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Abstract. This manuscript introduces a new alteration to the Homotopy
Perturbation Method by coupling it with the Laplace Transform. The cor-
responding Homotopy Perturbation Laplace Method (HPLM) promises
better results in terms of accuracy, efficiency, and easy-of-use when com-
pared to other semi-numerical schemes, and is therefore conveniently
poised to be used for various problems in science and engineering. The
method is tested against standard fifth and sixth order linear and non-
linear ordinary differential equations. For validity, the obtained results
are compared with well known analytical and numerical schemes.
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1. INTRODUCTION

Various real-world physical problems can be modeled as ordinary differential equations
(ODE). Naturally, their accurate solution is of great interest to the scientific community.
For finding the solution, two approaches in the area of numerical analysis can be used; one
is the pure numerical, while the other is semi-numerical (analytical). Both approaches are
commonly used to solve and study mathematical models accurately in order to have a better
understanding of the application at hand. However, they do have their own advantages
and disadvantages. In the case of numerical schemes, accuracy can be affected due to
discretization and round-off errors. Similarly, they may incur a large print on memory, and
may also be computationally expensive. Examples of well-known pure numerical schemes
are the family of Runge Kutta, Finite Difference, Wavelet, Finite Element and shooting
methods.

On the other hand, analytical methods produce solutions that are differential over the
domain of a problem and is thus amenable for mathematical treatments. These methods
develop series solutions. In certain cases, the developed series may lead to the closed
form solution. In other words, the analytical approaches are restrictive and may be used
in special cases [8,9]. This restriction can removed by the usage of generalized analytic
methods [1,2,14-16,19, 21,22, 36].
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This paper pertains to obtain approximate solutions to fifth and sixth order linear and
non-linear boundary value problems (BVP). Fifth order BVP’s occur frequently in areas
such as fluid dynamics [10, 11], while sixth order BVP’s are observed in astrophysics
[13]. In this context, the ADM has been used for obtaining solutions of fifth & sixth
order problems in [33—-35]. The same using Variational Iteration Decomposition Method
(VIDM), VIM, HPM, and Modified Variational Iteration Method (MVIM) are solved in
[25-29, 31]. Similarly, higher order BVPs have also been solved using HAM in [20], non-
polynomial spline approach in [17,18], Iterative Method (ITM) in [24], OHAM and DTM
in [3,4,6, 30], and Quintic B-Spline Galerkin scheme in [32].

In this manuscript, a novel alteration of HPM is proposed which is then used to approx-
imate the solution of fifth & sixth order linear and non-linear differential equations with
boundary conditions. The alteration extends the Homotopy Perturbation with a Laplace
transform. The Laplace transform is an integral transform and is known for its utility to
solve various problems in science and engineering. In the rest of the manuscript, this new
alteration is referred to as the Homotopy Perturbation Laplace Method (HPLM).

It is pertinent to mention that attempts to couple the Laplace transform with HPM have
also been attempted before. Homotopy perturbation method for non-linearities distribution
along with Laplace transform is given in [12]. Their method is relevant to equations involv-
ing non-homogeneous and non-polynomial terms. Another variant known as the Laplace
Transform - Homotopy Perturbation Method (LT-HPM) has been reported in [7] which is
used to find solutions to stiff systems of ODE’s with initial conditions. A Laplace ho-
motopy perturbation method (LHPM) has been used to solve partial differential equations
with variable coefficients in [23]. In contrast, HPLM proposed in this manuscript is more
efficient as can be seen from the comparison of errors with other analytical and numerical
schemes.

In the rest of the manuscript, the proposed approach is presented in section 2, which is
then applied to various fifth and sixth order BVPs in section 3 while the conclusion is in
section 4.

2. ANALYSIS OF HPLM FOR DIFFERENTIAL EQUATIONS

To understand the fundamentals of HPLM, it is applied to the following differential
equation:

Sfw(@)] +Rw (@) —g(z) =0 2.1
wherex represents an independent varialileis the linear operatoiy is the non-linear
operatoruw (x) is an unknown, ang (z) is a known function. According to HPLM, Ho-
motopy can be constructed @z, ¢) : R x [0, 1] — R such that it satisfies:

1-9)SW(,q9)—g@]+q[Sy(xq9)+R(y(r,q) —g(x)] =0  (2.2)

wherezeR, ¢e [0,1] andy (z, ¢) is an unknown function. Clearly (z,0) = yo (z) for
g=0andy(z,1) =g (z)forqg=1.
To obtain an approximate solution, expanding:, ¢) aboutg gives:

y (@) =yo (@) + Y yrd" (2.3)
k=1

Substituting (2. 3 ) into (2. 2 ) and equating the coefficients of like poweysdifferent
order problems can be obtained. The zero-th order problem is:

Sy ()] —g(z) =0 (2. 4)
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Using differential property of Laplace transform to (2. 4) results in:

s"Lyo (z) = s" 'y (@) = 5" Pyp (@) — ...~y (@) — L{g(x)} =0 (2.5)
Applying the inverse Laplace Transform gives:
- 1 n— n— n—
(o) =27 [ @)+ 7 (@) 4k (@) + Lo | 2.6)

The generak'” order problem is:
Syk ()] — Ne—1 [Yo,¥1, -« -syk—1] =0 k=1,2,3,... 2.7
Application of the Laplace transform to (2. 7)) gives:
s" Ly () —s" Ly, (@) — s" 2y (o) — ...
R yz’_l () = L{Nk—1 [yo,y1,---,Yk—1]} =0
and then, the application of the inverse Laplace Transform on both sides gives:

@)=L1{1Fn1%0ﬂ+§IQZWLH ]}
Yk s™ .._—l—yz—l () + L{Nk—1 [yo,¥1, -, Yk—1]}
(2.9)

Let the initial approximation be of the formy, (o) = ao, ¥}, (@) = a1, and likewise
until y,’jl (a) = a,—1, the approximate solution is:

z}zglrllly:yo+y1+y2+... (2. 10)

2. 8)

Substituting (2. 10) in (2. 2), the expression for residual is:
R(z) =Sy (x)] + X[y (z)] — g () (2.11)

If R =0, theng is the exact solution. However, this usually does not happen in most
of the problems. The method described in this section minimizes the limitations of the
ordinary perturbation techniques.
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FIGURE 1. Comparison of solutions in case of fifth order linear BVP

3. NUMERICAL ILLUSTRATIONS WITH HPLM

In this section, four standard examples are presented to illustrate both HPLM as well as
its ability to work with BVPs. For each example, the second order approximation is:

w(x) = wo(x) +w (z) +wsy (x) (3.12)
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FIGURE 2. Plot of HPLM residual error in case of fifth order linear BVP
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FIGURE 3. Comparison of solutions in case of fifth order non-linear BVP
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FIGURE 4. Plot of HPLM residual error in case of fifth order non-linear BVP

3.1. Example 1: Fifth order linear BVP.

W (2) = w— 15exp(a) — W0rexple), 0.1
w(0) =0,w' (0) = 1,pw” (0) = O,wp(l) =0, (1) = —e (3.13)

having exact solution(z) = (z — 2%) exp(z). Using HPLM, we obtaind = —2.9999
andB = —8.0000 in the given domain. Therefore, the second order solution is:

W(xr) = —120 + 120e® — 99z — 20ze® — 4022 — 10.523 — 2.0* — 725 /24

—2%/30 — 27 /336 — 0.0001984132° — 8.2672 x 10~ 52?
+x11 /39916800 — 4.81771 x 10719213 4 O (21*)

(3. 14)
The numerical results for the solution (3. 14 ) using HPLM are shown in Table 1.
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FIGURE 5. Comparison of solutions in case of sixth order linear BVP
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FIGURE 6. Plot of HPLM residual error in case of sixth order linear BVP
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FIGURE 7. Comparison of solutions in case of sixth order non-linear BVP

3.2. Example 2: Fifth order non-linear BVP.

w? (z) = w* (x) exp(—2x), x€el0,1] (3. 15)
w(0)=1,w"(0)=1w" (0)=Lw(l) =ew' (1) =e '

having exact solutiomw () = exp(z). In this caseA = 0.9999 and B = 1.0000 in the

given domain using HPLM. Knowing these values, the approximate second order solution
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FIGURE 8. Plot of HPLM residual error in case of sixth order non-linear BVP

. E* E* E* E* E*B-

Sﬁlﬁﬁn Sl—cl)IIDuLt:\c/)ln HELM HPM OHAM VIMHP ADM  Spline

[25] [5] [29] [34] [34]

0.0 0. 0. 0. 0. 0. 0. 0. 0.
0.1 0.099465 0.0994654 -1E-13 -3E-11 -9E-11 -3E-11 -3E-11 -8E-03
0.2 0195424 0.195424 -8E-13 -2E-10 -4E-10 -2E-10 -2E-10 -1E-03
0.3 0.28347  0.28347 -2E-12 -4E-10 -5E-10 -4E-10 -4E-10 -5E-03
0.4 0.358038 0.358038 -5E-12 -8E-10 -2E-11 -8E-10 -8E-10 3E-03
05 041218 041218 -8E-12 -1E-09 1E-09 -1E-09 -1E-09 8E-03
0.6 0.437309 0437309 -1E-11 -2E-09 2E-09 -2E-09 -2E-09 6E-03
0.7 0.422888 0.422888 -1E-11 -2E-09 2E-09 -2E-09 -2E-09 -0.000
0.8 0.356087 0.356087 -9E-12 -1E-09 1E-09 -2E-09 -1E-09 9E-03
0.9 0.221364 0.221364 -4E-12 -1E-09 4E-10 -1E-09 -1E-09 -9E-03

1.0 0. 2.93E-14 -2E-14 0. 0. 0. 0. 0.

E* = Exact - Approx.
TABLE 1. Comparison of second order error of HPLM with various
schemes for fifth order linear BVP (Section 3. 13).

W ()

2.51072 x 106 4+ 989285.e 2% — 3.5 x 10%e~* — 741435.2
+1.11051 x 10%ze~* — 1.8905110%ze~* + 88660.522
+590663.e72%22 — 577381.e " ®z2 — 5135.8223 + 196535.e 2% 3
—127504.e 723 + 123.469z* + 45492.7e 2% x4 — 20783.3¢~%2*
+7712.51e72% 2% — 2432.e %1% 4 983.339¢ 2726 — 200.486e 726
+95.3254e2%25 — 12.75¢ %27 4 7.00659¢ 2% 18
—0.873264e~ %28 4 0.38298¢ 2% + 0.01487e¢ 2210
+0.000370732e 22z 4+ 4.52112 x 10~ 622412

(3. 16)

The numerical results for the solution (3. 16 ) using HPLM are shown in Table 2.

3.3. Example 3: Sixth order linear BVP.

w(0) =

w? (z) = w (x) — 6e® xel0,1

)

1L,w" (0) = —1,w" (0) = =3, w (1) = 0,w” (1) = —2¢,w"* (1) = —4e

(3.17)
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- E* E* E* E* E*B-

X Sgi‘uﬁn S|-c|)IIDuLt:\gn HELM HPM OHAM VIMHP ADM  Spline
[25] (5] [29] [34] [34]

0.0 1, 1. 4E-10 0.  0.0000 0. 0. 0.
0.1 1.105170918 1.10517 2E-10 1E-09 1E-10 1E-09 1E-09 -7E-04
0.2 1.221402758  1.2214 5E-10 2E-09 1E-09 2E-09 2E-09 -7E-04
0.3 1.349858808 1.34986 2E-10 1E-08 3E-09 1E-08 1E-08E-04
0.4 1491824698 1.49182 5E-10 2E-08 6E-09 2E-08 2E-08E-04
0.5 1.648721271 1.64872 2E-10 3E-08 OE-09 3E-08 3E-08E-04
0.6 1.822118800 1.82212 2E-10 3E-08 1E-08 3E-08 3E-08E-04
0.7 2013752707 2.01375 2E-10 4E-08 1E-08 4E-08 4E-08E-04
0.8 2.225540928 2.22554 4E-10 3E-08 8E-09 3E-08 3E-08E-04
0.9 2459603111 2.4596 5E-10 1E-08 1E-09 1E-08 1E-04E-04
1.0 2.718281828 2.71828  5E-10 0. 0. 0. 0. 0.

E* = Exact - Approx.
TABLE 2. Comparison of second order error of HPLM with various
schemes for fifth order non-linear BVP (Section 3. 15).

having exact solutiomw (z) = exp(z) — z exp(x). Considering HPLM, the second order
approximation can be obtained by determinidg= —1.1692075593864748 x 1072,

B = —1.9999999999898874, andC' = —4.000000000062179:

W (x) =

13 — 12e” + 12.2 + 112%/2 + 1.66667z> + 321 /8 + 0.066662°
+725/720 + 0.0011927 + 28/8064 + 1.1022 x 10~52° + x1°/1209600

+5.01042 x 10~8z! + 212 /479001600 — 1.87764 x 1072223 + O (z'*)

(3. 18)

The numerical results for the solution (3. 18 ) using HPLM are mentioned in Table 3.

*
Exact HPLM E* E* HPM OIEAM E*VIM E* ADM
Solution Solution HPLM [28] [5] [27] [35]
0.0 1. 1. 0. 0. 0. 0. 0.
0.1 0.994654  0.994654 1.1E-13 -4.0E-4 2.0E-8 -4.0E-4 -4.0E-4
0.2 0.977122 0.977122 2.2E-13 -7.7E-4 4.0E-8 -7.7E-4 -7.7E-4
0.3 0.944901  0.944901 3.0E-13 -1.0E-3 56E-8 -1.0E-3 -1.0E-3
0.4 0.895095 0.895095 3.6E-13 -1.2E-3 6.9E-8 -1.2E-3 -1.2E-3
0.5 0.824361 0.824361 3.9E-13 -1.3E-3 75E-8 -1.3E-3 -1.3E-3
0.6 0.728848 0.728848 3.7E-13 -1.2E-3 7.4E-8 -1.2E-3 -1.2E-3
0.7 0.604126 0.604126 3.2E-13 -1.0E-3 6.5E-8 -1.0E-3 -1.0E-3
0.8 0.445108  0.445108 2.4E-13 -40E-4 48E-8 -4.0E-4 -4.0E-4
0.9 0.24596 0.24596 1.3E-13 -7.7E-4 25E-8 -7.7E-4 -7.7E-4
1.0 0. 1.97E-15 -1.9E-15 0. -2.0E-9 0. 0.

E* = Exact - Approx.
TaBLE 3. Comparison of second order error of HPLM with various
schemes for sixth order linear BVP (Section 3. 17).
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3.4. Example 4: Sixth order non-linear BVP.
w' (z) = exp(—z)w? () xel0, 1]
w(0) = 1,w”(0) = 1,w" (0) = 1,
w(l)=ew’ (1) =e,w” (1)=e
having exact solutiom (z) = exp(z). Considering HPLM, the second order solution is

obtained by determiningl = 1.000000014, B = 0.999999965 andC = 1.000000066
as:

(3. 19)

—1.09849 x 108 4+ 4.27823 x 107e 2% + 6.70663 x 107e™®
+3.21542 x 107z + 4.90861 x 107ze ™2 + 7.13906 x 107xe
—3.99368 x 10%22 4 2.70287 x 107e =222 +2.743 x 107e~ %22
426438923 + 9.46789 x 1007223 4 6.10844 x 10%e— 723
—9389.452% 4+ 2.35759 x 100e~2%2% + 954196.e 2% + 144.4492°
+441776.e 2% 2% + 116230.e %25 4 64348.6e 27 2% + 11553.1e %25
+7425.02¢ 2227 + 918.445¢ %27 + 685.517e 2228 + 54.3684e % x®
+50.7766e 272 4 2.37847e~*2% + 3.00286e %210 4 0.128264e 210
+0.13782e =27z 4 0.00497907e =222 4 0.000128717e 2% 113
+2.17014 x 10~ %e=222 + 1.80845 x 10~ 8¢~ 2515
(3. 20)
The numerical results for the solution (3. 20 ) using HPLM are shown in Table 4.
It can be clearly observed from Tables and Figures that HPLM provides more accuracy
than any other mentioned analytical and numerical schemes.

E HPLM E* E* E* E* E*

Soi(ua}[%n Solution HPLM HPM  OHAM ViM ADM

(28] [5] [27] [35]

0.0 1. 1. 7.4E-9 0. 0. 0. 0.
0.1 1.10517 1.10517 5.3E-9 -1.2E-4 -94E-9 -12E-4 -12E-4
0.2 1.2214 1.2214 8.5E-9 -23E-4 -18E-8 -23E-4 -2.3E-4
0.3 1.34986 1.34986 -6.3E-9 -3.2E-4 -2.4E-8 -3.2E-4 -3.2E-4
0.4 149182 149182 6.7E-9 -3.8E-4 -29E-8 -3.8E-4 -3.8E-4
0.5 1.64872 1.64872 -9.5E-11 -4.0E-4 -3.0E-8 -4.0E-4 -4.0E-4
0.6 182212 182212 -75E-9 -39E-4 -28E-8 -3.9E-4 -3.9E-4
0.7 201375 2.01375 75E-9 -3.3E-4 -24E-8 -3.3E-4 -3.3E4
0.8 222554 222554 2.7E-9 -24E-4 -1.7E-8 -24E-4 -24E-4
0.9 2.4596 2.4596 9.7E-9 -1.2E-4 -9.1E-9 -1.2E-4 -1.2E-4
1.0 2.71828 2.71828 6.7E-10 2.0E-9 25E-10 2.0E-9 2.0E-9

E* = Exact - Approx.
TABLE 4. Comparison of second order error of HPLM with various
schemes for sixth order non-linear BVP (Section 3. 19).

4. CONCLUSION

This paper introduces a new scheme which provides more accurate results than the
classical HPM, OHAM, VIMHP, ADM, and B-Spline and is applicable to a wide class of
functional equations. We have successfully applied this approach to linear and non-linear
BVPs and compared the results with various analytical and numerical schemes. These
comparisons indicate that HPLM is more accurate than other mentioned analytical and
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numerical methods, hence, it will be more appealing for scientists and researchers to apply
and extend its application to more complex problems arising in science and engineering.
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