and P is
the soft probability measure ovet. The pair((F, E), P(F, E)) is used to represent a description of objects(ois
well as the probability of such description.

Example 4.7. Consider Example 2.9. We may re-represent it in the following way:
Tay, (TAI)) = (T¢7 0)

(

(Tays P(Tay)) = ({(m,{g}), (2, {})},0.15),
(TAS,P(TAS)) ({1, {r}), (m2:{g,s})},0.1),
(Tay, P(T'a,)) = ({(m,{s}), (n2, {r})},0.4),

(Tas, P(Tay)) = ({(m,{g,7}), (n2,{g, s})},0.6),
(Tag: P(T'ag)) = ({(m, {r, s}), (n2,{g,7,s})},0.85),
(Ta;, P(Ta.)) = ({(m,{g,5}), (n2,{r})},0.9), and
(Tay, P(Ta,)) = (X,1).

This representation yields descriptions of elementXoés well as the probability of such descriptions (See
[12)]).

5. AN APPLICATION OF SOFT SET THEORY

Assume that a person wants to travel with his pregnant wife from some destifatiomnother destinatiofi; via
road. Suppose that the collection of buses to travl is {v1, ..., v7 }. The facilities that these vehicles provide may
be expressed @ = {n, ..., 79}, the set of decision variables; where

vy = Daewoo Express
v9 = Faisal Movers
vg = Bilal Travels
vg = Rajput Travels
vy = Skyways
vg = Sandhu Transport Company
vy = Niazi Express
and
11 = Comfortable Seats
1o = Cooperative Staff
ns = Wifi equipped
n4 = DVD Player with headphone for each passenger
ns = Comfortable route
ne = Refreshment
n7 = Non-stop
ng = Security guard
19 = Bus hostess

Keeping in view the condition of his wife, he has to choose the vehicle that possesses the qualities amongst the
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members of the set = {ny, 72,15, 16, n9 } With corresponding weighta; = 0.9, ws = 0.6, ws = 0.4, wg = 0.3,
andwg = 0.7. Suppose that
TA = {(nla {Ula V2, U4})7 (7723 {Ula 1}3})3 (n5a {Ul})a (7767 {U17 V2, 107})a (7797 {Ulv V2, V3, Uy, U7})}

is a soft set. We represent this soft set in the form of a membership table along with the corresponding weights and the
choice values as below:

X | n,w; =09 | ma,wy =0.6 | n5, w5 =0.4 | ng,wg = 0.3 | 9, wg = 0.7 | Weighted Choice Value
1 1 1 1 1 1 2.9

Uy 1 0 0 1 1 1.9

U3 0 1 0 0 1 1.3

Uy 1 0 0 0 1 1.6

U5 0 0 0 0 0 0

Vg 0 0 0 0 0 0

vy 0 0 0 1 1 1.0

where the weighted choice values are computed using the folmula; x v;;) (See [14]).
It is vivid from above table that the person should prefer.e. Daewoo Express. Hi&'? priority should bev,
i.e. Faisal Moversu, i.e. Rajput Travels stands on tB& priority.

6. CONCLUSION

We introduced the notion of measurable soft mappings and the criteria for an extended real-valued soft mapping
to be a Lebesgue measurable soft mapping. The positive and negative parts of an extended real-valued soft mapping
were also introduced. We also discussed the measurability of soft mappings. A large number of results was also given
to elaborate different notions. The definition of soft probability measure in connection with its application to soft
c-algebrais briefly discussed at the end. To make the ideas presented more digestible, the aid of appropriate examples
where needed is taken. We hope that the results investigated in this paper make a significant and technically sound
contribution to the field and will be beneficial for the researchers for further advancement and enhancement of the
research work in the field of soft set theory, especially in soft measure theory.
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