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Abstract. In this article, first we prove a new integral identity and present
some general inequalities of Hadamard’s type for the functions whose
third derivative are concave (convex). Second applications for special
means and some new error estimates of the Midpoint formula are given.
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1. INTRODUCTION

Lety : J — R, be a function defined oi C R, then we say thap is convex on/J if

the inequality
P(rz + (1 —r)w) <rp(z) + (1 —r)p(w) (CY)
holds for allz, w € J andr € [0, 1]. Also we say that) is concave, if the negative gfi.e.
—1 is convex. A lot of celebrated inequalities have been obtained for the functions defined
in (1. 1) and a huge part of literature has been devoted to this class of convex functions.
But here we will present only one of them in following:
35
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For the convex function) : J — R, defined in (1. 1) witha;,a0 € J C R and
a1 # a2, we have the following inequalities:

o (M5) < g [ v s TR 1.2
a2 — a1 Jq,

2 2

The inequalities given in ( 1. 2) hold in the reversed direction at the same times if
concave. This remarkable result was given in ([11], 1893) and is well known in the analysis
of mathematical inequalities as Hermite-Hadamard inequality. This double inequality was
become the center of interest for many prolific researchers and has received considerable
attention, since it was appeared for the first time in print. Also a number of variants gen-
eralizations and extensions of ( 1. 2 ) have been appeared in the theory of convex analysis,
for example see [1-6,8-10, 13-20] and the references cited therein.

Now for the sake of brevity, here we introduce some notation to denote the following
repeated hypotheses, which will be used in the rest of the paper:

H;: Lety : J C— R be a three times differentiable function df, wherea,, as € J°
with a1 < as andi//" S L[al, (IQ].

H,: SupposéH; holds and«’| be a concave function dn, as] for all z € [ay, as] and
r € [0,1].

Hj;: SupposeH; holds and for(¢ > 1) |¢"|2 be a concave function ofa,, as] for all
z € [a1, ag) andr € [0, 1].

H,: Supposdd; holds andv”’| be a convex function ofu, as] for all z € [aq,as] and
r € [0,1].

Hjy: SupposéH; holds and fory > 1 with % + % = 1let |¢"'|? be a convex function on
[a1,az] forall z € [a1,a2] andr € [0, 1].

Hg: SupposdH; holds and forp > 1 |w”’\p%1 be a convex function ofuy, as] for all
z € [a1,as] andr € [0, 1].

Dragomir and the co-author have proved the following important results in [7] associ-
ated with the right hand part of inequality ( 1. 2).

Lemma 1.1([7]). Supposéd; holds, then we have:
e T

2 as — a1

_ 1
= & 5 il / (1 —=2r)¢ (ray + (1 — r)az)dr. 1.3)
0
Theorem 1.2. Supposéd s holds, then the following is valid:
as _ / /
‘wal) tula) 1 p(ode] < 2= a) (w (a)| + ¢ <a2>|> @4
2 a2 —ay Jg, 4 2

In [12], U. S. Kirmaci gave the results given below:

Lemma 1.3([12]). If H; holds, then the equality given below is valid:
1 a2 a1 + ao
] vz - v (252)

1

= (ag — ay) [/2 r’(ra; + (1 — r)ag)dr

0

+/; (r— 1) (rag + (1 — r)ag)drl . (1.5)

2
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Theorem 1.4([12]). The following inequality is valid under the hypotheHs:
az _ / /
| vtz ( ;@) ‘ _ (@ a)(W e+ @) g

as — a1 - 8

Here in this article, first we are going to prove an identity and by making use of it we
present new inequalities for three times differentiable concave (convex) functions. Then
applications of the main results are given to particular means of real numbers. At the
last section of the paper new error estimates associated with the Midpoint formula are
presented.

2. MAIN RESULTS

We begin this section with the following lemma, which is needed for the establishment
of our main results:

Lemma 2.1. Under the hypothesiH, the following identity is valid:

1 (a2 —a1)? , (a1 +as ay + as
a27a1/1/}(z)dz— 24 1/] ( 2 )_¢< 2 )
1
_ 3 _
_ (2—a) 96a1) [/(1 —r)3" (1 5 P 1—;—7“&2) dr

1
_ 3 [ 742 2-r
/rw (2 + 5 a1>dr1.
0
Proof. Integrating by parts yields:

1
- 1
Il = / H’( 2ra1—|— ;—Taz) dt

0
0 (gt + Hoas)

az—aj

0
1

6 o fl—T 1+r
+ a2—a1/(177)w 2 at 2 a | dr
0
2 [ a1+ az 12 , [ a1+ as
a2—a1¢ ( 2 ) (az—al)zw( 2 )

1
48 a1 + as 48 1—r 147
— d
(az—al)w( 2 >+(a2—a1)3/¢( 2 1t a2> '
0

and then changing of variables give us the following,

2 ai + as 12 ai; + as
I, = _ 1" . ,
! az—alw < 2 ) (az—al)ﬂ}( 2 )
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~ (as f8(11)3w (al ;a2> + (as ?6%)4 / ¥(z)dz. 2.7

aj+tag

Equivalently we get,

2 a1 + as 12 al + as
I: 1 _ /
? 02011#( 2 ) (a2a1)2¢< 2 )
aj+ag

48 o6 I
o ap? <a1 ;ra2> e / (z)d-. 2.9)

Finally the subtraction of (2. 7 ) from ( 2. 8) and then muItipIyingﬁ&&%ﬂ3 leads to
the required conclusion. O

Theorem 2.2. Under the hypothesiH, the following inequality holds:

1 7 (CLQ - a1)2 n(01+az a1+ az
CLQ*al/w(Z)dz_ 24 v < 2 )_w( 2 )‘
< (a —a1)? " <5a2 ;3a1> ‘ (2.9)

- 96
Proof. By applying triangular inequality on Lemma 2.1, we have

1 f (ag —a1)® , (a1 +ag a1 + ap
ag—al/w(z)dz_ 24 1/}( 2 )_w< 2 )‘
(02— )’ /

96

0

1
1-— 1
+ /(1—7‘)3w”’< 2Ta1+ ;—Tag) ‘dr].
0

As (1 —r)3 <1 —r3forallr € [0,1], therefore from above we can write

17 (ag —a1)® , (a1 + a2 ay + az
ag—al/w(z)dz_ 24 w( 2 )_¢< 2 )‘
1

(az — a1)?
96 [/rg

0
h | 1
+ /(1—r3) w’”( ;Ta1+ ;r@) ’dr]. (2. 10)
0

o (72 2 o

IN

2 —
()
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Sincely"’| is concave, so the inequality ( 2. 10 ) becomes

17 (a2 —a1)? ,, (a1 + as a1 + as
ag—al/w(z)dz_ 24 1/}( 2 )_w( 2 )‘
1
((12—021)3 4
= 96 [/

1/},,,(7“4@2 n 23 —
0

2 2
(1 —r3;(1 - r)al L a _7«3;(1 +r>a2)‘dr].

ai

Now by applying Jensen'’s inequality we have

1 7 (az —a1)* , (a1 +as ai + ao
ag—a1/¢(z)dz_ 24 ¢( 2 >_w< 2 )‘

1
(ag —ap)? ,,,/ rtay 213 — ot
< -~ = -7
= 96 v ( p T ™
0
1—7r3)(1— 1—r3H(1
¢ S, Geren,), ]
N (G,Q — a1)3 " 21 9 1 3 ‘
- o6 1V (2T ™ Tt T n
_ (a2 —ar)’ o (5a2 +3a1) ‘
96 8 '
Hence the proof is completed. |

Corollary 2.3. If we choose)” (“1£%2) = 0 in Theorem 2.2, we obtain

1 7 a1 + ao
az—al/w(z)dzw< 2 >'

(CLQ — a1)3 " 5@2 + 3&1 ‘
< = — | 2.11
e e 2. 11)

Theorem 2.4. Supposéd s holds, then we have the following inequality:

17 (a2 —a1)? ,, (a1 + az ar + as
ag—al/w(z)dz_ 24 w( 2 )_¢< 2 )‘

(GQ - a1)3 l¢/// <3a2 'g 20'1) ’ 4 ’l/)/// <W> "| . (2- 12)

- 384 5
Proof. First of all by the concavity ofy””’|? and then by power mean inequality, we have

[tz + (1= tw)|* = " (2)|* + (1 = )" (w)]?
> (t" () + (1= " (w)])?
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and hence

" (tz + (1 = hw)| = " (2)] + (1 = )" (w)],

soly"'| is also concave. Now by applying triangular inequality on Lemma 2.1 we have

1 7 (a2 —a1)? , (a1 + a2 a1 + as
ag—al/wz)dz_ YR ( 2 >_¢< 2 )‘
1
(a2 B a1)3 3 . [ TG2 2—r
= [ 96 U/“ﬁ <2+ 2 “1)‘”‘

0

‘/ ”'( = 1‘2”@) dr‘]. 2. 13)

Now according to Jensen'’s integral inequality we have

1
1-— 1
/ (1—7r)° " (27“@1 + ;rag)
0

dr

" (2. 14)
(1 —r)3dr )

< 0/(1 —r)3dr

smcef (1—7)3dr = andf <(1 ) gy 4 Q=rl () 2) = Lai + as,

so ( 2 14 ) becomes

1
" —-r 1+7r 1
oo (5
0

equivalently, we have

Ot —=r

w/// (3@2 ‘g 2a1) ‘, (2. 15)

1
3 m(Ta2 27T < 1y ,, [ 2a2 4+ 3aq
/mp <2+ . )dr 2| (5 ‘ (2. 16)
0
By putting back( 2. 15) and (2. 16 ) in (2. 19 ) we get the required result. O

Corollary 2.5. By settingy” (2£%2) = 0 in Theorem 2.4, we get

1 7 a) + as
azal/z/}(z)dz—w( 2 )‘

(a2_a1)3 7 3as + 2ay " 2a5 + 3a1
T M ( 5 )‘J”’b ( 5 )” (2.17)
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Theorem 2.6. Under the hypothesiH 4, the following inequality is valid:

17 (ag —a1)? , (a1 + a2 ay + as
a2_a1/¢(2)dz_ 24 1/}( 2 )—d)( 2 )‘

< (a2 ma)’ (W (an)| + [ (a2)]) (2. 18)
384

Proof. Now by applying triangular inequality and definition of convex function on Lemma
2.1 we have,

17 (a2 —a1)? ,, (a1 + as a1 + as
agfal/w(z)dz_ 24 w( 2 >—1/)< 2 )‘

1

(az —ay)? /3 wfras 22— ‘
< = -7 _Z
= 96 e R e AL

0
; 1 1
+ /(1 — 3 ’(/}/” ;Tal + + ’I"a2 ’d?”
2 2
0

1
< Lo [/ (51" @] + =50 @) )

0
b fa= () + 1;’”|w'"<a2>|)dr]

0
(az

_ - a1)3 1 " "
= T LOW) (az)] T30 |7/1 (a1)] +
(a2 — a1)*([¥" (a1)| + W”(az)\).

1 /// 3
1ol (@)l + 5510 (@)I]

384
U
Corollary 2.7. For the selection of)” (“1%2) = 0 in Theorem 2.6, we have
1 7¢()d _y ai + as
as — aq z)az 2
_ 3 " "
< (a2 —a)*([9"(a)| +[¢"(a2)]) (2. 19)

- 384
Theorem 2.8. For the hypothesi$ls, we have the inequality:

1 7 (az —a1)* , (a1 +as ay + ao
aQ—al/w(z)dZ_ 24 w( 2 )_¢< 2 )‘
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_ o la—a)( 1\ (w'"<a1>|q+3¢"/<a2>|q>3
= 96 3p+1 4

(2. 20)

Proof. Now by applying triangular inequality and Holder inequality on Lemma 2.1, we

have
1 [w(z)dz_(az—a1)2w,, mtar)  (ata
az — ag 24 2 2
1

—ap)? 1-— 1
< (as 96a1) [/(1 _7,,)3 w///( . Tal + ;‘raa) ‘dT
0
1
n sl [ras  2—r
ro|y 7—&— 5 ai | |dr
0

1

e 1 1o ~ 1
< 7((12 96a1) l(/(l —r)gpdr> </ " (1 5 ral + 1;ra2) ‘qd7“>
0 0
1 1 ) 1
+ ( T3pdr> ( " (7"a2+ _ral) qdr) ],
0/ 0/ 2 2 ‘

+ + = 1. Now using the convexity of"”’|? , we have
1
1-— 1 q
/ w///( . Tal_"_ —;-Ta2> ‘ dr
0

1

wherel + 1
p q

1—17r 1+7r
< [ [+ S e ) ar
0
" q 7z q
_ (@)l Z3I1/J (a2)[7 (2. 21)
similarly we have
1
_ " q iz q
2 2 4
0
and
1 1 1
3P dr = 1— )3 = . 2.23
/ " /< r) 3p+1 ( )
0 0

Combining (2. 21), (2. 22) and ( 2. 23), we obtain the required result. |
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Corollary 2.9. By takingy” (“1£92) = 0 in Theorem 2.8, we obtain

1 7 ay + as
a2a1/w(z)dz—z/1( 2 >‘

_ ) 1 '1’<w'"<a1>|q+3w'"<a2>|q>3
= 96 3p+1 4

P (e +3w'"<a1>lq)q]- (2. 24)

4

Theorem 2.10. Supposég holds, then the inequality given below is valid:

17 (a2 —a1)? ,, (a1 + as a1 + as
aral/w(z)dz_ 24 1/}( 2 )_w( 2 )‘

_ (@-a)? <2|w'"<a1>|q+3|w'"<a2>|q)3
- 384 5
. (2w’"<a2>|q;3w’“<a1>|Q>5]_ (2. 25)

Proof. Now by applying triangular inequality and Power mean inequality on Lemma 2.1,
we have

az
1 (az —a1)® , (a1 + a2 a1 + as
G — a1 /w(z)dz oV 2 vl
ai
1
(az —ay)? sl o (1—7 1+r ‘
96 (1—=r)°|y 5 ay + 5 as | |dr
0
; 2
ra —r
/r3 " (22 + 5 a1> ‘dr]
0

3 3 1 1—% 1 3 %
(a2 — )’ 96a1) K/(l - r)3dr> </(1 —r)3 " (1 5 Tal + 1;—Ta2> ‘qdr>
0 0
1 1—% 1 %
() (et
0 0

where; + . = 1.
Now using convexity ofy)”’|? , we have

1

1-— 1 q
/(1 — )3 (2 ral + +Ta2) ‘ dr
0

IN

+

+

2
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Jla=m* (55w + 5-
0

2|9 (a1)|? + 3|9 (as)|

IN

V" (ag)|") |dr

= 2.2
20 , (2. 26)
similarly we have
1
alym (raz 2= |9 31" (an)|? + 2[¢" (as)]?
/rw <2+ > a1>’dr_ 2 , 2. 27)
0
and
1 1
/r3dr = /(1 —r)3 = i. (2. 28)
0 0
Combining (2. 26), (2. 27 ) and ( 2. 28), we obtain the required result.
Corollary 2.11. If we sety” (:£22) = 0 in Theorem 2.10, then we have
1 7 ay + as
az — ax /w(z)dz—w( 2 )
o las—an)® | (21" (a1)|? + 3| (a2)|? Z
- 384 5
(QW"(Gz)q + 3|w~'<a1>|Q) 3]
+ .
)
([

3. APPLICATIONS TOMEANS

The following definitions of means of real numbers given in [7] will be used in this
section of the paper:
For anyay, as € R with a; # as, we have:

ay + as
A(al,ag) T &1,a2>0,
= as — a1
L(ay,as) m ay # az, ai,a >0,
1

an+1_an+1 n
Ly(a1,a —2 1 al,az €ER, a1 <a n € N.
n( 1, 2) (n+1)(a2—@1) 1,82 ) 1 2,

Proposition 3.1. Let0 < a; < a2, n € N, andn > 4. Then we have:

(ag — a1)?

L,(a1,a2)" —n(n—1) 51

A" (a1, az) — A" (a1, az)

nn—1)(n —2)(as —
192

Proof. Using the convex functiog(z) = 2™, z > 0 in Theorem 2.6, the result is obvious.
O

3
< @)’ (laa|"=3, aa|"~3) . (3. 29)
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Proposition 3.2. Let0 < a1 < ag, n € N,andn > 4. Then the inequality given below is
valid:

|L71(a17a2)” — 21473(0,1,0,2) — Ail(ahag)‘

3
as — a
< (23721)14 (lar] ™%, Jas| %) . (3. 30)
Proof. The result can be obtained from Theorem 2.6 under the utility of convex function
Y(z)=12>0. O

Proposition 3.3. Let0 < a; < ao, n € N, andn > 4. Then we have:

2
as —a
L,(a1,a2)" —n(n — 1)%1‘1"—2(@, az) — A" (a1, a2)

1
n(n — 1)(n — 2)(@2 — a1)3 1 ! (n—3)q (n—3)q
= 96 1) (1l 3l 0

+ (\az\("’g)q + 3|a1|(”*3)‘1)%]. (3. 31)

Proof. Using the convex functiony(z) = 2™,z > 0 in Theorem 2.8, one has the result.
O

Q=

Proposition 3.4. Let0 < a1 < ag, n € N, andn > 4. Then the inequality given below is
valid:

’L_l(al,ag)” - 2A_3(a1, ag) - A_l(al,ag)‘

1

n(n—l)(n—Q)(@—al)g( 1 )p[(a1‘4Q+3la2‘4Q)é

<

- 16 3p+1

+ (|a2|*4‘1+3\a1|*4Q)5] 3. 32)
Proof. One can get the conclusion from Theorem 2.8 under the utility of convex function
P(z)=1,2>0. O

Proposition 3.5. Let0 < a1 < a9, n € N,andn > 4. Then the following is true:

2
L,(a1,a2)" —n(n — 1)MAR72(041,&2) — A™(a1,a2)

24
3 1
< TL(TL - 1)(” — 2)(042 - al) |: (2|a1|(n73)q + 3|a2|(n73)q) q
96
1
+ (3|a1\<"*3>q + 2|a2|<”*3>q) ’ } (3. 33)
Proof. Using the convex functiom)(z) = 2™,z > 0 in Theorem 2.10, one can easily
obtain the result. O

Proposition 3.6. Let0 < a1 < a2, n € N,andn > 4. Then we have the inequality:
|L_1(a1, ag)" - 214_3(@1, CLQ) — A_l(al, ag)’

n(n —1)(n —2)(ag —a1)3
< % |

+ (3|a1|_4q+2|a2|_4q)

1
2|ay |74 + 3Jag| ~H) °

Q=

} . (3. 34)
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Proof. The statement of the proposition can be validated easily from Theorem 2.10 under
the utility of convex functiony(z) = 1,z > 0. O

4. APPLICATIONS TOMIDPOINT FORMULA

Let P = {21, 22,.., 2, } be a partition of points; € [a1,as], i = 1,n with a; =
20, Zn = a2 andz; < Zi+1 fori = ].,777,
Then the well known Midpoint formula for the partitidn is given by:

n—1
70,P) = o (55 (o - 20
=0

It is known to us that if the second derivative of the function [a1, a2] — R is defined
on the open intervala;, as) and

M = max [¢"(2)] < oo, then
te(ai,az)

/w P) + E(u, P)

whereE (1, P) represent the approximate error of the integéab(z)dz by the Midpoint

formulaT'(y, P) and satisfies
n—1

M
1B P = 35 > (zig1 — z)?

=0
Proposition 4.1. Supposé@, holds, then we have following inequality:

n—1
1 ’ :
E@W,P)| < — > (zip1—2)* 0" <5Z+1+3'Z> ’

96 P 8
Proof. Utilizing Corollary 2.3 over the subintervd;, z; 1] (¢ = 0,n — 1) of the partition
P, we get
() e o] o ()|

Taking the summation on both S|des of the inequality aieom 0 to n — 1 and using the
triangle inequality we deduce, that
" (5Zi+1 + 3Zi> ‘

a2 n—1
1
- /¢(z)d2 < % ;(Zi+1 —z)* 3
al -

Proposition 4.2. Under the hypothesiH 3 , the following inequality holds:

227; + 32’,’+1 ’ 321 + 2Zi+1 ’
" "
o () [ (B )

n—1

1
EW,P) < 5D (z 1—21')4[
384 &

Proof. We can validate the proof by utilizing Corollary 2.5 and is analogous to the previous
Proposition. |
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Proposition 4.3. Supposéd4 holds, then the inequality given below is valid:

n—1

BP) < o 3 (i — 20 [0 )+ 1 i)

=0

max{¢"” (a1),9"" (az)} Z (

<
- 384

Zi+1 — Zi)4- (4. 35)

=0
Proof. Likewise Proposition 3.1 we can prove the result only by using Corollary 2.7 in-
stead of Corollary 2.3. O

Proposition 4.4. For the hypothesi#ls, we have the inequality:

TERES R BN
|[E(p,P)| < 96<3p+1> Z(Zi+1—2i)4[(¢ <4+1)>

=0

v (v (3|+4||>” @.36)

Proof. The statement can be proved easily by applying Corollary 2.9 and the procedure is
similar to that of Proposition 3.1. O

Proposition 4.5. UsingHg, we have the following:

1 S [ 2]2i]9+ 3|21 ]9 é
Bw.P) < mz(ziﬂzi)ﬂ@ (Al Yl

=0

1
327+ 2|zi41]7\ | ¢
" 7 7

Proof. The result can be obtained easily by utilizing Corollary 2.11 and the procedure is
parallel to that of Proposition 3.1. O

(4. 37)

Author’s contributions : The first author gave the idea of the main results. All the
authors contributed equally to the writing of this paper. All the authors read and approved
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